Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Microbiota-Gut-Brain Axis in Neurological Disorders: From Leaky Barriers Microanatomical Changes to Biochemical Processes

Author(s): Irene Neri, Elisa Boschetti*, Matilde Yung Follo, Roberto De Giorgio, Lucio Ildebrando Cocco, Lucia Manzoli and Stefano Ratti

Volume 23, Issue 3, 2023

Published on: 16 September, 2022

Page: [307 - 319] Pages: 13

DOI: 10.2174/1389557522666220622111501

Price: $65

conference banner
Abstract

Background: The gastrointestinal tract and the central nervous system are distinct because of evident morpho-functional features. Nonetheless, evidence indicates that these systems are bidirectionally connected through the gut-brain axis, defined as the signaling that takes place between the gastrointestinal tract and central nervous system, which plays in concert with the gut microbiota, i.e., the myriad of microorganisms residing in the lumen of the human intestine. In particular, it has been described that gut microbiota abnormalities, referred to as dysbiosis, may affect both central nervous system development and physiology.

Objective: Starting from the possible mechanisms through which gut microbiota variations were found to impact several central nervous system disorders, including Autism Spectrum Disorder and Alzheimer’s Disease, we will focus on intriguing, although poorly investigated, aspects such as the epithelial and vascular barrier integrity. Indeed, several studies suggest a pivotal role of gut microbiota in maintaining the efficiency of both the intestinal barrier and blood-brain barrier. In particular, we report evidence indicating an impact of gut microbiota on intestinal barrier and blood-brain barrier homeostasis and discuss the differences and the similarities between the two barriers. Moreover, to stimulate further research, we review various tests and biochemical markers that can be used to assess intestinal and blood-brain barrier permeability.

Conclusion: We suggest that the evaluation of intestinal and blood-brain barrier permeability in neurological patients may not only help to better understand central nervous system disorders but also pave the way for finding new molecular targets to treat patients with neurological impairment.

Keywords: Barrier permeability, blood-brain barrier, central nervous system, gut microbiota, intestinal barrier, vascular barrier.

