Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in Biological Active Sulfonamide based Hybrid Compounds Part A: Two-Component Sulfonamide Hybrids

Author(s): Reihane Ghomashi, Shakila Ghomashi, Hamidreza Aghaei and Ahmad Reza Massah*

Volume 30, Issue 4, 2023

Published on: 08 September, 2022

Page: [407 - 480] Pages: 74

DOI: 10.2174/0929867329666220622153348

Price: $65

Abstract

Sulfonamides constitute an important class of drugs, with many types of pharmacological agents possessing antibacterial, anti-carbonic anhydrase, anti-obesity, diuretic, hypoglycemic, antithyroid, antitumor, and anti-neuropathic pain activities. The sulfonamides are the compounds that have general formula R-SO2NHR', where the functional group is bound to aromatic, heterocycle, and aliphatic groups. The nature of the R and R' moiety is variable, starting with hydrogen and ranging to a variety of moieties incorporating organic compounds such as coumarin, isoxazole, tetrazole, pyrazole, pyrrole, and so many other pharmaceutical active scaffolds that lead to a considerable range of hybrids named as sulfonamide hybrids. Part A of this review presents the most recent advances in designing and developing two-component sulfonamide hybrids containing coumarin, indole, quinoline, isoquinoline, chalcone, pyrazole/pyrazoline, quinazoline, pyrimidine, thiazole, benzothiazole, and pyridine between 2015 and 2020. Specifically, the authors review the scientific reports on the synthesis and biological activity of this kind of hybrid agent.

Keywords: Sulfonamides, Two-component, Hybrids, Synthesis, Biological Activity

[1]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125]
[2]
Pandita, D.; Kumar, S.; Lather, V. Hybrid poly (lactic-co-glycolic acid) nanoparticles: Design and delivery prospectives. Drug Discov. Today, 2015, 20(1), 95-104.
[http://dx.doi.org/10.1016/j.drudis.2014.09.018]
[3]
Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H-A.; Zhong, Z. Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci., 2014, 39(2), 330-364.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.10.008]
[4]
Rana, A.; Alex, J.M.; Chauhan, M.; Joshi, G.; Kumar, R. A review on pharmacophoric designs of antiproliferative agents. Med. Chem. Res., 2015, 24(3), 903-920.
[http://dx.doi.org/10.1007/s00044-014-1196-5]
[5]
Katsori, A-M.; Hadjipavlou-Litina, D. Coumarin derivatives: An updated patent review (2012–2014). Expert Opin. Ther. Pat., 2014, 24(12), 1323-1347.
[http://dx.doi.org/10.1517/13543776.2014.972368]
[6]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.; Dhar, K. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018]
[7]
Parkes, A.L.; Yule, I.A. Hybrid antibiotics–clinical progress and novel designs. Expert Opin. Drug Discov., 2016, 11(7), 665-680.
[http://dx.doi.org/10.1080/17460441.2016.1187597]
[8]
Marco-Contelles, J.; Soriano, E. The medicinal chemistry of hybrid-based drugs targeting multiple sites of action. Curr. Top. Med. Chem., 2011, 11(22), 2714-2715.
[http://dx.doi.org/10.2174/156802611798184382]
[9]
Decker, M. Design of hybrid molecules for drug development; Elsevier, 2017.
[10]
Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res., 2008, 41(1), 69-77.
[http://dx.doi.org/10.1021/ar7000843]
[11]
Zhao, C.; Rakesh, K.; Ravidar, L.; Fang, W-Y.; Qin, H-L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 162, 679-734.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.017]
[12]
Supuran, C.T. Special issue: Sulfonamides. Molecules, 2017, 22(10), 1642-1646.
[http://dx.doi.org/10.3390/molecules22101642]
[13]
Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.; Safwat, N.A.; Elaasser, M.M.; Soliman, A.M. Biological evaluation of some new N-(2, 6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur. J. Med. Chem., 2016, 124, 299-310.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.060]
[14]
Gul, H.I.; Tugrak, M.; Sakagami, H.; Taslimi, P.; Gulcin, I.; Supuran, C.T. Synthesis and bioactivity studies on new 4-(3-(4-Substitutedphenyl)-3a, 4-dihydro-3 H-indeno [1, 2-c] pyrazol-2-yl) benzenesulfonamides. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1619-1624.
[http://dx.doi.org/10.3109/14756366.2016.1160077]
[15]
Chellat, M.F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem. Int. Ed., 2016, 55(23), 6600-6626.
[http://dx.doi.org/10.1002/anie.201506818]
[16]
Gao, H-D.; Liu, P.; Yang, Y.; Gao, F. Sulfonamide-1, 3, 5-triazine–thiazoles: Discovery of a novel class of antidiabetic agents via inhibition of DPP-4. RSC Advances, 2016, 6(86), 83438-83447.
[http://dx.doi.org/10.1039/C6RA15948F]
[17]
Verma, S.; Pandey, S.; Agarwal, P.; Verma, P.; Deshpande, S.; Saxena, J.K.; Srivastava, K.; Chauhan, P.M.; Prabhakar, Y.S.N. -(7-Chloroquinolinyl-4-aminoalkyl) arylsulfonamides as antimalarial agents: Rationale for the activity with reference to inhibition of hemozoin formation. RSC Advances, 2016, 6(30), 25584-25593.
[http://dx.doi.org/10.1039/C6RA00846A]
[18]
Mutahir, S.; Jończyk, J.; Bajda, M.; Khan, I.U.; Khan, M.A.; Ullah, N.; Ashraf, M.; Riaz, S.; Hussain, S.; Yar, M. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorg. Chem., 2016, 64, 13-20.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.002]
[19]
Mert, S.; Alım, Z.; İşgör, M.M.; Beydemir, Ş.; Kasımoğulları, R. The synthesis of novel pyrazole-3, 4-dicarboxamides bearing 5-amino-1, 3, 4-thiadiazole-2-sul fonamide moiety with effective inhibitory activity against the isoforms of human cytosolic carbonic anhydrase I and II. Bioorg. Chem., 2016, 68, 64-71.
[http://dx.doi.org/10.1016/j.bioorg.2016.07.006]
[20]
Durgun, M.; Turkmen, H.; Zengin, G.; Zengin, H.; Koyunsever, M.; Koyuncu, I. Synthesis, characterization, in vitro cytotoxicity and antimicrobial investigation and evaluation of physicochemical properties of novel 4-(2-methylacetamide) benzenesulfonamide derivatives. Bioorg. Chem., 2017, 70, 163-172.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.007]
[21]
Alaoui, S.; Dufies, M.; Driowya, M.; Demange, L.; Bougrin, K.; Robert, G.; Auberger, P.; Pagès, G.; Benhida, R. Synthesis and anti-cancer activities of new sulfonamides 4-substituted-triazolyl nucleosides. Bioorg. Med. Chem. Lett., 2017, 27(9), 1989-1992.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.018]
[22]
Frkic, R.L.; He, Y.; Rodriguez, B.B.; Chang, M.R.; Kuruvilla, D.; Ciesla, A.; Abell, A.D.; Kamenecka, T.M.; Griffin, P.R.; Bruning, J.B. Structure–activity relationship of 2, 4-dichloro-N-(3, 5-dichloro-4-(quinolin-3-yloxy) phenyl) benzenesulfonamide (INT131) analogs for PPARγ-targeted antidiabetics. J. Med. Chem., 2017, 60(11), 4584-4593.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01727]
[23]
Gorantla, V.; Gundla, R.; Jadav, S.S.; Anugu, S.R.; Chimakurthy, J.; Nidasanametla, S.K.; Korupolu, R. Molecular hybrid design, synthesis and biological evaluation of N-phenyl sulfonamide linked N-acyl hydrazone derivatives functioning as COX-2 inhibitors: New anti-inflammatory, anti-oxidant and anti-bacterial agents. New J. Chem., 2017, 41(22), 13516-13532.
[http://dx.doi.org/10.1039/C7NJ03332J]
[24]
Košak, U.; Knez, D.; Coquelle, N.; Brus, B.; Pišlar, A.; Nachon, F.; Brazzolotto, X.; Kos, J.; Colletier, J-P.; Gobec, S. N-Propargylpiperidines with naphthalene-2-carboxamide or naphthalene-2-sulfonamide moieties: Potential multifunctional anti-Alzheimer’s agents. Bioorg. Med. Chem., 2017, 25(2), 633-645.
[http://dx.doi.org/10.1016/j.bmc.2016.11.032]
[25]
Alaa, A-M.; Angeli, A.; El-Azab, A.S.; El-Enin, M.A.A.; Supuran, C.T. Synthesis and biological evaluation of cyclic imides incorporating benzenesulfonamide moieties as carbonic anhydrase I, II, IV and IX inhibitors. Bioorg. Med. Chem., 2017, 25(5), 1666-1671.
[http://dx.doi.org/10.1016/j.bmc.2017.01.032]
[26]
Bhatti, H.A.; Khatoon, M.; Al-Rashida, M.; Bano, H.; Iqbal, N.; Yousuf, S.; Khan, K.M.; Hameed, A.; Iqbal, J. Facile dimethyl amino group triggered cyclic sulfonamides synthesis and evaluation as alkaline phosphatase inhibitors. Bioorg. Chem., 2017, 71, 10-18.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.008]
[27]
Mohebali, F.; Nazifi, Z.; Mohamad Reza Nazifi, S.; Mohammadian, H.; Massah, A.R. Synthesis, molecular docking studies, and absorption, distribution, metabolism, and excretion prediction of novel sulfonamide derivatives as antibacterial agents. J. Chin. Chem. Soc. (Taipei), 2019, 66(5), 558-566.
[http://dx.doi.org/10.1002/jccs.201800207]
[28]
Beheshti-Maal, K.; Khazaeili, T.; Asakere, N.; Mousavi, F.; Massah, A. Synthesis of some novel sulfonamide-imines as potential antimicrobial agents. Lett. Org. Chem., 2018, 15(2), 111-117.
[http://dx.doi.org/10.2174/1570178614666170707152357]
[29]
Maghsoodi, N.K.; Khazaeli, T.; Massah, A.R. Solvent-free synthesis of novel styrenesulfonamide derivatives and evaluation of their antibacterial activity. J. Chem. Res., 2015, 39(3), 141-144.
[http://dx.doi.org/10.3184/174751915X14241022318075]
[30]
Poole, A.T.; Sitko, C.A.; Le, C.; Naus, C.C.; Hill, B.M.; Bushnell, E.A.; Chen, V.C. Examination of sulfonamide-based inhibitors of MMP3 using the conditioned media of invasive glioma cells. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 672-681.
[http://dx.doi.org/10.1080/14756366.2020.1715387]
[31]
Lu, C.W.; Lin, T-Y.; Yang, H.C.; Hung, C.F.; Weng, J.R.; Wang, S.J. [1-(4-chloro-3-nitrobenzenesulfonyl)-1H-indol-3-yl]-methanol, an indole-3-carbinol derivative, inhibits glutamate release in rat cerebrocortical nerve terminals by suppressing the P/Q-type Ca2+ channels and Ca2+/calmodulin/protein kinase A pathway. Neurochem. Int., 2020, 140, 104845.
[http://dx.doi.org/10.1016/j.neuint.2020.104845]
[32]
Massah, A.R.; Adibi, H.; Khodarahmi, R.; Abiri, R.; Majnooni, M.B.; Shahidi, S.; Asadi, B.; Mehrabi, M.; Zolfigol, M.A. Synthesis, in vitro antibacterial and carbonic anhydrase II inhibitory activities of N-acylsulfonamides using silica sulfuric acid as an efficient catalyst under both solvent-free and heterogeneous conditions. Bioorg. Med. Chem., 2008, 16(10), 5465-5472.
[http://dx.doi.org/10.1016/j.bmc.2008.04.011]
[33]
Ghomashi, R.; Rabiei, M.; Ghomashi, S.; Reza Massah, A.; Kolahdoozan, M.; Hosseinnezhad, M.; Ebrahimi-Kahrizsangi, R.; Palevicius, A.; Nasiri, S.; Janusas, G. Synthesis and investigation of the theoretical and experimental optical properties of some novel azo pyrazole sulfonamide hybrids. Mater. Lett., 2022, 317, 132132.
[http://dx.doi.org/10.1016/j.matlet.2022.132132]
[34]
Adibi, H.; Massah, A.R.; Majnooni, M.B.; Shahidi, S.; Afshar, M.; Abiri, R.; Naghash, H.J. Synthesis, characterization, and antimicrobial evaluation of sulfonamides containing n-acyl moieties catalyzed by bismuth (III) salts under both solvent and solvent-free conditions. Synth. Commun., 2010, 40(18), 2753-2766.
[http://dx.doi.org/10.1080/00397910903318732]
[35]
Massah, A.R.; Dakhilpour, S.S.; Ebrahimi, S.; Naseri, S.; Nateghi, M. Mild and solvent-free synthesis and antibacterial evaluation of novel sulfonamides containing hydroxyl groups. Org. Chem. Res, 5(1), 25-31.
[36]
Massah, A.R.; Kazemi, F.; Azadi, D.; Farzaneh, S.; Aliyan, H.; Naghash, H.J.; Momeni, A. A mild and chemoselective solvent-free method for the synthesis of N-aryl and N-alkylsulfonamides. Lett. Org. Chem., 2006, 3(3), 235-241.
[http://dx.doi.org/10.2174/157017806775789886]
[37]
Carta, F.; Scozzafava, A.; Supuran, C.T. Sulfonamides: A patent review (2008–2012). Expert Opin. Ther. Pat., 2012, 22(7), 747-758.
[http://dx.doi.org/10.1517/13543776.2012.698264]
[38]
De Simone, G.; Di Fiore, A.; Menchise, V.; Pedone, C.; Antel, J.; Casini, A.; Scozzafava, A.; Wurl, M.; Supuran, C.T. Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: Solution and X-ray crystallographic studies. Bioorg. Med. Chem. Lett., 2005, 15(9), 2315-2320.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.032]
[39]
Temperini, C.; Cecchi, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Comparison of chlorthalidone, indapamide, trichloromethiazide, and furosemide X-ray crystal structures in adducts with isozyme II, when several water molecules make the difference. Bioorg. Med. Chem., 2009, 17(3), 1214-1221.
[http://dx.doi.org/10.1016/j.bmc.2008.12.023]
[40]
Ahlskog, J.K.; Dumelin, C.E.; Trüssel, S.; Mårlind, J.; Neri, D. In vivo targeting of tumor-associated carbonic anhydrases using acetazolamide derivatives. Bioorg. Med. Chem. Lett., 2009, 19(16), 4851-4856.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.022]
[41]
Masini, E.; Carta, F.; Scozzafava, A.; Supuran, C.T. Antiglaucoma carbonic anhydrase inhibitors: A patent review. Expert Opin. Ther. Pat., 2013, 23(6), 705-716.
[http://dx.doi.org/10.1517/13543776.2013.794788]
[42]
Fabrizi, F.; Mincione, F.; Somma, T.; Scozzafava, G.; Galassi, F.; Masini, E.; Impagnatiello, F.; Supuran, C.T. A new approach to antiglaucoma drugs: Carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J. Enzyme Inhib. Med. Chem., 2012, 27(1), 138-147.
[http://dx.doi.org/10.3109/14756366.2011.597749]
[43]
Matthews, E.; Portaro, S.; Ke, Q.; Sud, R.; Haworth, A.; Davis, M.; Griggs, R.; Hanna, M. Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype. Neurology, 2011, 77(22), 1960-1964.