Graphical Abstract

[1]
Young, V.B. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ, 2017, 356, j831.
[http://dx.doi.org/10.1136/bmj.j831] [PMID: 28298355]
[2]
Lankelma, J.M.; Nieuwdorp, M.; de Vos, W.M.; Wiersinga, W.J. The gut microbiota in internal medicine: Implications for health and disease. Neth. J. Med., 2015, 73(2), 61-68.
[PMID: 25753070]
[3]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[4]
Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[5]
Whon, T.W.; Shin, N.R.; Kim, J.Y.; Roh, S.W. Omics in gut microbiome analysis. J. Microbiol., 2021, 59(3), 292-297.
[http://dx.doi.org/10.1007/s12275-021-1004-0] [PMID: 33624266]
[6]
den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54(9), 2325-2340.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[7]
Bäumler, A.J.; Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535(7610), 85-93.
[http://dx.doi.org/10.1038/nature18849] [PMID: 27383983]
[8]
Takiishi, T.; Fenero, C.I.M.; Câmara, N.O.S. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers, 2017, 5(4), e1373208.
[http://dx.doi.org/10.1080/21688370.2017.1373208] [PMID: 28956703]
[9]
Obata, Y.; Pachnis, V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology, 2016, 151(5), 836-844.
[http://dx.doi.org/10.1053/j.gastro.2016.07.044] [PMID: 27521479]
[10]
Natividad, J.M.M.; Verdu, E.F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol. Res., 2013, 69(1), 42-51.
[http://dx.doi.org/10.1016/j.phrs.2012.10.007] [PMID: 23089410]
[11]
Brescia, P.; Rescigno, M. The gut vascular barrier: A new player in the gut–liver–brain axis. Trends Mol. Med., 2021, 27(9), 844-855.
[http://dx.doi.org/10.1016/j.molmed.2021.06.007] [PMID: 34229973]
[12]
Nishida, A.; Inoue, R.; Inatomi, O.; Bamba, S.; Naito, Y.; Andoh, A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol., 2018, 11(1), 1-10.
[http://dx.doi.org/10.1007/s12328-017-0813-5] [PMID: 29285689]
[13]
Muñoz-Garach, A.; Diaz-Perdigones, C.; Tinahones, F.J. Microbiota y diabetes mellitus tipo 2. Endocrinol. Nutr., 2016, 63(10), 560-568.
[http://dx.doi.org/10.1016/j.endonu.2016.07.008] [PMID: 27633134]
[14]
Gérard, P. Gut microbiota and obesity. Cell. Mol. Life Sci., 2016, 73(1), 147-162.
[http://dx.doi.org/10.1007/s00018-015-2061-5] [PMID: 26459447]
[15]
Ding, H.T.; Taur, Y.; Walkup, J.T. Gut microbiota and autism: Key concepts and findings. J. Autism Dev. Disord., 2017, 47(2), 480-489.
[http://dx.doi.org/10.1007/s10803-016-2960-9] [PMID: 27882443]
[16]
Sukmajaya, A.C.; Lusida, M.I. Soetjipto; Setiawati, Y. Systematic review of gut microbiota and Attention-Deficit Hyperactivity Disorder (ADHD). Ann. Gen. Psychiatry, 2021, 20(1), 12.
[http://dx.doi.org/10.1186/s12991-021-00330-w] [PMID: 33593384]
[17]
Nikolova, V.L.; Hall, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in gut microbiota composition in psychiatric disorders. JAMA Psychiatry, 2021, 78(12), 1343-1354.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.2573] [PMID: 34524405]
[18]
Gerdes, L.A.; Yoon, H.; Peters, A. Microbiota and multiple sclerosis. Nervenarzt, 2020, 91(12), 1096-1107.
[http://dx.doi.org/10.1007/s00115-020-01012-w] [PMID: 33044577]
[19]
Marizzoni, M.; Provasi, S.; Cattaneo, A.; Frisoni, G.B. Microbiota and neurodegenerative diseases. Curr. Opin. Neurol., 2017, 30(6), 630-638.
[http://dx.doi.org/10.1097/WCO.0000000000000496] [PMID: 28906270]
[20]
Sudo, N.; Chida, Y.; Aiba, Y.; Sonoda, J.; Oyama, N.; Yu, X.N.; Kubo, C.; Koga, Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J. Physiol., 2004, 558(1), 263-275.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[21]
O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res., 2015, 277, 32-48.
[http://dx.doi.org/10.1016/j.bbr.2014.07.027] [PMID: 25078296]
[22]
Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[23]
Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.F. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J. Neuroinflammation, 2019, 16(1), 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[24]
Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.L. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment. Mol. Neurobiol., 2020, 57(12), 5026-5043.
[http://dx.doi.org/10.1007/s12035-020-02073-3] [PMID: 32829453]
[25]
Baizabal-Carvallo, J.F.; Alonso-Juarez, M. The link between gut dysbiosis and neuroinflammation in Parkinson’s Disease. Neuroscience, 2020, 432, 160-173.
[http://dx.doi.org/10.1016/j.neuroscience.2020.02.030] [PMID: 32112917]
[26]
Capuco, A.; Urits, I.; Hasoon, J.; Chun, R.; Gerald, B.; Wang, J.K.; Kassem, H.; Ngo, A.L.; Abd-Elsayed, A.; Simopoulos, T.; Kaye, A.D.; Viswanath, O. Current perspectives on gut microbiome dysbiosis and depression. Adv. Ther., 2020, 37(4), 1328-1346.
[http://dx.doi.org/10.1007/s12325-020-01272-7] [PMID: 32130662]
[27]
Devkota, S.; Wang, Y.; Musch, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D.A.; Jabri, B.; Chang, E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature, 2012, 487(7405), 104-108.
[http://dx.doi.org/10.1038/nature11225] [PMID: 22722865]
[28]
Small, C.L.N.; Reid-Yu, S.A.; McPhee, J.B.; Coombes, B.K. Persistent infection with Crohn’s disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat. Commun., 2013, 4(1), 1957.
[http://dx.doi.org/10.1038/ncomms2957] [PMID: 23748852]
[29]
Kodak, T.; Bergmann, S. Autism spectrum disorder. Pediatr. Clin. North Am., 2020, 67(3), 525-535.
[http://dx.doi.org/10.1016/j.pcl.2020.02.007] [PMID: 32443991]
[30]
Iles, A. Autism spectrum disorders. Prim. Care, 2021, 48(3), 461-473.
[http://dx.doi.org/10.1016/j.pop.2021.04.003] [PMID: 34311851]
[31]
Holingue, C.; Newill, C.; Lee, L.C.; Pasricha, P.J.; Daniele Fallin, M. Gastrointestinal symptoms in autism spectrum disorder: A review of the literature on ascertainment and prevalence. Autism Res., 2018, 11(1), 24-36.
[http://dx.doi.org/10.1002/aur.1854] [PMID: 28856868]
[32]
Prosperi, M.; Santocchi, E.; Balboni, G.; Narzisi, A.; Bozza, M.; Fulceri, F.; Apicella, F.; Igliozzi, R.; Cosenza, A.; Tancredi, R.; Calderoni, S.; Muratori, F. Behavioral phenotype of ASD preschoolers with gastrointestinal symptoms or food selectivity. J. Autism Dev. Disord., 2017, 47(11), 3574-3588.
[http://dx.doi.org/10.1007/s10803-017-3271-5] [PMID: 28861653]
[33]
Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism - comparisons to typical children and correlation with autism severity. BMC Gastroenterol., 2011, 11(1), 22.
[http://dx.doi.org/10.1186/1471-230X-11-22] [PMID: 21410934]
[34]
Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 2013, 8(7), e68322.
[http://dx.doi.org/10.1371/journal.pone.0068322] [PMID: 23844187]
[35]
Fattorusso, A.; Di Genova, L.; Dell’Isola, G.; Mencaroni, E.; Esposito, S. Autism spectrum disorders and the gut microbiota. Nutrients, 2019, 11(3), 521.
[http://dx.doi.org/10.3390/nu11030521] [PMID: 30823414]
[36]
Rose, D.R.; Yang, H.; Serena, G.; Sturgeon, C.; Ma, B.; Careaga, M.; Hughes, H.K.; Angkustsiri, K.; Rose, M.; Hertz-Picciotto, I.; Van de Water, J.; Hansen, R.L.; Ravel, J.; Fasano, A.; Ashwood, P. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav. Immun., 2018, 70, 354-368.
[http://dx.doi.org/10.1016/j.bbi.2018.03.025] [PMID: 29571898]
[37]
Patusco, R.; Ziegler, J. Role of probiotics in managing gastrointestinal dysfunction in children with autism spectrum disorder: An update for practitioners. Adv. Nutr., 2018, 9(5), 637-650.
[http://dx.doi.org/10.1093/advances/nmy031] [PMID: 30202938]
[38]
Thomas, R.; Sanders, S.; Doust, J.; Beller, E.; Glasziou, P. Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Pediatrics, 2015, 135(4), e994-e1001.
[http://dx.doi.org/10.1542/peds.2014-3482] [PMID: 25733754]
[39]
Jiang, H.; Zhou, Y.; Zhou, G.; Li, Y.; Yuan, J.; Li, X.; Ruan, B. Gut microbiota profiles in treatment-naïve children with attention deficit hyperactivity disorder. Behav. Brain Res., 2018, 347, 408-