[http://dx.doi.org/10.1212/WNL.0b013e31823a0cb6]
[44]
Temperini, C.; Innocenti, A.; Mastrolorenzo, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Interaction of the antiepileptic drug sulthiame with twelve mammalian isoforms: Kinetic and X-ray crystallographic studies. Bioorg. Med. Chem. Lett., 2007, 17(17), 4866-4872.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.044]
[45]
Abbate, F.; Coetzee, A.; Casini, A.; Ciattini, S.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with the antipsychotic drug sulpiride. Bioorg. Med. Chem. Lett., 2004, 14(2), 337-341.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.014]
[46]
Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C.T.; Scozzafava, A.; Klebe, G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition. J. Med. Chem., 2004, 47(3), 550-557.
[http://dx.doi.org/10.1021/jm030912m]
[47]
Temperini, C.; Cecchi, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited-old leads for new applications? Org. Biomol. Chem., 2008, 6(14), 2499-2506.
[http://dx.doi.org/10.1039/b800767e]
[48]
Temperini, C.; Cecchi, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Interaction of indapamide and related diuretics with 12 mammalian isozymes and X-ray crystallographic studies for the indapamide–isozyme II adduct. Bioorg. Med. Chem. Lett., 2008, 18(8), 2567-2573.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.051]
[49]
Temperini, C.; Cecchi, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Comparison of chlorthalidone and indapamide X-ray crystal structures in adducts with isozyme II: When three water molecules and the keto- enol tautomerism make the difference. J. Med. Chem., 2009, 52(2), 322-328.
[http://dx.doi.org/10.1021/jm801386n]
[50]
Supuran, C.T. Diuretics: From classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Curr. Pharm. Des., 2008, 14(7), 641-648.
[http://dx.doi.org/10.2174/138161208783877947]
[51]
Piecha, G.; Adamczak, M.; Chudek, J.; Wiecek, A. Indapamide decreases plasma adiponectin concentration in patients with essential hypertension. Kidney Blood Press. Res., 2007, 30(3), 187-194.
[http://dx.doi.org/10.1159/000103279]
[52]
Irfan, M. Selective cyclooxygenase-2 inhibitors: A review of recent chemical scaffolds with promising anti-inflammatory and COX-2 inhibitory activities. Med. Chem. Res., 2020, 29(5), 809-830.
[http://dx.doi.org/10.1007/s00044-020-02528-1]
[53]
Khan, F.A.; Mushtaq, S.; Naz, S.; Farooq, U.; Zaidi, A.; Bukhari, S.M.; Rauf, A.; Mubarak, M.S. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem., 2018, 22(8), 818-830.
[http://dx.doi.org/10.2174/1385272822666180122153839]
[54]
Rakesh, K.; Wang, S-M.; Leng, J.; Ravindar, L.; Asiri, A.M.; Marwani, H.M.; Qin, H-L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anticancer. Agents Med. Chem., 2018, 18(4), 488-505.
[http://dx.doi.org/10.2174/1871520617666171103140749]
[55]
Elgemeie, G.H.; Azzam, R.A.; Elsayed, R.E. Sulfa drug analogs: New classes of N-sulfonyl aminated azines and their biological and preclinical importance in medicinal chemistry (2000–2018). Med. Chem. Res., 2019, 28(8), 1099-1131.
[http://dx.doi.org/10.1007/s00044-019-02378-6]
[56]
Verma, S.K.; Verma, R.; Xue, F.; Thakur, P.K.; Girish, Y.; Rakesh, K. Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg. Chem., 2020, 105, 104400.
[http://dx.doi.org/10.1016/j.bioorg.2020.104400]
[57]
Mondal, S.; Malakar, S. Synthesis of sulfonamide and their synthetic and therapeutic applications: Recent advances. Tetrahedron, 2020, 76(48), 131662.
[http://dx.doi.org/10.1016/j.tet.2020.131662]
[58]
Gulçin, İ.; Taslimi, P. Sulfonamide inhibitors: A patent review 2013-present. Expert Opin. Ther. Pat., 2018, 28(7), 541-549.
[http://dx.doi.org/10.1080/13543776.2018.1487400]
[59]
Lavanya, R. Sulphonamides: A pharmaceutical review. Int. J. Pharm. Sci. Invent., 2017, 6(2), 1-3.
[60]
Irfan, A.; Batool, F.; Irum, S.; Ullah, S.; Umer, M.; Shaheen, R.; Chand, A.J. A therapeutic journey of sulfonamid derivatives as potent anticancer agents: A review. World J. Pharm. Res., 2018, 7, 257-270.
[61]
Chen, J.; Xie, S. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci. Total Environ., 2018, 640, 1465-1477.
[http://dx.doi.org/10.1016/j.scitotenv.2018.06.016]
[62]
El-Gaby, M.; Ammar, A.Y.; IH, El-Qaliei M.; M Ali, A.; F Hussein, M.; A Faraghally, F. Sulfonamides: Synthesis and the recent applications in medicinal chemistry. Egypt. J. Chem., 2020, 63(12), 5289-5327.
[63]
Parveen, B.; Praveen, S.; Pal, H. A short review on sulphonamides with antimicrobial activity. Int. J. Pharm. Chem., 2017, 7(05), 70-73.
[64]
Kumar, S.; Rulhania, S.; Jaswal, S.; Monga, V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2021, 209, 112923.
[http://dx.doi.org/10.1016/j.ejmech.2020.112923]
[65]
Das, T.C.; Quadri, S.A.; Farooqui, M. Recent advances in synthesis of sulfonamides: A review. Chem. Biol. Interact., 2018, 8(4), 194-204.
[66]
Dubey, P.K.; Srikrishna, D.; Chandraiah, G. A review on pharmacological properties of coumarins. Mini Rev. Med. Chem., 2017, 18(2), 113-141.
[67]
Mostajeran, N.; Arshad, F.A.; Aliyan, H.; Massah, A.R. Solvent-free synthesis and antibacterial evaluation of novel coumarin sulfonamides. Pharm. Chem. J., 2018, 52(1), 1-7.
[http://dx.doi.org/10.1007/s11094-018-1756-y]
[68]
Anjum, N.F.; Aleem, A.; Nayeem, N.; Asdaq, S. Synthesis and antibacterial activity of substituted 2-phenyl-4-chromones. Der Pharma Chem., 2011, 3, 56-62.
[69]
de Souza, S.M.; Delle Monache, F.; Smânia, A. Antibacterial activity of coumarins. Z. Naturforsch. C J. Biosci., 2005, 60(9-10), 693-700.
[http://dx.doi.org/10.1515/znc-2005-9-1006]
[70]
Behrami, A. Antibacterial activity of coumarine derivatives synthesized from 4-Chloro-chromen-2-one. The comparison with standard drug. Orient. J. Chem., 2014, 30(4), 1747-1752.
[http://dx.doi.org/10.13005/ojc/300433]
[71]
Greaves, M. Pharmacogenetics in the management of coumarin anticoagulant therapy: The way forward or an expensive diversion? PLoS Med., 2005, 2(10), e342.
[http://dx.doi.org/10.1371/journal.pmed.0020342]
[72]
Mazzone, G.; Malaj, N.; Galano, A.; Russo, N.; Toscano, M. Antioxidant properties of several coumarin–chalcone hybrids from theoretical insights. RSC Advances, 2015, 5(1), 565-575.
[http://dx.doi.org/10.1039/C4RA11733F]
[73]
De Araújo, R.S.; Guerra, F.Q.; Lima, D.O.; De Simone, C.A.; Tavares, J.F.; Scotti, L.; Scotti, M.T.; De Aquino, T.M.; De Moura, R.O.; Mendonça, F.J. Synthesis, structure-activity relationships (SAR) and in silico studies of coumarin derivatives with antifungal activity. Int. J. Mol. Sci., 2013, 14(1), 1293-1309.
[http://dx.doi.org/10.3390/ijms14011293]
[74]
Irfan, A.; Rubab, L.; Rehman, M.U.; Anjum, R.; Ullah, S.; Marjana, M.; Qadeer, S.; Sana, S. Coumarin sulfonamide derivatives: An emerging class of therapeutic agents. Heterocycl. Commun., 2020, 26(1), 46-59.
[http://dx.doi.org/10.1515/hc-2020-0008]
[75]
Aminarshad, F.; Heidari, S.; Mostajeran, N.; Massah, A.R. Design, solvent-free synthesis and antibacterial activity evaluation of new coumarin sulfonamides. J. Iran. Chem. Soc., 2022, 19(2), 547-562.
[http://dx.doi.org/10.1007/s13738-021-02344-3]
[76]
Esfahani, S.N.; Damavandi, M.S.; Sadeghi, P.; Nazifi, Z.; Salari-Jazi, A.; Massah, A.R. Synthesis of some novel coumarin isoxazol sulfonamide hybrid compounds, 3D-QSAR studies, and antibacterial evaluation. Sci. Rep., 2021, 11(1), 1-15.
[http://dx.doi.org/10.1038/s41598-021-99618-w]
[77]
Farahi, M.; Karami, B.; Tanuraghaj, H.M. Efficient synthesis of a new class of sulfonamide-substituted coumarins. Tetrahedron Lett., 2015, 56(14), 1833-1836.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.087]
[78]
Wijesooriya, C.S.; Nieszala, M.; Stafford, A.; Zimmerman, J.R.; Smith, E.A. Coumarin‐based fluorescent probes for selectively targeting and imaging the endoplasmic reticulum in mammalian cells. Photochem. Photobiol., 2019, 95(2), 556-562.
[http://dx.doi.org/10.1111/php.12985]
[79]
Prathap, K.C.; Lokanath, N. Synthesis, characterization, crystal structure and quantum chemical investigations of three novel coumarin-benzenesulfonohydrazide derivatives. J. Mol. Struct., 2018, 1158, 26-38.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.007]
[80]
Alshibl, H.M.; Al-Abdullah, E.S.; Haiba, M.E.; Alkahtani, H.M.; Awad, G.E.; Mahmoud, A.H.; Ibrahim, B.M.; Bari, A.; Villinger, A. Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents. Molecules, 2020, 25(14), 3251.
[http://dx.doi.org/10.3390/molecules25143251]
[81]
Chandak, N.; Ceruso, M.; Supuran, C.T.; Sharma, P.K. Novel sulfonamide bearing coumarin scaffolds as selective inhibitors of tumor associated carbonic anhydrase isoforms IX and XII. Bioorg. Med. Chem., 2016, 24(13), 2882-2886.
[http://dx.doi.org/10.1016/j.bmc.2016.04.052]
[82]
Sabt, A.; Abdelhafez, O.M.; El-Haggar, R.S.; Madkour, H.M.; Eldehna, W.M.; El-Khrisy, E.E-D.A.; Abdel-Rahman, M.A.; Rashed, L.A. Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: Synthesis, in vitro biological evaluation, and QSAR studies. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1095-1107.
[http://dx.doi.org/10.1080/14756366.2018.1477137]
[83]
Meena, L.R.; Sharma, V.S.; Swarnkar, P. Synthesis and biological activity of novel sulfonamides derivatives of various heterocyclic compounds. World Sci. News, 2020, 142, 120-134.
[84]
Debbabi, K.F.; Al-Harbi, S.A.; Al-Saidi, H.M.; Aljuhani, E.H.; Abd El-Gilil, S.M.; Bashandy, M.S. Study of reactivity of cyanoacetohydrazonoethyl-N-ethyl-N-methyl benzenesulfonamide: Preparation of novel anticancer and antimicrobial active heterocyclic benzenesulfonamide derivatives and their molecular docking against dihydrofolate reductase. J. Enzyme Inhib. Med. Chem., 2016, 31(sup4), 7-19.
[http://dx.doi.org/10.1080/14756366.2016.1217851]
[85]
Taha, M.; Noreen, T.; Imran, S.; Nawaz, F.; Chigurupati, S.; Selvaraj, M.; Rahim, F.; Hadiani Ismail, N.; Kumar, A.; Mosaddik, A.; Alghamdi, A.M. Abdulrahman nasser alqahtani, Y.; Abdulrahman nasser alqahtani, A. Abdulrahman nasser alqahtani, Y.; Abdulrahman nasser alqahtani, A., Synthesis, α-amylase inhibition and molecular docking study of bisindolylmethane sulfonamide derivatives. Med. Chem. Res., 2019, 28(11), 2010-2022.
[http://dx.doi.org/10.1007/s00044-019-02431-4]
[86]
Sharma, S.K.; Kumar, P.; Narasimhan, B.; Ramasamy, K.; Mani, V.; Mishra, R.K.; Majeed, A.B.A. Synthesis, antimicrobial, anticancer evaluation and QSAR studies of 6-methyl-4-[1-(2-substituted-phenylamino-acetyl)-1H-indol-3-yl]-2-oxo/thioxo-1, 2, 3, 4-tetrahydropyrimidine-5-carbo-] xylic acid ethyl esters. Eur. J. Med. Chem., 2012, 48, 16-25.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.028]
[87]
Zhou, H-S.; Hu, L-B.; Zhang, H.; Shan, W-X.; Wang, Y.; Li, X.; Liu, T.; Zhao, J.; You, Q-D.; Jiang, Z-Y. Design, synthesis, and structure–activity relationships of Indoline-Based Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-Like 2 (Keap1-Nrf2) Protein–Protein Interaction Inhibitors. J. Med. Chem., 2020, 63(19), 11149-11168.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01116]
[88]
Yuan, W.; Yu, Z.; Song, W.; Li, Y.; Fang, Z.; Zhu, B.; Li, X.; Wang, H.; Hong, W.; Sun, N. Indole-core-based novel antibacterial agent targeting FtsZ. Infect. Drug Resist., 2019, 12, 2283-2296.
[http://dx.doi.org/10.2147/IDR.S208757]
[89]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691]
[90]
Zhu, W.; Bao, X.; Ren, H.; Da, Y.; Wu, D.; Li, F.; Yan, Y.; Wang, L.; Chen, Z. N-Phenyl indole derivatives as AT1 antagonists with anti-hypertension activities: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2016, 115, 161-178.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.021]
[91]
Luthra, T.; Nayak, A.K.; Bose, S.; Chakrabarti, S.; Gupta, A.; Sen, S. Indole based antimalarial compounds targeting the melatonin pathway: Their design, synthesis and biological evaluation. Eur. J. Med. Chem., 2019, 168, 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.019]
[92]
Ibrahim, M.; Taha, M.; Almandil, N.B.; Kawde, A-N.; Nawaz, M. Synthesis, characterization and electrochemical properties of some biologically important indole-based-sulfonamide derivatives. BMC Chem., 2020, 14(1), 1-10.
[http://dx.doi.org/10.1186/s13065-020-00691-5]
[93]
Guzela, O.; Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, T.C. 3-phenyl-1H-indole-5-sulfonamides: Structure-based drug design of a promising class of carbonic anhydrase inhibitors. Curr. Pharm. Des., 2010, 16(29), 3317-3326.
[http://dx.doi.org/10.2174/138161210793429805]
[94]
Bua, S.; Akgüneş, N.M.; Akdemir, A.; Supuran, C.T.; Güzel-Akdemir, Ö. Indole-based hydrazones containing a sulfonamide moiety as selective inhibitors of tumor-associated human carbonic anhydrase isoforms IX and XII. Int. J. Mol. Sci., 2019, 20(9), 2354.
[http://dx.doi.org/10.3390/ijms20092354]
[95]
Pingaew, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and structure–activity relationship of mono-indole-, bis-indole-, and tris-indole-based sulfonamides as potential anticancer agents. Mol. Divers., 2013, 17(3), 595-604.
[http://dx.doi.org/10.1007/s11030-013-9457-7]
[96]
Man, R-J.; Tang, D-J.; Lu, X-Y.; Duan, Y-T.; Tao, X-X.; Yang, M-R.; Wang, L-L.; Wang, B-Z.; Xu, C.; Zhu, H-L. Synthesis and biological evaluation of novel indole derivatives containing sulfonamide scaffold as potential tubulin inhibitor. MedChemComm, 2016, 7(9), 1759-1767.
[http://dx.doi.org/10.1039/C6MD00255B]
[97]
Wu, Y-J.; Venables, B.; Guernon, J.; Chen, J.; Sit, S-Y.; Rajamani, R.; Knox, R.J.; Matchett, M.; Pieschl, R.L.; Herrington, J.; Bristow, L.J.; Meanwell, N.A.; Thompson, L.A.; Dzierba, C. Discovery of new indole-based acylsulfonamide Nav1. 7 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(4), 659-663.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.013]
[98]
Fantacuzzi, M.; De Filippis, B.; Gallorini, M.; Ammazzalorso, A.; Giampietro, L.; Maccallini, C.; Aturki, Z.; Donati, E.; Ibrahim, R.S.; Shawky, E.; Cataldi, A.; Amoroso, R. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur. J. Med. Chem., 2020, 185, 111815.
[http://dx.doi.org/10.1016/j.ejmech.2019.111815]
[99]
Luz, J.G.; Carson, M.W.; Condon, B.; Clawson, D.; Pustilnik, A.; Kohlman, D.T.; Barr, R.J.; Bean, J.S.; Dill, M.J.; Sindelar, D.K.; Maletic, M.; Coghlan, M.J. Indole glucocorticoid receptor antagonists active in a model of dyslipidemia act via a unique association with an agonist binding site. J. Med. Chem., 2015, 58(16), 6607-6618.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00736]
[100]
Pingaew, R.; Mandi, P.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, molecular docking, and QSAR study of sulfonamide-based indoles as aromatase inhibitors. Eur. J. Med. Chem., 2018, 143, 1604-1615.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.057]
[101]
Awadallah, F.M.; Bua, S.; Mahmoud, W.R.; Nada, H.H.; Nocentini, A.; Supuran, C.T. Inhibition studies on a panel of human carbonic anhydrases with N 1-substituted secondary sulfonamides incorporating thiazolinone or imidazolone-indole tails. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 629-638.
[http://dx.doi.org/10.1080/14756366.2018.1446432]
[102]
Reidl, C.T.; Heath, T.K.; Darwish, I.; Torrez, R.M.; Moore, M.; Gild, E.; Nocek, B.P.; Starus, A.; Holz, R.C.; Becker, D.P. Indoline-6-sulfonamide inhibitors of the bacterial enzyme DapE. Antibiotics (Basel), 2020, 9(9), 595.
[http://dx.doi.org/10.3390/antibiotics9090595]
[103]
Liu, T.; Wan, Y.; Liu, R.; Ma, L.; Li, M.; Fang, H. Design, synthesis and preliminary biological evaluation of indole-3-carboxylic acid-based skeleton of Bcl-2/Mcl-1 dual inhibitors. Bioorg. Med. Chem., 2017, 25(6), 1939-1948.
[http://dx.doi.org/10.1016/j.bmc.2017.02.014]
[104]
Xu, G.; Liu, T.; Zhou, Y.; Yang, X.; Fang, H. 1-Phenyl-1H-indole derivatives as a new class of Bcl-2/Mcl-1 dual inhibitors: Design, synthesis, and preliminary biological evaluation. Bioorg. Med. Chem., 2017, 25(20), 5548-5556.
[http://dx.doi.org/10.1016/j.bmc.2017.08.024]
[105]
Shaker, A.M.; Abdelall, E.K.; Abdellatif, K.R.; Abdel-Rahman, H.M. Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: Multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chem., 2020, 14(1), 1-15.
[http://dx.doi.org/10.1186/s13065-020-00675-5]
[106]
Sharaf El-Din, N.; Barseem, A.M. Synthesis and computational studies on indole sulfonamide derivatives a new class of anti breast cancer agents. Asian J. Biochem. Pharm. Res., 2017, 7, 2231-2560.
[107]
Abdellatif, K.R.; Elsaady, M.T.; Amin, N.H.; Hefny, A.A. Design, synthesis and biological evaluation of some novel indole derivatives as selective COX-2 inhibitors. J. Appl. Pharm. Sci., 2017, 7, 69-77.
[108]
Devender, N.; Gunjan, S.; Tripathi, R.; Tripathi, R.P. Synthesis and antiplasmodial activity of novel indoleamide derivatives bearing sulfonamide and triazole pharmacophores. Eur. J. Med. Chem., 2017, 131, 171-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.010]
[109]
Zhou, Q.; Zhu, J.; Chen, J.; Ji, P.; Qiao, C. N-Arylsulfonylsubstituted-1H indole derivatives as small molecule dual inhibitors of signal transducer and activator of transcription 3 (STAT3) and tubulin. Bioorg. Med. Chem., 2018, 26(1), 96-106.
[http://dx.doi.org/10.1016/j.bmc.2017.11.023]
[110]
Hayat, F.; Viswanath, A.N.I.; Pae, A.N.; Rhim, H.; Park, W-K.; Choo, H-Y.P. Synthesis and biological evaluation of 4-nitroindole derivatives as 5-HT2A receptor antagonists. Bioorg. Med. Chem., 2015, 23(6), 1313-1320.
[http://dx.doi.org/10.1016/j.bmc.2015.01.032]
[111]
Zhou, J.; Bie, J.; Wang, X.; Liu, Q.; Li, R.; Chen, H.; Hu, J.; Cao, H.; Ji, W.; Li, Y.; Liu, S.; Shen, Z.; Xu, B. Discovery of N-arylsulfonyl-indole-2-carboxamide derivatives as potent, selective, and orally bioavailable fructose-1, 6-bisphosphatase inhibitors-design, synthesis, in vivo glucose lowering effects, and X-ray crystal complex analysis. J. Med. Chem., 2020, 63(18), 10307-10329.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00726]
[112]
Lai, M-J.; Ojha, R.; Lin, M-H.; Liu, Y-M.; Lee, H-Y.; Lin, T.E.; Hsu, K-C.; Chang, C-Y.; Chen, M-C.; Nepali, K.; Chang, J-Y.; Liou, J-P. 1-Arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. Eur. J. Med. Chem., 2019, 162, 612-630.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.066]
[113]
Manoharan, D.; Kulanthai, K.; Sadhasivam, G.; Raji, V.; Thayumanavan, P. Synthesis, characterization and evaluation of antidiabetic activity of novel indoline derivatives. Bangladesh J. Pharmacol., 2017, 12(2), 167-172.
[http://dx.doi.org/10.3329/bjp.v12i2.30872]
[114]
Pelz, N.F.; Bian, Z.; Zhao, B.; Shaw, S.; Tarr, J.C.; Belmar, J.; Gregg, C.; Camper, D.V.; Goodwin, C.M.; Arnold, A.L.; Sensintaffar, J.L.; Friberg, A.; Rossanese, O.W.; Lee, T.; Olejniczak, E.T.; Fesik, S.W. Discovery of 2-indole-acylsulfonamide myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods. J. Med. Chem., 2016, 59(5), 2054-2066.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01660]
[115]
Xu, Y.; Zhang, X-J.; Li, W-B.; Wang, X-R.; Wang, S.; Qiao, X-P.; Chen, S-W. Design, synthesis and biological evaluation of indole-2-one derivatives as potent BRD4 inhibitors. Eur. J. Med. Chem., 2020, 208, 112780.
[http://dx.doi.org/10.1016/j.ejmech.2020.112780]
[116]
Eldehna, W.M.; Fares, M.; Ceruso, M.; Ghabbour, H.A.; Abou-Seri, S.M.; Abdel-Aziz, H.A.; Abou El Ella, D.A.; Supuran, C.T. Amido/ureidosubstituted benzenesulfonamides-isatin conjugates as low nanomolar/subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform XII. Eur. J. Med. Chem., 2016, 110, 259-266.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.030]
[117]
Eldehna, W.M.; Al-Ansary, G.H.; Bua, S.; Nocentini, A.; Gratteri, P.; Altoukhy, A.; Ghabbour, H.; Ahmed, H.Y.; Supuran, C.T. Novel indolin-2-one-based sulfonamides as carbonic anhydrase inhibitors: Synthesis, in vitro biological evaluation against carbonic anhydrases isoforms I, II, IV and VII and molecular docking studies. Eur. J. Med. Chem., 2017, 127, 521-530.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.017]
[118]
George, R.F.; Bua, S.; Supuran, C.T.; Awadallah, F.M. Synthesis of some N-aroyl-2-oxindole benzenesulfonamide conjugates with carbonic anhydrase inhibitory activity. Bioorg. Chem., 2020, 96, 103635.
[http://dx.doi.org/10.1016/j.bioorg.2020.103635]
[119]
George, R.F.; Said, M.F.; Bua, S.; Supuran, C.T. Synthesis and selective inhibitory effects of some 2-oxindole benzenesulfonamide conjugates on human carbonic anhydrase isoforms CA I, CA II, CA IX and CAXII. Bioorg. Chem., 2020, 95, 103514.
[http://dx.doi.org/10.1016/j.bioorg.2019.103514]
[120]
Karalı, N.; Akdemir, A.; Göktaş, F.; Elma, P.E.; Angeli, A.; Kızılırmak, M.; Supuran, C.T. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg. Med. Chem., 2017, 25(14), 3714-3718.
[http://dx.doi.org/10.1016/j.bmc.2017.05.029]
[121]
Abo-Ashour, M.F.; Eldehna, W.M.; Nocentini, A.; Bonardi, A.; Bua, S.; Ibrahim, H.S.; Elaasser, M.M.; Kryštof, V.; Jorda, R.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. 3-Hydrazinoisatin-based benzenesulfonamides as novel carbonic anhydrase inhibitors endowed with anticancer activity: Synthesis, in vitro biological evaluation and in silico insights. Eur. J. Med. Chem., 2019, 184, 111768.
[http://dx.doi.org/10.1016/j.ejmech.2019.111768]
[122]
Akdemir, A.; Angeli, A.; Göktaş, F.; Eraslan Elma, P.; Karalı, N.; Supuran, C.T. Novel 2-indolinones containing a sulfonamide moiety as selective inhibitors of candida β-carbonic anhydrase enzyme. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 528-531.
[http://dx.doi.org/10.1080/14756366.2018.1564045]
[123]
Eldehna, W.M.; Abo-Ashour, M.F.; Nocentini, A.; El-Haggar, R.S.; Bua, S.; Bonardi, A.; Al-Rashood, S.T.; Hassan, G.S.; Gratteri, P.; Abdel-Aziz, H.A.; Supuran, C.T. Enhancement of the tail hydrophobic interactions within the carbonic anhydrase IX active site via structural extension: Design and synthesis of novel N-substituted isatins-SLC-0111 hybrids as carbonic anhydrase inhibitors and antitumor agents. Eur. J. Med. Chem., 2019, 162, 147-160.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.068]
[124]
Abo-Ashour, M.F.; Eldehna, W.M.; Nocentini, A.; Ibrahim, H.S.; Bua, S.; Abou-Seri, S.M.; Supuran, C.T. Novel hydrazido benzenesulfonamides-isatin conjugates: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies. Eur. J. Med. Chem., 2018, 157, 28-36.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.054]
[125]
Güzel-Akdemir, Ö.; Akdemir, A.; Karalı, N.; Supuran, C.T. Discovery of novel isatin-based sulfonamides with potent and selective inhibition of the tumor-associated carbonic anhydrase isoforms IX and XII. Org. Biomol. Chem., 2015, 13(23), 6493-6499.
[http://dx.doi.org/10.1039/C5OB00688K]
[126]
Hussaini, S.M.A. Therapeutic significance of quinolines: A patent review (2013-2015). Expert Opin. Ther. Pat., 2016, 26(10), 1201-1221.
[http://dx.doi.org/10.1080/13543776.2016.1216545]
[127]
Yan, R.; Liu, X.; Pan, C.; Zhou, X.; Li, X.; Kang, X.; Huang, G. Aerobic synthesis of substituted quinoline from aldehyde and aniline: Copper-catalyzed intermolecular C–H active and C–C formative cyclization. Org. Lett., 2013, 15(18), 4876-4879.
[http://dx.doi.org/10.1021/ol402312h]
[128]
Mandewale, M.C.; Patil, U.C.; Shedge, S.V.; Dappadwad, U.R.; Yamgar, R.S. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6(4), 354-361.
[http://dx.doi.org/10.1016/j.bjbas.2017.07.005]
[129]
Hosseinzadeh, H.; Mazaheri, F.; Ghodsi, R. Pharmacological effects of a synthetic quinoline, a hybrid of tomoxiprole and naproxen, against acute pain and inflammation in mice: A behavioral and docking study. Iran. J. Basic Med. Sci., 2017, 20(4), 446.
[130]
Mungra, D.C.; Patel, M.P.; Rajani, D.P.; Patel, R.G. Synthesis and identification of β-aryloxyquinolines and their pyrano [3, 2-c] chromene derivatives as a new class of antimicrobial and antituberculosis agents. Eur. J. Med. Chem., 2011, 46(9), 4192-4200.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.022]
[131]
Al-Dosari, M.S.; Ghorab, M.M.; AlSaid, M.S.; Nissan, Y.M.; Ahmed, A.B. Synthesis and anticancer activity of some novel trifluoromethylquinolines carrying a biologically active benzenesulfonamide moiety. Eur. J. Med. Chem., 2013, 69, 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.048]
[132]
Marciniec, K.; Pawełczak, B.; Latocha, M.; Sułkowski, L.; Maślankiewicz, A.; Maciążek-Jurczyk, M.; Boryczka, S. Quinolinesulfonamides: Interaction between bovine serum albumin, molecular docking analysis, and antiproliferative activity against human breast carcinoma cells. Spectrosc. Lett., 2017, 50(10), 532-538.
[http://dx.doi.org/10.1080/00387010.2017.1383920]
[133]
Al-Dosari, M.S.; Ghorab, M.M.; Al-Said, M.S.; Nissan, Y.M. Discovering some novel 7-chloroquinolines carrying a biologically active benzenesulfonamide moiety as a new class of anticancer agents. Chem. Pharm. Bull. (Tokyo), 2013, 61(1), 50-58.
[http://dx.doi.org/10.1248/cpb.c12-00812]
[134]
Moreira, C.; Custódio, J.; Vaz, W.; D’Oliveira, G.; Perez, C.N.; Napolitano, H. A comprehensive study on crystal structure of a novel sulfonamide-dihydroquinolinone through experimental and theoretical approaches. J. Mol. Model., 2019, 25(7), 1-10.
[http://dx.doi.org/10.1007/s00894-019-4091-7]
[135]
Swetha, R.; Kumar, D.; Gupta, S.K.; Ganeshpurkar, A.; Singh, R.; Gutti, G.; Kumar, D.; Jana, S.; Krishnamurthy, S.; Singh, S.K. Multifunctional hybrid sulfonamides as novel therapeutic agents for Alzheimer’s disease. Future Med. Chem., 2019, 11(24), 3161-3178.
[http://dx.doi.org/10.4155/fmc-2019-0106]
[136]
Kumar, L.J.; Vijayakumar, V. A new class of arylsulfonamide-based 3-acetyl-2-methyl-4-phenylquinolines and in vitro evaluation of their antioxidant, antifungal, and antibacterial activities. Res. Chem. Intermed., 2017, 43(10), 5691-5705.
[http://dx.doi.org/10.1007/s11164-017-2956-x]
[137]
Pinheiro, L.C.; Boechat, N.; Maria de Lourdes, G.F.; Júnior, C.C.; Jesus, A.M.; Leite, M.M.; Souza, N.B.; Krettli, A.U. Anti-Plasmodium falciparum activity of quinoline-sulfonamide hybrids. Bioorg. Med. Chem., 2015, 23(17), 5979-5984.
[http://dx.doi.org/10.1016/j.bmc.2015.06.056]
[138]
Ahmed, N.; Badahdah, K.; Qassar, H. Novel quinoline bearing sulfonamide derivatives and their cytotoxic activity against MCF7 cell line. Med. Chem. Res., 2017, 26(6), 1201-1212.
[http://dx.doi.org/10.1007/s00044-017-1850-9]
[139]
Thacker, P.S.; Shaikh, P.; Angeli, A.; Arifuddin, M.; Supuran, C.T. Synthesis and biological evaluation of novel 8-substituted quinoline-2-carboxamides as carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1172-1177.
[http://dx.doi.org/10.1080/14756366.2019.1626376]
[140]
Singh, S.; Roy, K.K.; Khan, S.R.; Kashyap, V.K.; Sharma, A.; Jaiswal, S.; Sharma, S.K.; Krishnan, M.Y.; Chaturvedi, V.; Lal, J.; Sinha, S.; Dasgupta, A.; Srivastava, R.; Saxena, A.K. Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg. Med. Chem., 2015, 23(4), 742-752.
[http://dx.doi.org/10.1016/j.bmc.2014.12.060]
[141]
Bano, B.; Khan, K.M.; Fatima, B.; Taha, M.; Ismail, N.H.; Wadood, A.; Ghufran, M.; Perveen, S. Synthesis, in vitro β-glucuronidase inhibitory potential and molecular docking studies of quinolines. Eur. J. Med. Chem., 2017, 139, 849-864.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.052]
[142]
El‐Mekabaty, A.; Awad, H.M. Convenient synthesis of novel sulfonamide derivatives as promising anticancer agents. J. Heterocycl. Chem., 2020, 57(3), 1123-1132.
[http://dx.doi.org/10.1002/jhet.3849]
[143]
d’Oliveira, G.D.; Custodio, J.M.; Moura, A.F.; Napolitano, H.B.; Pérez, C.N.; Moraes, M.O.; Prókai, L.; Perjési, P. Different reactivity to glutathione but similar tumor cell toxicity of chalcones and their quinolinone analogues. Med. Chem. Res., 2019, 28(9), 1448-1460.
[http://dx.doi.org/10.1007/s00044-019-02384-8]
[144]
Al-Sanea, M.M.; Elkamhawy, A.; Paik, S.; Lee, K.; El Kerdawy, A.M.; Abbas, B.S.N.; Roh, E.J.; Eldehna, W.M.; Elshemy, H.A.; Bakr, R.B. Sulfonamide-based 4-anilinoquinoline derivatives as novel dual Aurora kinase (AURKA/B) inhibitors: Synthesis, biological evaluation and in silico insights. Bioorg. Med. Chem., 2020, 28(13), 115525.
[http://dx.doi.org/10.1016/j.bmc.2020.115525]
[145]
Al-Sanea, M.M.; Elkamhawy, A.; Paik, S.; Bua, S.; Lee, H.S.; Abdelgawad, M.A.; Roh, E.J.; Eldehna, W.M.; Supuran, C.T. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino) benzenesulfonamides as carbonic anhydrase isoforms I and II inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1457-1464.
[http://dx.doi.org/10.1080/14756366.2019.1652282]
[146]
Hekal, M.H.; Abu El‐Azm, F.S.; Sallam, H.A. Synthesis, spectral characterization, and in vitro biological evaluation of some novel isoquinolinone‐based heterocycles as potential antitumor agents. J. Heterocycl. Chem., 2019, 56(3), 795-803.
[http://dx.doi.org/10.1002/jhet.3448]
[147]
Khan, A.Y.; Kumar, G.S. Natural isoquinoline alkaloids: Binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophys. Rev., 2015, 7(4), 407-420.
[http://dx.doi.org/10.1007/s12551-015-0183-5]
[148]
Bruno, E.; Buemi, M.R.; De Luca, L.; Ferro, S.; Monforte, A.M.; Supuran, C.T.; Vullo, D.; De Sarro, G.; Russo, E.; Gitto, R. In vivo evaluation of selective carbonic anhydrase inhibitors as potential anticonvulsant agents. ChemMedChem, 2016, 11(16), 1812-1818.
[http://dx.doi.org/10.1002/cmdc.201500596]
[149]
Oliveira, R.G.; Guerra, F.S.; Mermelstein, C.S.; Fernandes, P.D.; Bastos, I.T.S.; Costa, F.N.; Barroso, R.C.R.; Ferreira, F.F.; Fraga, C.A.M. Synthesis and pharmacological evaluation of novel isoquinoline N-sulphonylhydrazones designed as ROCK inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1181-1193.
[http://dx.doi.org/10.1080/14756366.2018.1490732]
[150]
Manolov, S.P.; Ivanov, I.I.; Bojilov, D.G. Microwave-assisted synthesis of 1, 2, 3, 4-tetrahydroisoquinoline sulfonamide derivatives and their biological evaluation. J. Serb. Chem. Soc., 2020, 86(00), 139-151.
[151]
Prchalová, E.; Hin, N.; Thomas, A.G.; Veeravalli, V.; Ng, J.; Alt, J.; Rais, R.; Rojas, C.; Li, Z.; Hihara, H.; Aoki, M.; Yoshizawa, K.; Nishioka, T.; Suzuki, S.; Kopajtic, T.; Chatrath, S.; Liu, Q.; Dong, X.; Slusher, B.S.; Tsukamoto, T. Discovery of benzamidine-and 1-aminoisoquinoline-based human MAS-related G-protein-coupled receptor X1 (MRGPRX1) agonists. J. Med. Chem., 2019, 62(18), 8631-8641.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01003]
[152]
Bruno, E.; Buemi, M.R.; Di Fiore, A.; De Luca, L.; Ferro, S.; Angeli, A.; Cirilli, R.; Sadutto, D.; Alterio, V.; Monti, S.M.; Supuran, C.T.; De Simone, G.; Gitto, R. Probing molecular interactions between human carbonic anhydrases (hCAs) and a novel class of benzenesulfonamides. J. Med. Chem., 2017, 60(10), 4316-4326.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00264]
[153]
Buemi, M.R.; De Luca, L.; Ferro, S.; Bruno, E.; Ceruso, M.; Supuran, C.T.; Pospíšilová, K.; Brynda, J.; Řezáčová, P.; Gitto, R. Carbonic anhydrase inhibitors: Design, synthesis and structural characterization of new heteroaryl-N-carbonylbenzenesulfonamides targeting druggable human carbonic anhydrase isoforms. Eur. J. Med. Chem., 2015, 102, 223-232.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.049]
[154]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019]
[155]
Božić, D.D.; Milenković, M.; Ivković, B.; Cirković, I. Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. Indian J. Med. Res., 2014, 140(1), 130.
[156]
ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033]
[157]
Qin, H-L.; Zhang, Z-W.; Lekkala, R.; Alsulami, H.; Rakesh, K. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem., 2020, 193, 112215.
[http://dx.doi.org/10.1016/j.ejmech.2020.112215]
[158]
Muškinja, J.M.; Burmudžija, A.Z.; Baskić, D.D.; Popović, S.L.; Todorović, D.V.; Zarić, M.M.; Ratković, Z.R. Synthesis and anticancer activity of chalcone analogues with sulfonyl groups. Med. Chem. Res., 2019, 28(3), 279-291.
[http://dx.doi.org/10.1007/s00044-018-02283-4]
[159]
Kar Mahapatra, D.; Asati, V.; Bharti, S.K. An updated patent review of therapeutic applications of chalcone derivatives (2014-present). Expert Opin. Ther. Pat., 2019, 29(5), 385-406.
[http://dx.doi.org/10.1080/13543776.2019.1613374]
[160]
Bhoj, P.; Togre, N.; Bahekar, S.; Goswami, K.; Chandak, H.; Patil, M. Immunomodulatory activity of sulfonamide chalcone compounds in mice infected with filarial parasite, Brugia malayi. Indian J. Clin. Biochem., 2019, 34(2), 225-229.
[http://dx.doi.org/10.1007/s12291-017-0727-5]
[161]
Domínguez, J.N.; León, C.; Rodrigues, J.; de Domínguez, N.G.; Gut, J.; Rosenthal, P.J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco, 2005, 60(4), 307-311.
[http://dx.doi.org/10.1016/j.farmac.2005.01.005]
[162]
Custodio, J.M.; Michelini, L.J.; de Castro, M.R.C.; Vaz, W.F.; Neves, B.J.; Cravo, P.V.; Barreto, F.S.; Manoel Filho, O.; Perez, C.N.; Napolitano, H.B. Structural insights into a novel anticancer sulfonamide chalcone. New J. Chem., 2018, 42(5), 3426-3434.
[http://dx.doi.org/10.1039/C7NJ03523C]
[163]
Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V.; Balíková-Novtoná, G.; Vannucci, L.; Janata, J.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Insuasty, B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur. J. Med. Chem., 2019, 176, 50-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.013]
[164]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; El-Gazzar, M.G.; Zahran, S.S. Synthesis, anticancer and radiosensitizing evaluation of some novel sulfonamide derivatives. Eur. J. Med. Chem., 2015, 92, 682-692.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.036]
[165]
Bonakdar, A.P.S.; Vafaei, F.; Farokhpour, M.; Esfahani, M.H.N.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. Iran. J. Pharm. Res., 2017, 16(2), 565.
[166]
Arshad, M. 4-[(1E)-3-(Substituted-phenyl)-3-oxoprop-1-en-1-yl] benzenesulfonamide: Design, computational, synthesis, characterization and antibacterial assessment. Int. J. Pharm. Sci. Res., 2018, 9, 35-41.
[167]
Meena, L.R.; Sharma, V.S.; Swarnkar, P. Synthesis, biological investigations, QSAR and DFT analysis of sulfonamide chalcones as potential: Antimicrobial, antifungal and antimalarial agents. World Sci. News, 2020, 147, 179-196.
[168]
Custodio, J.M.; Moura, A.F.; de Moraes, M.O.; Perez, C.N.; Napolitano, H.B. On the in silico and in vitro anticancer activity of sulfonamide chalcones: Potential JNKK3 inhibitors. New J. Chem., 2020, 44(8), 3294-3309.
[http://dx.doi.org/10.1039/C9NJ05612B]
[169]
Mustafa, M.; Mostafa, Y.A. A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide–chalcones and their in vitro antimicrobial activity. Monatsh. Chem., 2020, 151(3), 417-427.
[http://dx.doi.org/10.1007/s00706-020-02568-8]
[170]
Khanusiya, M.; Gadhawala, Z. Chalcones-sulphonamide hybrids: Synthesis, characterization and anticancer evaluation. J. Korean Chem. Soc., 2019, 63(2), 85-93.
[171]
Arslan, T.; Türkoğlu, E.A.; Şentürk, M.; Supuran, C.T. Synthesis and carbonic anhydrase inhibitory properties of novel chalcone substituted benzenesulfonamides. Bioorg. Med. Chem. Lett., 2016, 26(24), 5867-5870.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.017]
[172]
Bahekar, S.P.; Hande, S.V.; Agrawal, N.R.; Chandak, H.S.; Bhoj, P.S.; Goswami, K.; Reddy, M. Sulfonamide chalcones: Synthesis and in vitro exploration for therapeutic potential against Brugia malayi. Eur. J. Med. Chem., 2016, 124, 262-269.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.042]
[173]
Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 2018, 23(1), 134.
[http://dx.doi.org/10.3390/molecules23010134]
[174]
Ahn, M.; Gunasekaran, P.; Rajasekaran, G.; Kim, E.Y.; Lee, S-J.; Bang, G.; Cho, K.; Hyun, J-K.; Lee, H-J.; Jeon, Y.H.; Kim, N-H.; Ryu, E.K.; Shin, S.Y.; Bang, J.K. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur. J. Med. Chem., 2017, 125, 551-564.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.071]
[175]
Nitulescu, G.M.; Draghici, C.; Olaru, O.T.; Matei, L.; Ioana, A.; Dragu, L.D.; Bleotu, C. Synthesis and apoptotic activity of new pyrazole derivatives in cancer cell lines. Bioorg. Med. Chem., 2015, 23(17), 5799-5808.
[http://dx.doi.org/10.1016/j.bmc.2015.07.010]
[176]
Gul, H.I.; Yamali, C.; Bulbuller, M.; Kirmizibayrak, P.B.; Gul, M.; Angeli, A.; Bua, S.; Supuran, C.T. Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes. Bioorg. Chem., 2018, 78, 290-297.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.027]
[177]
El-Moghazy, S.M.; Barsoum, F.F.; Abdel-Rahman, H.M.; Marzouk, A.A. Synthesis and anti-inflammatory activity of some pyrazole derivatives. Med. Chem. Res., 2012, 21(8), 1722-1733.
[http://dx.doi.org/10.1007/s00044-011-9691-4]
[178]
Eid, N.M.; George, R.F. Facile synthesis of some pyrazoline-based compounds with promising anti-inflammatory activity. Future Med. Chem., 2018, 10(02), 183-199.
[http://dx.doi.org/10.4155/fmc-2017-0144]
[179]
Abdelgawad, M.A.; Labib, M.B.; Abdel-Latif, M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: Design, synthesis, biological evaluation, COX-1, 2/5-LOX inhibition and docking study. Bioorg. Chem., 2017, 74, 212-220.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.014]
[180]
Alsayed, S.S.; Elshemy, H.A.; Abdelgawad, M.A.; Abdel-Latif, M.S.; Abdellatif, K.R. Design, synthesis and biological screening of some novel celecoxib and etoricoxib analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg. Chem., 2017, 70, 173-183.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.008]
[181]
Datar, P.A.; Jadhav, S.R. Design and synthesis of pyrazole-3-one derivatives as hypoglycaemic agents. Int. J. Med. Chem., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/670181]
[182]
Domiati, S.; El-Mallah, A.; Ghoneim, A.; Bekhit, A.; Abd El Razik, H. Evaluation of anti-inflammatory, analgesic activities, and side effects of some pyrazole derivatives. Inflammopharmacology, 2016, 24(4), 163-172.
[http://dx.doi.org/10.1007/s10787-016-0270-7]
[183]
Bonakdar, A.; Sadeghi, A.; Aghaei, H.; Beheshtimaal, K.; Nazifi, S.; Massah, A. Convenient synthesis of novel chalcone and pyrazoline sulfonamide derivatives as potential antibacterial agents. Russ. J. Bioorganic Chem., 2020, 46(3), 371-381.
[http://dx.doi.org/10.1134/S1068162020030048]
[184]
Kucukoglu, K.; Oral, F.; Aydin, T.; Yamali, C.; Algul, O.; Sakagami, H.; Gulcin, I.; Supuran, C.T.; Gul, H.I. Synthesis, cytotoxicity and carbonic anhydrase inhibitory activities of new pyrazolines. J. Enzyme Inhib. Med. Chem., 2016, 31(sup4), 20-24.
[http://dx.doi.org/10.1080/14756366.2016.1217852]
[185]
Chalkha, M.; Bakhouch, M.; Akhazzane, M.; Bourass, M.; Nicolas, Y.; Al Houari, G.; El Yazidi, M. Design, synthesis and characterization of functionalized pyrazole derivatives bearing amide and sulfonamide moieties from aza-aurones. J. Chem. Sci., 2020, 132(1), 1-8.
[http://dx.doi.org/10.1007/s12039-020-01792-3]
[186]
Badgujar, J.R.; More, D.H.; Meshram, J.S. Synthesis, antimicrobial and antioxidant activity of pyrazole based sulfonamide derivatives. Indian J. Microbiol., 2018, 58(1), 93-99.
[http://dx.doi.org/10.1007/s12088-017-0689-6]
[187]
Pavase, L.S.; Mane, D.V.; Baheti, K.G. Anti‐inflammatory exploration of sulfonamide containing diaryl pyrazoles with promising COX‐2 selectivity and enhanced gastric safety profile. J. Heterocycl. Chem., 2018, 55(4), 913-922.
[http://dx.doi.org/10.1002/jhet.3118]
[188]
Mert, S.; Alım, Z.; İşgör, M.M.; Anıl, B.; Kasımoğulları, R.; Beydemir, Ş. Novel pyrazole-3, 4-dicarboxamides bearing biologically active sulfonamide moiety as potential carbonic anhydrase inhibitors. Arab. J. Chem., 2019, 12(8), 2740-2748.
[http://dx.doi.org/10.1016/j.arabjc.2015.05.020]
[189]
Yamali, C.; Gul, H.I.; Ece, A.; Bua, S.; Angeli, A.; Sakagami, H.; Sahin, E.; Supuran, C.T. Synthesis, biological evaluation and in silico modelling studies of 1, 3, 5-trisubstituted pyrazoles carrying benzenesulfonamide as potential anticancer agents and selective cancer-associated hCA IX isoenzyme inhibitors. Bioorg. Chem., 2019, 92, 103222.
[http://dx.doi.org/10.1016/j.bioorg.2019.103222]
[190]
Najm, R.S. Synthesis and biological activity evaluation of some new pyrazole derivatives. Int. J. Pharm. Res., 2019, 11(1), 4414-4421.
[191]
Abdel Hafez, N.A.; Ali, K.A.; Ibrahim, A.A.; Elnaggar, D.H.; Sleem, A.A. Design, synthesis and in-vivo anti-inflammatory activity of new celecoxib analogues as NSAID. Mini Rev. Med. Chem., 2018, 18(16), 1398-1408.
[http://dx.doi.org/10.2174/1389557518666180530124509]
[192]
Assali, M.; Abualhasan, M.; Sawaftah, H.; Hawash, M.; Mousa, A. Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors. J. Chem., 2020, 2020, 6393428.
[http://dx.doi.org/10.1155/2020/6393428]
[193]
Ibrahim, T.S.; Salem, I.M.; Mostafa, S.M.; El-Sabbagh, O.I.; ElKhamisi, M.K.; Hegazy, L.; Elgendy, B. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on bumetanide scaffold. Bioorg. Chem., 2020, 100, 103878.
[http://dx.doi.org/10.1016/j.bioorg.2020.103878]
[194]
Mustafa, G. Zia-ur-Rehman, M.; Khan, I.U.; Ishtiaq, S.; Hussain, S.; Arshad, M.N.; Asiri, A.M. Novel 4-[5-{4-[(2-benzylidenehydrazine) carbonyl] phenyl}-3-(trifluoromethyl)-1 H-pyrazol-1-yl] benzenesulfonamides: Synthesis, crystal structure, anti-Inflammatory and ulcerogenecity studies. J. Chem. Res., 2016, 40(3), 167-172.
[http://dx.doi.org/10.3184/174751916X14552786665833]
[195]
El-Gaby, M.S.; Ghorab, M.M.; Ismail, Z.H.; Abdel-Gawad, S.M.; Aly, H.M. Synthesis, structural characterization and anticancer evaluation of pyrazole derivatives. Med. Chem. Res., 2018, 27(1), 72-79.
[http://dx.doi.org/10.1007/s00044-017-2035-2]
[196]
Ashour, H.M.; El-Ashmawy, I.M.; Bayad, A.E. Synthesis and pharmacological evaluation of new pyrazolyl benzenesulfonamides linked to polysubstituted pyrazoles and thiazolidinones as anti-inflammatory and analgesic agents. Monatsh. Chem., 2016, 147(3), 605-618.
[http://dx.doi.org/10.1007/s00706-015-1549-x]
[197]
Alam, M.J.; Alam, O.; Khan, S.A.; Naim, M.J.; Islamuddin, M.; Deora, G.S. Synthesis, anti-inflammatory, analgesic, COX1/2-inhibitory activity, and molecular docking studies of hybrid pyrazole analogues. Drug Des. Devel. Ther., 2016, 10, 3529-3543.
[http://dx.doi.org/10.2147/DDDT.S118297]
[198]
Duan, X.; Wang, Y.; Feng, W.; Yang, Y.; Li, H.; Li, S.; Yang, X.; Zhang, J.; Wang, S.; Zhou, G.; Zhou, C. Design, synthesis and biological evaluation of some novel N-arylpyrazole derivatives bearing the sulfonamide moiety as cytotoxic agents. Res. Chem. Intermed., 2017, 43(1), 271-281.
[http://dx.doi.org/10.1007/s11164-016-2620-x]
[199]
Gong, Z-H.; Yao, J.; Ji, J-F.; Yang, J.; Xiang, T.; Zhou, C-K. Synthesis and biological evaluation of novel N-(5-phenyl-1 H-pyrazol-3-yl) benzenesulfonamide derivatives as potential BRAF V600E inhibitors. Med. Chem. Res., 2017, 26(10), 2583-2591.
[http://dx.doi.org/10.1007/s00044-017-1957-z]
[200]
Khloya, P.; Ceruso, M.; Ram, S.; Supuran, C.T.; Sharma, P.K. Sulfonamide bearing pyrazolylpyrazolines as potent inhibitors of carbonic anhydrase isoforms I, II, IX and XII. Bioorg. Med. Chem. Lett., 2015, 25(16), 3208-3212.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.096]
[201]
Abdelazeem, A.H.; El-Din, A.G.S.; Abdel-Fattah, M.M.; Amin, N.H.; El-Moghazy, S.M.; El-Saadi, M.T. Discovery of novel urea-diarylpyrazole hybrids as dual COX-2/sEH inhibitors with improved anti-inflammatory activity and highly reduced cardiovascular risks. Eur. J. Med. Chem., 2020, 205, 112662.
[http://dx.doi.org/10.1016/j.ejmech.2020.112662]
[202]
Ngo, Q.A.; Thi, T.H.N.; Pham, M.Q.; Delfino, D.; Do, T.T. Antiproliferative and antiinflammatory coxib–combreta-statin hybrids suppress cell cycle progression and induce apoptosis of MCF7 breast cancer cells. Mol. Divers., 2021, 25(4), 2307-2319.
[203]
Taher, E.S.; Ibrahim, T.S.; Fares, M.; Al-Mahmoudy, A.M.; Radwan, A.F.; Orabi, K.Y.; El-Sabbagh, O.I. Novel benzenesulfonamide and 1, 2-benzisothiazol-3 (2H)-one-1, 1-dioxide derivatives as potential selective COX-2 inhibitors. Eur. J. Med. Chem., 2019, 171, 372-382.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.042]
[204]
Krasavin, M.; Korsakov, M.; Ronzhina, O.; Tuccinardi, T.; Kalinin, S.; Tanç, M.; Supuran, C.T. Primary mono-and bis-sulfonamides obtained via regiospecific sulfochlorination of N-arylpyrazoles: Inhibition profile against a panel of human carbonic anhydrases. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 920-934.
[http://dx.doi.org/10.1080/14756366.2017.1344236]
[205]
Somakala, K.; Amir, M.; Sharma, V.; Wakode, S. Synthesis and pharmacological evaluation of pyrazole derivatives containing sulfonamide moiety. Monatsh. Chem., 2016, 147(11), 2017-2029.
[http://dx.doi.org/10.1007/s00706-016-1694-x]
[206]
Zhang, B.; Hu, X-T.; Gu, J.; Yang, Y-S.; Duan, Y-T.; Zhu, H-L. Discovery of novel sulfonamide-containing aminophosphonate derivatives as selective COX-2 inhibitors and anti-tumor candidates. Bioorg. Chem., 2020, 105, 104390.
[http://dx.doi.org/10.1016/j.bioorg.2020.104390]
[207]
Lu, X-Y.; Wang, Z-C.; Wei, T.; Yan, X-Q.; Wang, P-F.; Zhu, H-L. Design, synthesis and evaluation of benzenesulfonamide-substituted 1, 5-diarylpyrazoles containing phenylacetohydrazide derivatives as COX-1/COX-2 agents against solid tumors. RSC Advances, 2016, 6(27), 22917-22935.
[http://dx.doi.org/10.1039/C6RA02168A]
[208]
Moustafa, A.; El-Sayed, H.; El Rayes, S.; Morsy, H.; Abd-allah, S.; Ismail, H.; Abd El-Aal, M. Pyrazoles and isoxazoles based sulfanilamide and phenazone as antimicrobial agents: Synthesis and biological activity. Russ. J. Gen. Chem., 2019, 89(11), 2314-2320.
[http://dx.doi.org/10.1134/S1070363219110240]
[209]
Fahim, A.M.; Shalaby, M.A. Synthesis, biological evaluation, molecular docking and DFT calculations of novel benzenesulfonamide derivatives. J. Mol. Struct., 2019, 1176, 408-421.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.087]
[210]
Hargunani, P.; Tadge, N.; Ceruso, M.; Leitans, J.; Kazaks, A.; Tars, K.; Gratteri, P.; Supuran, C.T.; Nocentini, A.; Toraskar, M.P. Aryl-4, 5-dihydro-1H-pyrazole-1-carboxa-] mide derivatives bearing a sulfonamide moiety show single-digit nanomolar-to-subnanomolar inhibition constants against the tumor-associated human carbonic anhydrases IX and XII. Int. J. Mol. Sci., 2020, 21(7), 2621.
[http://dx.doi.org/10.3390/ijms21072621]
[211]
Gul, H.I.; Yamali, C.; Sakagami, H.; Angeli, A.; Leitans, J.; Kazaks, A.; Tars, K.; Ozgun, D.O.; Supuran, C.T. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg. Chem., 2018, 77, 411-419.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.021]
[212]
Gul, H.I.; Mete, E.; Eren, S.E.; Sakagami, H.; Yamali, C.; Supuran, C.T. Designing, synthesis and bioactivities of 4-[3-(4-hydroxyphenyl)-5-aryl-4, 5-dihydro-pyrazol-1-yl] benzenesulfonamides. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 169-175.
[http://dx.doi.org/10.1080/14756366.2016.1243536]
[213]
Alaa, A-M.; El-Azab, A.S.; Bua, S.; Nocentini, A.; El-Enin, M.A.A.; Alanazi, M.M.; AlSaif, N.A.; Hefnawy, M.M.; Supuran, C.T. Design, synthesis, and carbonic anhydrase inhibition activity of benzenesulfonamide-linked novel pyrazoline derivatives. Bioorg. Chem., 2019, 87, 425-431.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.052]
[214]
Ozgun, D.O.; Gul, H.I.; Yamali, C.; Sakagami, H.; Gulcin, I.; Sukuroglu, M.; Supuran, C.T. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg. Chem., 2019, 84, 511-517.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.028]
[215]
Yamali, C.; Gul, H.I.; Kazaz, C.; Levent, S.; Gulcin, I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg. Chem., 2020, 96, 103627.
[http://dx.doi.org/10.1016/j.bioorg.2020.103627]
[216]
Iyer, M.R.; Cinar, R.; Katz, A.; Gao, M.; Erdelyi, K.; Jourdan, T.; Coffey, N.J.; Pacher, P.; Kunos, G. Design, synthesis, and biological evaluation of novel, non-brain-penetrant, hybrid cannabinoid CB1R inverse agonist/inducible nitric oxide synthase (iNOS) inhibitors for the treatment of liver fibrosis. J. Med. Chem., 2017, 60(3), 1126-1141.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01504]
[217]
Yan, X-Q.; Wang, Z-C.; Zhang, B.; Qi, P-F.; Li, G-G.; Zhu, H-L. Dihydropyrazole derivatives containing benzo oxygen heterocycle and sulfonamide moieties selectively and potently inhibit COX-2: Design, synthesis, and anti-colon cancer activity evaluation. Molecules, 2019, 24(9), 1685.
[http://dx.doi.org/10.3390/molecules24091685]
[218]
Gul, H.I.; Yamali, C.; Yesilyurt, F.; Sakagami, H.; Kucukoglu, K.; Gulcin, I.; Gul, M.; Supuran, C.T. Microwave-assisted synthesis and bioevaluation of new sulfonamides. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 369-374.
[http://dx.doi.org/10.1080/14756366.2016.1254207]
[219]
Sadashiva, R.; Naral, D.; Kudva, J.; Shivalingegowda, N.; Lokanath, N.K.; Pampa, K.J. Synthesis, spectral, biological activity, and crystal structure evaluation of novel pyrazoline derivatives having sulfonamide moiety. Med. Chem. Res., 2017, 26(6), 1213-1227.
[http://dx.doi.org/10.1007/s00044-017-1838-5]
[220]
Lobo, M.M.; Oliveira, S.M.; Brusco, I.; Machado, P.; Timmers, L.F.; de Souza, O.N.; Martins, M.A.; Bonacorso, H.G.; Dos Santos, J.M.; Canova, B.; da Silva, T.V.F.; Zanatta, N. Regioselectively controlled synthesis of 3 (5)-(trifluoromethyl) pyrazolylbenzenesulfonamides and their effects on a pathological pain model in mice. Eur. J. Med. Chem., 2015, 102, 143-152.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.036]
[221]
Hassan, G.S.; Rahman, D.E.A.; Abdelmajeed, E.A.; Refaey, R.H.; Salem, M.A.; Nissan, Y.M. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur. J. Med. Chem., 2019, 171, 332-342.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.052]
[222]
Zeid, I.F.; Kassem, E.M.; Mohamed, N.A.; Salman, A.A.; Shalaby, A.S.G. Enhancement of different biomedical activities of newly synthesized quinazoline derivatives. J. Heterocycl. Chem., 2018, 55(6), 1280-1290.
[http://dx.doi.org/10.1002/jhet.3147]
[223]
Alagarsamy, V.; Murugananthan, G.; Venkateshperumal, R. Synthesis, analgesic, anti-inflammatory and antibacterial activities of some novel 2-methyl-3-substituted quinazolin-4-(3H)-ones. Biol. Pharm. Bull., 2003, 26(12), 1711-1714.
[http://dx.doi.org/10.1248/bpb.26.1711]
[224]
Rakesh, K.; Manukumar, H.; Gowda, D.C. Schiff’s bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants. Bioorg. Med. Chem. Lett., 2015, 25(5), 1072-1077.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.010]
[225]
Hu, J.; Zhang, Y.; Dong, L.; Wang, Z.; Chen, L.; Liang, D.; Shi, D.; Shan, X.; Liang, G. Design, synthesis, and biological evaluation of novel quinazoline derivatives as anti‐inflammatory agents against lipopolysaccharide‐induced acute lung injury in rats. Chem. Biol. Drug Des., 2015, 85(6), 672-684.
[http://dx.doi.org/10.1111/cbdd.12454]
[226]
Hekal, M.H.; Abu El-Azm, F.S. New potential antitumor quinazolinones derived from dynamic 2-undecyl benzoxazinone: Synthesis and cytotoxic evaluation. Synth. Commun., 2018, 48(18), 2391-2402.
[http://dx.doi.org/10.1080/00397911.2018.1490433]
[227]
Ghorab, M.M.; Alsaid, M.S.; Al-Dosari, M.S.; El-Gazzar, M.G.; Parvez, M.K. Design, synthesis and anticancer evaluation of novel quinazoline-sulfonamide hybrids. Molecules, 2016, 21(2), 189.
[http://dx.doi.org/10.3390/molecules21020189]
[228]
El-Azab, A.S.; Alaa, A-M.; Bua, S.; Nocentini, A.; El-Gendy, M.A.; Mohamed, M.A.; Shawer, T.Z.; AlSaif, N.A.; Supuran, C.T. Synthesis of benzensulfonamides linked to quinazoline scaffolds as novel carbonic anhydrase inhibitors. Bioorg. Chem., 2019, 87, 78-90.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.007]
[229]
Patel, T.S.; Vanparia, S.F.; Gandhi, S.A.; Patel, U.H.; Dixit, R.B.; Chudasama, C.J.; Dixit, B.C. Novel stereoselective 2, 3-disubstituted quinazoline-4 (3 H)-one derivatives derived from glycine as a potent antimalarial lead. New J. Chem., 2015, 39(11), 8638-8649.
[http://dx.doi.org/10.1039/C5NJ01408E]
[230]
Patel, T.S.; Vanparia, S.F.; Patel, U.H.; Dixit, R.B.; Chudasama, C.J.; Patel, B.D.; Dixit, B.C. Novel 2, 3-disubstituted quinazoline-4 (3H)-one molecules derived from amino acid linked sulphonamide as a potent malarial antifolates for DHFR inhibition. Eur. J. Med. Chem., 2017, 129, 251-265.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.012]
[231]
Ghorab, M.M.; Alqahtani, A.S.; Soliman, A.M.; Askar, A.A.; Novel, N. -(Substituted) thioacetamide quinazolinone benzenesulfonamides as antimicrobial agents. Int. J. Nanomedicine, 2020, 15, 3161-3180.
[http://dx.doi.org/10.2147/IJN.S241433]
[232]
Kumar, A.S.; Kudva, J.; Lahtinen, M.; Peuronen, A.; Sadashiva, R.; Naral, D. Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives. J. Mol. Struct., 2019, 1190, 29-36.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.050]
[233]
Patel, T.S.; Bhatt, J.D.; Vanparia, S.F.; Patel, U.H.; Dixit, R.B.; Chudasama, C.J.; Patel, B.D.; Dixit, B.C. Ionic liquid mediated stereoselective synthesis of alanine linked hybrid quinazoline-4 (3H)-one derivatives perturbing the malarial reductase activity in folate pathway. Bioorg. Med. Chem., 2017, 25(24), 6635-6646.
[http://dx.doi.org/10.1016/j.bmc.2017.10.041]
[234]
El-Azab, A.S.; Alaa, A-M.; AlSaif, N.A.; Alkahtani, H.M.; Alanazi, M.M.; Obaidullah, A.J.; Eskandrani, R.O.; Alharbi, A. Antitumor activity, multitarget mechanisms, and molecular docking studies of quinazoline derivatives based on a benzenesulfonamide scaffold: Cell cycle analysis. Bioorg. Chem., 2020, 104, 104345.
[http://dx.doi.org/10.1016/j.bioorg.2020.104345]
[235]
Alafeefy, A.M.; Ahmad, R.; Abdulla, M.; Eldehna, W.M.; Al-Tamimi, A-M.S.; Abdel-Aziz, H.A.; Al-Obaid, O.; Carta, F.; Al-Kahtani, A.A.; Supuran, C.T. Development of certain new 2-substituted-quinazolin-4-yl-aminobenzenesul-] fonamide as potential antitumor agents. Eur. J. Med. Chem., 2016, 109, 247-253.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.001]
[236]
Patel, T.S.; Bhatt, J.D.; Dixit, R.B.; Chudasama, C.J.; Patel, B.D.; Dixit, B.C. Green synthesis, biological evaluation, molecular docking studies and 3D-QSAR analysis of novel phenylalanine linked quinazoline-4 (3H)-one-sulphonamide hybrid entities distorting the malarial reductase activity in folate pathway. Bioorg. Med. Chem., 2019, 27(16), 3574-3586.
[http://dx.doi.org/10.1016/j.bmc.2019.06.038]
[237]
Bozdag, M.; Alafeefy, A.M.; Altamimi, A.M.; Carta, F.; Supuran, C.T.; Vullo, D. Synthesis of new 3-(2-mercapto-4-oxo-4H-quinazolin-3-yl)-benzenesulfonamides with strong inhibition properties against the tumor associated carbonic anhydrases IX and XII. Bioorg. Med. Chem., 2017, 25(10), 2782-2788.
[http://dx.doi.org/10.1016/j.bmc.2017.03.054]
[238]
El-Azab, A.S.; Abdel-Aziz, A.A-M.; Ahmed, H.E.; Bua, S.; Nocentini, A.; AlSaif, N.A.; Obaidullah, A.J.; Hefnawy, M.M.; Supuran, C.T. Exploring structure-activity relationship of S-substituted 2-mercaptoquinazolin-4 (3H)-one including 4-ethylbenzenesulfonamides as human carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 598-609.
[http://dx.doi.org/10.1080/14756366.2020.1722121]
[239]
Kumar, A.S.; Kudva, J.; Bharath, B.; Rai, V.M.; Kumar, S.M.; Kumar, V.; Sajankila, S.P. Synthesis, characterization, molecular docking studies and biological evaluation of some conjugated quinazoline‐sulfonamide scaffold. ChemistrySelect, 2018, 3(48), 13586-13595.
[http://dx.doi.org/10.1002/slct.201802402]
[240]
El-Azab, A.S.; Abdel-Aziz, A.A.M.; Bua, S.; Nocentini, A.; AlSaif, N.A.; Alanazi, M.M.; El-Gendy, M.A.; Ahmed, H.E.A.; Supuran, C.T. S-substituted 2-mercaptoquinazolin-4(3H)-one and 4-ethylbenzensulfonamides act as potent and selective human carbonic anhydrase IX and XII inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 733-743.
[http://dx.doi.org/10.1080/14756366.2020.1742117]
[241]
Bozdag, M.; Alafeefy, A.M.; Vullo, D.; Carta, F.; Dedeoglu, N.; Al-Tamimi, A-M.S.; Al-Jaber, N.A.; Scozzafava, A.; Supuran, C.T. Benzenesulfonamides incorporating bulky aromatic/heterocyclic tails with potent carbonic anhydrase inhibitory activity. Bioorg. Med. Chem., 2015, 23(24), 7751-7764.
[http://dx.doi.org/10.1016/j.bmc.2015.11.023]
[242]
Alafeefy, A.M.; Carta, F.; Ceruso, M.; Al-Tamimi, A-M.S.; Al-Kahtani, A.A.; Supuran, C.T. Development of 3-(4-aminosulphonyl)-phenyl-2-mercapto-3H-quinazolin-4-ones as inhibitors of carbonic anhydrase isoforms involved in tumorigenesis and glaucoma. Bioorg. Med. Chem., 2016, 24(6), 1402-1407.
[http://dx.doi.org/10.1016/j.bmc.2016.02.011]
[243]
Farag, D.B.; Farag, N.A.; Esmat, A.; Abuelezz, S.A.; Abdel-Salam Ibrahim, E.; Abou El Ella, D.A. Synthesis, 3D pharmacophore, QSAR and docking studies of novel quinazoline derivatives with nitric oxide release moiety as preferential COX-2 inhibitors. MedChemComm, 2015, 6(2), 283-299.
[http://dx.doi.org/10.1039/C4MD00392F]
[244]
Bozdag, M.; Alafeefy, A.M.; Carta, F.; Ceruso, M.; Al-Tamimi, A-M.S.; Al-Kahtani, A.A.; Alasmary, F.A.S.; Supuran, C.T. Synthesis 4-[2-(2-mercapto-4-oxo-4H-quinazolin-3-yl)-ethyl]-benzenesulfonamides with subnanomolar carbonic anhydrase II and XII inhibitory properties. Bioorg. Med. Chem., 2016, 24(18), 4100-4107.
[http://dx.doi.org/10.1016/j.bmc.2016.06.052]
[245]
Alafeefy, A.M.; Ceruso, M.; Al-Tamimi, A-M.S.; Prete, S.D.; Supuran, C.T.; Capasso, C. Inhibition studies of quinazoline-sulfonamide derivatives against the γ-CA (PgiCA) from the pathogenic bacterium, Porphyromonas gingivalis. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 592-596.
[http://dx.doi.org/10.3109/14756366.2014.957202]
[246]
Alafeefy, A.M.; Ceruso, M.; Al-Jaber, N.A.; Parkkila, S.; Vermelho, A.B.; Supuran, C.T. A new class of quinazoline-sulfonamides acting as efficient inhibitors against the α-carbonic anhydrase from Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 581-585.
[http://dx.doi.org/10.3109/14756366.2014.956309]
[247]
Poudapally, S.; Battu, S.; Velatooru, L.R.; Bethu, M.S.; Janapala, V.R.; Sharma, S.; Sen, S.; Pottabathini, N.; Iska, V.B.R.; Katangoor, V. Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(9), 1923-1928.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.042]
[248]
Tolan, H.E.M.; El-Sayed, W.A.; Tawfek, N.; Abdel-Megeid, F.M.E.; Kutkat, O.M. Synthesis and anti-H5N1 virus activity of triazole- and oxadiazole-pyrimidine hybrids and their nucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2020, 39(5), 649-670.
[http://dx.doi.org/10.1080/15257770.2019.1674331]
[249]
Abdellatif, K.R.A.; Bakr, R.B. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med. Chem. Res., 2021, 30(1), 31-49.
[http://dx.doi.org/10.1007/s00044-020-02656-8]
[250]
Sun, L.; Wu, J.; Zhang, L.; Luo, M.; Sun, D. Synthesis and antifungal activities of some novel pyrimidine derivatives. Molecules, 2011, 16(7), 5618-5628.
[http://dx.doi.org/10.3390/molecules16075618]
[251]
Amir, M.; Javed, S.; Kumar, H. Pyrimidine as antiinflammatory agent: A review. Indian J. Pharm. Sci., 2007, 69(3), 337.
[http://dx.doi.org/10.4103/0250-474X.34540]
[252]
Farghaly, A.M. AboulWafa, O.M.; Elshaier, Y.A.M.; Badawi, W.A.; Haridy, H.H.; Mubarak, H.A.E. AboulWafa, O.M.; Elshaier, Y.A.; Badawi, W.A.; Haridy, H.H.; Mubarak, H.A., Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med. Chem. Res., 2019, 28(3), 360-379.
[http://dx.doi.org/10.1007/s00044-019-02289-6]
[253]
Elgemeie, G.H.; Salah, A.M.; Abbas, N.S.; Hussein, H.A.; Mohamed, R.A. Pyrimidine non-nucleoside analogs: A direct synthesis of a novel class of N-substituted amino and N-sulfonamide derivatives of pyrimidines. Nucleosides Nucleotides Nucleic Acids, 2017, 36(3), 213-223.
[http://dx.doi.org/10.1080/15257770.2016.1257808]
[254]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G. Synthesis of novel pyrazole and pyrimidine derivatives bearing sulfonamide moiety as antitumor and radiosensitizing agents. Med. Chem. Res., 2012, 21(7), 1376-1383.
[http://dx.doi.org/10.1007/s00044-011-9653-x]
[255]
Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2012, 22(10), 3445-3448.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.092]
[256]
Ghorab, M.M.; Alsaid, M.S.; El-Gaby, M.S.; Elaasser, M.M.; Nissan, Y.M. Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: Synthesis, biological evaluation and molecular docking. Chem. Cent. J., 2017, 11(1), 1-14.
[http://dx.doi.org/10.1186/s13065-017-0258-4]
[257]
Abdel-Mohsen, H.T.; El Kerdawy, A.M.; Omar, M.A.; Berrino, E.; Abdelsamie, A.S.; El Diwani, H.I.; Supuran, C.T. New thiopyrimidine-benzenesulfonamide conjugates as selective carbonic anhydrase II inhibitors: Synthesis, in vitro biological evaluation, and molecular docking studies. Bioorg. Med. Chem., 2020, 28(5), 115329.
[http://dx.doi.org/10.1016/j.bmc.2020.115329]
[258]
Ghorab, M.; El-Gaby, M.S.A.; Alsaid, M.S.; Elshaier, Y.A.M.M.; Soliman, A.M.; El-Senduny, F.F.; Badria, F.A.; Sherif, A.Y.A. Novel thiourea derivatives bearing sulfonamide moiety as anticancer agents through COX-2 inhibition. Anticancer. Agents Med. Chem., 2017, 17(10), 1411-1425.
[http://dx.doi.org/10.2174/1871520617666170327153735]
[259]
Qu, M.; Liu, Z.; Zhao, D.; Wang, C.; Zhang, J.; Tang, Z.; Liu, K.; Shu, X.; Yuan, H.; Ma, X. Design, synthesis and biological evaluation of sulfonamide-substituted diphenylpyrimidine derivatives (Sul-DPPYs) as potent focal adhesion kinase (FAK) inhibitors with antitumor activity. Bioorg. Med. Chem., 2017, 25(15), 3989-3996.
[http://dx.doi.org/10.1016/j.bmc.2017.05.044]
[260]
Petreni, A.; Bonardi, A.; Lomelino, C.; Osman, S.M. ALOthman, Z.A.; Eldehna, W.M.; El-Haggar, R.; McKenna, R.; Nocentini, A.; Supuran, C.T. Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase IX and XII inhibitors produced a targeted action against MDA-MB-231 and T47D breast cancer cells. Eur. J. Med. Chem., 2020, 190, 112112.
[http://dx.doi.org/10.1016/j.ejmech.2020.112112]
[261]
Awad, S.M.; El-Shehry, M.F.; Gouhar, R.S.; El-Hallouty, S.M. Synthesis, characterization and antitumor activity of some novel pyrimidine sulphonamide derivatives. J. Chem. Pharm. Res., 2017, 9(6), 65-73.
[262]
Gokcen, T.; Gulcin, I.; Ozturk, T.; Goren, A.C. A class of sulfonamides as carbonic anhydrase I and II inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(sup2), 180-188.
[http://dx.doi.org/10.1080/14756366.2016.1198900]
[263]
Jyothi, B.; Madhavi, N. Synthesis and biological screening of pyrimidine linked benzene sulfonamide derivatives. Int. J. Pharm. Sci. Res., 2018, 9, 5534-5543.
[264]
Liu, H.; Qu, M.; Xu, L.; Han, X.; Wang, C.; Shu, X.; Yao, J.; Liu, K.; Peng, J.; Li, Y.; Ma, X. Design and synthesis of sulfonamide-substituted diphenylpyrimidines (SFA-DPPYs) as potent Bruton’s tyrosine kinase (BTK) inhibitors with improved activity toward B-cell lymphoblastic leukemia. Eur. J. Med. Chem., 2017, 135, 60-69.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.037]
[265]
Köksal, Z.; Kalin, R.; Camadan, Y.; Usanmaz, H.; Almaz, Z.; Gülçin, I.; Gokcen, T.; Gören, A.C.; Ozdemir, H. Secondary sulfonamides as effective lactoperoxidase inhibitors. Molecules, 2017, 22(6), 793.
[http://dx.doi.org/10.3390/molecules22060793]
[266]
Mettu, A.; Talla, V.; Thumma, S.; Prameela, S.N.J. Mechanistic investigations on substituted benzene sulphonamides as apoptosis inducing anticancer agents. Bioorg. Chem., 2020, 95, 103539.
[http://dx.doi.org/10.1016/j.bioorg.2019.103539]
[267]
Xiang, J.; Leung, C.; Zhang, Z.; Hu, C.; Geng, C.; Liu, L.; Yi, L.; Li, Z.; Berenson, J.; Bai, X. Synthesis and evaluation of 2-alkylthio-4-(N-substituted sulfonamide)pyrimidine hydroxamic acids as anti-myeloma agents. Chem. Biol. Drug Des., 2016, 87(3), 472-477.
[http://dx.doi.org/10.1111/cbdd.12678]
[268]
Tugrak, M.; Gul, H.I.; Demir, Y.; Gulcin, I. Synthesis of benzamide derivatives with thiourea‐substituted benzenesulfonamides as carbonic anhydrase inhibitors. Arch. Pharm., 2020, 2002, e2000230.
[269]
Aday, B.; Sola, P.; Çolak, F.; Kaya, M. Synthesis of novel sulfonamide analogs containing sulfamerazine/sulfagua-] nidine and their biological activities. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1005-1010.
[http://dx.doi.org/10.3109/14756366.2015.1079183]
[270]
Ghorab, M.M.; Soliman, A.M.; Alsaid, M.S.; Askar, A.A. Synthesis, antimicrobial activity and docking study of some novel 4-(4, 4-dimethyl-2, 6-dioxocyclohexylidene) methylamino derivatives carrying biologically active sulfonamide moiety. Arab. J. Chem., 2020, 13(1), 545-556.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.022]
[271]
Huang, B.; Wang, X.; Liu, X.; Chen, Z.; Li, W.; Sun, S.; Liu, H.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays. Bioorg. Med. Chem., 2017, 25(16), 4397-4406.
[http://dx.doi.org/10.1016/j.bmc.2017.06.022]
[272]
Puratchikody, A.; Umamaheswari, A.; Irfan, N.; Sinha, S.; Manju, S.; Ramanan, M.; Ramamoorthy, G.; Doble, M. A novel class of tyrosine derivatives as dual 5-LOX and COX-2/mPGES1 inhibitors with PGE 2 mediated anticancer properties. New J. Chem., 2019, 43(2), 834-846.
[http://dx.doi.org/10.1039/C8NJ04385J]
[273]
Mishra, R.; Sharma, P.K.; Verma, P.K.; Tomer, I.; Mathur, G.; Dhakad, P.K. Biological potential of thiazole derivatives of synthetic origin. J. Heterocycl. Chem., 2017, 54(4), 2103-2116.
[http://dx.doi.org/10.1002/jhet.2827]
[274]
Karthikeyan, M.S. Synthesis, analgesic, anti-inflammatory and antimicrobial studies of 2, 4-dichloro-5-fluorophenyl containing thiazolotriazoles. Eur. J. Med. Chem., 2009, 44(2), 827-833.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.022]
[275]
Helal, M.; Salem, M.; El-Gaby, M.; Aljahdali, M. Synthesis and biological evaluation of some novel thiazole compounds as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 65, 517-526.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.005]
[276]
Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 2019, 11(16), 1929-1952.
[http://dx.doi.org/10.4155/fmc-2018-0416]
[277]
Meleddu, R.; Distinto, S.; Cottiglia, F.; Angius, R.; Caboni, P.; Angeli, A.; Melis, C.; Deplano, S.; Alcaro, S.; Ortuso, F.; Supuran, C.T.; Maccioni, E. New dihydrothiazole benzensulfonamides: looking for selectivity toward carbonic anhydrase isoforms I, II, IX, and XII. ACS Med. Chem. Lett., 2020, 11(5), 852-856.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00644]
[278]
Pour, Z.R.; Nazifi, S.; Safavi, A.A.; Nazifi, Z.; Massah, A. Solvent-free synthesis, ADME prediction, and evaluation of antibacterial activity of novel sulfonamide derivatives. Russ. J. Org. Chem., 2019, 55(6), 852-859.
[http://dx.doi.org/10.1134/S1070428019060162]
[279]
Işık, M.; Akocak, S.; Lolak, N.; Taslimi, P.; Türkeş, C.; Gülçin, İ.; Durgun, M.; Beydemir, Ş. Synthesis, characterization, biological evaluation, and in silico studies of novel 1, 3‐diaryltriazene‐substituted sulfathiazole derivatives. Arch. Pharm. (Weinheim), 2020, 353(9), 2000102.
[http://dx.doi.org/10.1002/ardp.202000102]
[280]
Focken, T.; Burford, K.; Grimwood, M.E.; Zenova, A.; Andrez, J-C.; Gong, W.; Wilson, M.; Taron, M.; Decker, S.; Lofstrand, V.; Chowdhury, S.; Shuart, N.; Lin, S.; Goodchild, S.J.; Young, C.; Soriano, M.; Tari, P.K.; Waldbrook, M.; Nelkenbrecher, K.; Kwan, R.; Lindgren, A.; de Boer, G.; Lee, S.; Sojo, L.; DeVita, R.J.; Cohen, C.J.; Wesolowski, S.S.; Johnson, J.P., Jr; Dehnhardt, C.M.; Empfield, J.R. Identification of CNS-penetrant aryl sulfonamides as isoform-selective NaV1. 6 inhibitors with efficacy in mouse models of epilepsy. J. Med. Chem., 2019, 62(21), 9618-9641.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01032]
[281]
Millet, A.; Plaisant, M.; Ronco, C.; Cerezo, M.; Abbe, P.; Jaune, E.; Cavazza, E.; Rocchi, S.; Benhida, R. Discovery and optimization of N-(4-(3-aminophenyl) thiazol-2-yl) acetamide as a novel scaffold active against sensitive and resistant cancer cells. J. Med. Chem., 2016, 59(18), 8276-8292.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00547]
[282]
Naaz, F.; Srivastava, R.; Singh, A.; Singh, N.; Verma, R.; Singh, V.K.; Singh, R.K. Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorg. Med. Chem., 2018, 26(12), 3414-3428.
[http://dx.doi.org/10.1016/j.bmc.2018.05.015]
[283]
Roy, S.; Mahapatra, A.D.; Mohammad, T.; Gupta, P.; Alajmi, M.F.; Hussain, A.; Rehman, M.; Datta, B.; Hassan, M. Design and development of novel urea, sulfonyltriurea, and sulfonamide derivatives as potential inhibitors of sphingosine kinase 1. Pharmaceuticals (Basel), 2020, 13(6), 118.
[http://dx.doi.org/10.3390/ph13060118]
[284]
Saeed, A.; Mahmood, S.; Rafiq, M.; Ashraf, Z.; Jabeen, F.; Seo, S-Y. Iminothiazoline‐sulfonamide hybrids as Jack Bean Urease inhibitors; Synthesis, kinetic mechanism and computational molecular modeling. Chem. Biol. Drug Des., 2016, 87(3), 434-443.
[http://dx.doi.org/10.1111/cbdd.12675]
[285]
Fadda, A.A.; El-badraw, A.M.; Refat, H.M.; Abdel-Latif, E. Synthesis of some new 2-substituted-4-sulfamoylpheny-] lazo-thiophene and/or thiazole derivatives as antibacterial agents. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(5), 778-785.
[http://dx.doi.org/10.1080/10426507.2015.1100183]
[286]
Zhao, L.; Wang, Y.; Cao, D.; Chen, T.; Wang, Q.; Li, Y.; Xu, Y.; Zhang, N.; Wang, X.; Chen, D.; Chen, L.; Chen, Y-L.; Xia, G.; Shi, Z.; Liu, Y-C.; Lin, Y.; Miao, Z.; Shen, J.; Xiong, B. Fragment-based drug discovery of 2-thiazolidinones as BRD4 inhibitors: 2. Structure-based optimization. J. Med. Chem., 2015, 58(3), 1281-1297.
[http://dx.doi.org/10.1021/jm501504k]
[287]
Riyadh, S.M.; El‐Motairi, S.A.; Ahmed, H.E.; Khalil, K.D.; Habib, E.S.E. Synthesis, biological evaluation, and molecular docking of novel thiazoles and [1, 3, 4] thiadiazoles incorporating sulfonamide group as DHFR Inhibitors. Chem. Biodivers., 2018, 15(9), e1800231.
[http://dx.doi.org/10.1002/cbdv.201800231]
[288]
Berber, N.; Arslan, M.; Vural, F.; Ergun, A.; Gençer, N.; Arslan, O. Synthesis of new series of thiazol‐(2 (3H)‐ylideneamino) benzenesulfonamide derivatives as carbonic anhydrase inhibitors. J. Biochem. Mol. Toxicol., 2020, 34(12), e22596.
[http://dx.doi.org/10.1002/jbt.22596]
[289]
Vaškevičienė, I.; Paketurytė, V.; Zubrienė, A.; Kantminienė, K.; Mickevičius, V.; Matulis, D. N-Sulfa-] moylphenyl-and N-sulfamoylphenyl-N-thiazolyl-β-alanines and their derivatives as inhibitors of human carbonic anhydrases. Bioorg. Chem., 2017, 75, 16-29.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.017]
[290]
Gawad, N.M.A.; Amin, N.H.; Elsaadi, M.T.; Mohamed, F.M.; Angeli, A.; De Luca, V.; Capasso, C.; Supuran, C.T. Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines. Bioorg. Med. Chem., 2016, 24(13), 3043-3051.
[http://dx.doi.org/10.1016/j.bmc.2016.05.016]
[291]
Abo-Ashour, M.F.; Eldehna, W.M.; Nocentini, A.; Ibrahim, H.S.; Bua, S.; Abdel-Aziz, H.A.; Abou-Seri, S.M.; Supuran, C.T. Novel synthesized SLC-0111 thiazole and thiadiazole analogues: Determination of their carbonic anhydrase inhibitory activity and molecular modeling studies. Bioorg. Chem., 2019, 87, 794-802.
[http://dx.doi.org/10.1016/j.bioorg.2019.04.002]
[292]
Abd El-Gilil, S.M. Design, synthesis, molecular docking and biological screening of N-ethyl-N-methylbenzenesul-] fonamide derivatives as effective antimicrobial and antiproliferative agents. J. Mol. Struct., 2019, 1194, 144-156.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.048]
[293]
Ghorab, M.M.; Alsaid, M.S. Cytotoxic activity of some novel sulfonamide derivatives. Acta Pol. Pharm., 2015, 72(1), 79-87.
[294]
Grewal, A.S.; Kharb, R.; Prasad, D.N.; Dua, J.S.; Lather, V. Design, synthesis and evaluation of novel 3, 5-disubstituted benzamide derivatives as allosteric glucokinase activators. BMC Chem., 2019, 13(1), 1-14.
[http://dx.doi.org/10.1186/s13065-019-0532-8]
[295]
Mahmood, S.; Saeed, A.; Bua, S.; Nocentini, A.; Gratteri, P.; Supuran, C.T. Synthesis, biological evaluation and computational studies of novel iminothiazolidinone benzenesulfonamides as potent carbonic anhydrase II and IX inhibitors. Bioorg. Chem., 2018, 77, 381-386.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.031]
[296]
Kumar, A.S.; Kudva, J.; Bharath, B.; Ananda, K.; Sadashiva, R.; Kumar, S.M.; Revanasiddappa, B.; Kumar, V.; Rekha, P.; Naral, D. Synthesis, structural, biological and in silico studies of new 5-arylidene-4-thiazolidinone derivatives as possible anticancer, antimicrobial and antitubercular agents. New J. Chem., 2019, 43(3), 1597-1610.
[http://dx.doi.org/10.1039/C8NJ03671C]
[297]
Khadse, S.C.; Amnerkar, N.D.; Dighole, K.S.; Dhote, A.M.; Patil, V.R.; Lokwani, D.K.; Ugale, V.G.; Charbe, N.B.; Chatpalliwar, V.A. Hetero-substituted sulfonamido-benza-] mide hybrids as glucokinase activators: Design, synthesis, molecular docking and in-silico ADME evaluation. J. Mol. Struct., 2020, 1222, 128916.
[http://dx.doi.org/10.1016/j.molstruc.2020.128916]
[298]
Meleddu, R.; Maccioni, E.; Distinto, S.; Bianco, G.; Melis, C.; Alcaro, S.; Cottiglia, F.; Ceruso, M.; Supuran, C.T. New 4-[(3-cyclohexyl-4-aryl-2, 3-dihydro-1, 3-thiazol-2-ylidene) amino] benzene-1-sulfonamides, synthesis and inhibitory activity toward carbonic anhydrase I, II, IX, XII. Bioorg. Med. Chem. Lett., 2015, 25(16), 3281-3284.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.076]
[299]
Meleddu, R.; Distinto, S.; Cottiglia, F.; Angius, R.; Gaspari, M.; Taverna, D.; Melis, C.; Angeli, A.; Bianco, G.; Deplano, S.; Fois, B.; Del Prete, S.; Capasso, C.; Alcaro, S.; Ortuso, F.; Yanez, M.; Supuran, C.T.; Maccioni, E. Tuning the dual inhibition of carbonic anhydrase and cyclooxygenase by dihydrothiazole benzensulfonamides. ACS Med. Chem. Lett., 2018, 9(10), 1045-1050.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00352]
[300]
Shinde, R.R.; Dhawale, S.A.; Farooqui, M. Design, synthesis and anti-microbial study of ethyl 2-(N-(substituted-phenyl) sulfamoyl) thiazole-4-carboxylate derivatives. Chem. Biol. Interact., 2020, 10(6), 158-172.
[301]
Rutaganira, F.U.; Fowler, M.L.; McPhail, J.A.; Gelman, M.A.; Nguyen, K.; Xiong, A.; Dornan, G.L.; Tavshanjian, B.; Glenn, J.S.; Shokat, K.M.; Burke, J.E. Design and structural characterization of potent and selective inhibitors of phosphatidylinositol 4 kinase IIIβ. J. Med. Chem., 2016, 59(5), 1830-1839.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01311]
[302]
Čapkauskaitė, E.; Zubrienė, A.; Paketurytė, V.; Timm, D.D.; Tumkevičius, S.; Matulis, D. Thiazole-substituted benzenesulfonamides as inhibitors of 12 human carbonic anhydrases. Bioorg. Chem., 2018, 77, 534-541.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.004]
[303]
Mohamed, K.O.; Nissan, Y.M.; El-Malah, A.A.; Ahmed, W.A.; Ibrahim, D.M.; Sakr, T.M.; Motaleb, M.A. Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers. Eur. J. Med. Chem., 2017, 135, 424-433.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.069]
[304]
Tariq, S.; Kamboj, P.; Amir, M. Therapeutic advancement of benzothiazole derivatives in the last decennial period. Arch. Pharm., 2019, 352(1), 1800170.
[305]
Gjorgjieva, M.; Tomašič, T.; Kikelj, D.; Mašič, L.P. Benzothiazole-based compounds in antibacterial drug discovery. Curr. Med. Chem., 2018, 25(38), 5218-5236.
[http://dx.doi.org/10.2174/0929867324666171009103327]
[306]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036]
[307]
Mokhtar, A.M.; El-Messery, S.M.; Ghaly, M.A.; Hassan, G.S. Targeting EGFR tyrosine kinase: Synthesis, in vitro antitumor evaluation, and molecular modeling studies of benzothiazole-based derivatives. Bioorg. Chem., 2020, 104, 104259.
[http://dx.doi.org/10.1016/j.bioorg.2020.104259]
[308]
Liu, D-C.; Zhang, H-J.; Jin, C-M.; Quan, Z-S. Synthesis and biological evaluation of novel benzothiazole derivatives as potential anticonvulsant agents. Molecules, 2016, 21(3), 164.
[http://dx.doi.org/10.3390/molecules21030164]
[309]
Ujan, R.; Saeed, A.; Ashraf, S.; Channar, P.A.; Abbas, Q.; Rind, M.A.; Hassan, M.; Raza, H.; Seo, S-Y.; El-Seedi, H.R. Synthesis, computational studies and enzyme inhibitory kinetics of benzothiazole-linked thioureas as mushroom tyrosinase inhibitors. J. Biomol. Struct. Dyn., 2020, 39(18), 7035-7043.
[http://dx.doi.org/10.1080/07391102.2020.1804459]
[310]
Ceruso, M.; Khloya, P.; Supuran, C.T.; Sharma, P.K. 4-Functionalized 1, 3-diarylpyrazoles bearing 6-aminosul-] fonylbenzothiazole moiety as potent inhibitors of carbonic anhydrase isoforms hCA I, II, IX and XII. Bioorg. Med. Chem., 2014, 22(24), 6945-6952.
[http://dx.doi.org/10.1016/j.bmc.2014.10.018]
[311]
Khokra, S.L.; Arora, K.; Khan, S.A.; Kaushik, P.; Saini, R.; Husain, A. synthesis, computational studies and anticonvulsant activity of novel benzothiazole coupled sulfonamide derivatives. Iran. J. Pharm. Res., 2019, 18(1), 1-15.
[312]
Obasi, L.N.; Oruma, U.S.; Al-Swaidan, I.A.; Ramasami, P.; Ezeorah, C.J.; Ochonogor, A.E. Synthesis, characterization and antibacterial studies of N-(Benzothiazol-2-yl)-4-chlorobenzenesulphonamide and Its neodymium (III) and thallium (III) complexes. Molecules, 2017, 22(2), 153.
[http://dx.doi.org/10.3390/molecules22020153]
[313]
Jagtap, S.; Bahule, B.; Ahmed, K.; Gaikwad, D. Design, synthesis and anti-microbial study of 6-amino-N-substtituted-benzo [d] thiazole-2-sulfonamide derivatives. Int. J. Future Gener. Commun. Netw., 2020, 13, 154-160.
[314]
Ismail, M.M.; Abdulwahab, H.G.; Nossier, E.S.; El Menofy, N.G.; Abdelkhalek, B.A. Synthesis of novel 2-aminobenzothiazole derivatives as potential antimicrobial agents with dual DNA gyrase/topoisomerase IV inhibition. Bioorg. Chem., 2020, 94, 103437.
[http://dx.doi.org/10.1016/j.bioorg.2019.103437]
[315]
Lad, N.P.; Manohar, Y.; Mascarenhas, M.; Pandit, Y.B.; Kulkarni, M.R.; Sharma, R.; Salkar, K.; Suthar, A.; Pandit, S.S. Methylsulfonyl benzothiazoles (MSBT) derivatives: Search for new potential antimicrobial and anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1319-1324.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.032]
[316]
Liu, H.; Jiang, X.; Gao, X.; Tian, W.; Xu, C.; Wang, R.; Xu, Y.; Wei, L.; Cao, F.; Li, W. Identification of N-benzothiazolyl-2-benzenesulfonamides as novel ABCA1 expression upregulators. RSC Med. Chem., 2020, 11(3), 411-418.
[http://dx.doi.org/10.1039/C9MD00556K]
[317]
Sağlık, B.N.; Osmaniye, D.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Atlı Eklioğlu, Ö.; Özkay, Y.; Koparal, A.S.; Kaplancıklı, Z.A. Synthesis, in vitro enzyme activity and molecular docking studies of new benzylamine-sulfonamide derivatives as selective MAO-B inhibitors. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1422-1432.
[http://dx.doi.org/10.1080/14756366.2020.1784892]
[318]
Singh, A.; Yadav, M.; Srivastava, R.; Singh, N.; Kaur, R.; Gupta, S.K.; Singh, R.K. Design and anti-HIV activity of arylsulphonamides as non-nucleoside reverse transcriptase inhibitors. Med. Chem. Res., 2016, 25(12), 2842-2859.
[http://dx.doi.org/10.1007/s00044-016-1707-7]
[319]
Djuidje, E.N.; Sciabica, S.; Buzzi, R.; Dissette, V.; Balzarini, J.; Liekens, S.; Serra, E.; Andreotti, E.; Manfredini, S.; Vertuani, S.; Baldisserotto, A. Design, synthesis and evaluation of benzothiazole derivatives as multifunctional agents. Bioorg. Chem., 2020, 101, 103960.
[http://dx.doi.org/10.1016/j.bioorg.2020.103960]
[320]
Petrou, A.; Geronikaki, A.; Terzi, E.; Guler, O.O.; Tuccinardi, T.; Supuran, C.T. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with secondary sulfonamides incorporating benzothiazole scaffolds. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1306-1311.
[http://dx.doi.org/10.3109/14756366.2015.1128427]
[321]
Ammazzalorso, A.; De Lellis, L.; Florio, R.; Bruno, I.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Perconti, S.; Verginelli, F.; Cama, A.; Amoroso, R. Cytotoxic effect of a family of peroxisome proliferator‐activated receptor antagonists in colorectal and pancreatic cancer cell lines. Chem. Biol. Drug Des., 2017, 90(5), 1029-1035.
[http://dx.doi.org/10.1111/cbdd.13026]
[322]
Abdoli, M.; Angeli, A.; Bozdag, M.; Carta, F.; Kakanejadifard, A.; Saeidian, H.; Supuran, C.T. Synthesis and carbonic anhydrase I, II, VII, and IX inhibition studies with a series of benzo[d]thiazole-5- and 6-sulfonamides. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1071-1078.
[http://dx.doi.org/10.1080/14756366.2017.1356295]
[323]
Pawar, C.D.; Chavan, S.L.; Pawar, U.D.; Pansare, D.N.; Deshmukh, S.V.; Shinde, D.B. Synthesis, anti‐proliferative activity, SAR, and kinase inhibition studies of thiazol‐2‐yl‐substituted sulfonamide derivatives. J. Chin. Chem. Soc. (Taipei), 2019, 66(3), 257-264.
[http://dx.doi.org/10.1002/jccs.201800312]
[324]
Singh, A.; Srivastava, R.; Singh, R.K. Design, synthesis, and antibacterial activities of novel heterocyclic arylsulphonamide derivatives. Interdiscip. Sci., 2018, 10(4), 748-761.
[http://dx.doi.org/10.1007/s12539-016-0207-2]
[325]
Patil, P.; Sethy, S.; Sameena, T.; Shailaja, K. Pyridine and its biological activity: A review. Asian J. Res. Chem, 2013, 6(10), 888-899.
[326]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. J. Drug Des. Med. Chem., 2015, 1(1), 1-11.
[327]
Helal, M.H.; El-Awdan, S.A.; Salem, M.A.; Abd-elaziz, T.A.; Moahamed, Y.A.; El-Sherif, A.A.; Mohamed, G.A.M. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 764-773.
[http://dx.doi.org/10.1016/j.saa.2014.06.145]
[328]
Ali, A.; Bansal, D.; Kaushik, N.K.; Kaushik, N.; Choi, E.H.; Gupta, R. Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups. J. Chem. Sci., 2014, 126(4), 1091-1105.
[http://dx.doi.org/10.1007/s12039-014-0671-3]
[329]
Torabi, M.; Yarie, M.; Zolfigol, M.A.; Rouhani, S.; Azizi, S.; Olomola, T.O.; Maaza, M.; Msagati, T.A. Synthesis of new pyridines with sulfonamide moiety via a cooperative vinylogous anomeric-based oxidation mechanism in the presence of a novel quinoline-based dendrimer-like ionic liquid. RSC Advances, 2021, 11(5), 3143-3152.
[http://dx.doi.org/10.1039/D0RA09400E]
[330]
Zhou, Z.; Li, L.; Yan, N.; Du, L.; Sun, C.; Sun, T. Synthesis, crystal structure, absolute configuration and antitumor activity of the enantiomers of 5-Bromo-2-chloro-N-(1-phenylethyl) pyridine-3-sulfonamide. Molecules, 2015, 20(11), 20926-20938.
[http://dx.doi.org/10.3390/molecules201119740]
[331]
El-Sayed, H.; Moustafa, A.; El-Torky, A.; El-Salam, A. A series of pyridines and pyridine based sulfa-drugs as antimicrobial agents: Design, synthesis and antimicrobial activity. Russ. J. Gen. Chem., 2017, 87(10), 2401-2408.
[http://dx.doi.org/10.1134/S107036321710022X]
[332]
Zhang, K.; Ni, Y.; Chen, J.; Tu, Z.; Wu, X.; Chen, D.; Yao, H.; Jiang, S. Discovery of trans-3-(pyridin-3-yl) acrylamide-derived sulfamides as potent nicotinamide phosphoribosyltransferase (NAMPT) inhibitors for the potential treatment of cancer. Bioorg. Med. Chem. Lett., 2019, 29(12), 1502-1506.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.013]
[333]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Soliman, A.M. Design and synthesis of some novel 4-Chloro-N-(4-(1-(2-(2-cyanoacetyl) hydrazono) ethyl) phenyl) benzenesulfonamide derivatives as anticancer and radiosensitizing agents. Eur. J. Med. Chem., 2016, 117, 8-18.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.009]
[334]
Wang, L.; Pratt, J.K.; Soltwedel, T.; Sheppard, G.S.; Fidanze, S.D.; Liu, D.; Hasvold, L.A.; Mantei, R.A.; Holms, J.H.; McClellan, W.J.; Wendt, M.D.; Wada, C.; Frey, R.; Hansen, T.M.; Hubbard, R.; Park, C.H.; Li, L.; Magoc, T.J.; Albert, D.H.; Lin, X.; Warder, S.E.; Kovar, P.; Huang, X.; Wilcox, D.; Wang, R.; Rajaraman, G.; Petros, A.M.; Hutchins, C.W.; Panchal, S.C.; Sun, C.; Elmore, S.W.; Shen, Y.; Kati, W.M.; McDaniel, K.F. Fragment-based, structure-enabled discovery of novel pyridones and pyridone macrocycles as potent bromodomain and extra-terminal domain (BET) family bromodomain inhibitors. J. Med. Chem., 2017, 60(9), 3828-3850.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00017]
[335]
Stellenboom, N.; Baykan, A. Synthesis and enzyme inhibitory activity of novel Pyridine-2, 6-dicarboxamides bearing primary sulfonamide groups. Russ. J. Org. Chem., 2019, 55(12), 1951-1956.
[http://dx.doi.org/10.1134/S1070428019120248]
[336]
Riaz, S.; Khan, I.U.; Bajda, M.; Ashraf, M.; Shaukat, A.; Rehman, T.U.; Mutahir, S.; Hussain, S.; Mustafa, G.; Yar, M. Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer’s disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase. Bioorg. Chem., 2015, 63, 64-71.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.008]
[337]
Debbabi, K.F.; Bashandy, M.S.; Al-Harbi, S.A.; Aljuhani, E.H.; Al-Saidi, H.M. Synthesis and molecular docking against dihydrofolate reductase of novel pyridin-N-ethyl-N-methylbenzenesulfonamides as efficient anticancer and antimicrobial agents. J. Mol. Struct., 2017, 1131, 124-135.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.048]
[338]
Pike, A.; Storer, R.I.; Owen, R.M.; Armstrong, E.; Benn, C.L.; Bictash, M.; Cheung, K.F.; Costelloe, K.; Dardennes, E.; Impey, E.; Milliken, P.H.; Mortimer-Cassen, E.; Pearce, H.J. The design, synthesis and evaluation of low molecular weight acidic sulfonamides as URAT1 inhibitors for the treatment of gout. MedChemComm, 2016, 7(8), 1572-1579.
[http://dx.doi.org/10.1039/C6MD00191B]
[339]
Azzam, R.A.; Elsayed, R.E.; Elgemeie, G.H. Design and synthesis of a new class of pyridine-based N-sulfonamides exhibiting antiviral, antimicrobial, and enzyme inhibition characteristics. ACS Omega, 2020, 5(40), 26182-26194.
[http://dx.doi.org/10.1021/acsomega.0c03773]
[340]
Kang, S-M.; Nam, K-Y.; Jung, S-Y.; Song, K-H.; Kho, S.; No, K.T.; Choi, H.K.; Song, J-Y. Inhibition of cancer cell invasion by new ((3, 4-dihydroxy benzylidene) hydrazinyl) pyridine-3-sulfonamide analogs. Bioorg. Med. Chem. Lett., 2016, 26(4), 1322-1328.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.093]
[341]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Soliman, A.M. Anticancer and radio-sensitizing evaluation of some new sulfonamide derivatives bearing pyridone, thiophene, and hydrazone moieties. Res. Chem. Intermed., 2017, 43(8), 4657-4681.
[http://dx.doi.org/10.1007/s11164-017-2903-x]
[342]
Sağlık, B.N.; Cevik, U.A.; Osmaniye, D.; Levent, S.; Çavuşoğlu, B.K.; Demir, Y.; Ilgın, S.; Özkay, Y.; Koparal, A.S.; Beydemir, Ş.; Kaplancıklı, Z.A. Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorg. Chem., 2019, 91, 103153.
[http://dx.doi.org/10.1016/j.bioorg.2019.103153]
[343]
Ku, J-M.; Park, K.; Lee, J.H.; Cho, K.J.; Nam, Y-J.; Jeong, D-Y.; Kim, Y-H.; Kwon, S.; Park, J-Y.; Yang, J.; Nam, T.; Yoon, S-H.; Ahn, S.; Choi, Y. Discovery, optimization, and biological evaluation of sulfonamidoacetamides as an inducer of axon regeneration. J. Med. Chem., 2016, 59(10), 4676-4687.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00015]
[344]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; El-Gazzar, M.G.; El-Gazzar, M.G. Novel thioureido-benzenesulfonamide derivatives with enaminone linker as potent anticancer, radiosensitizers and VEGFR2 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(9), 1464-1470.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.089]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy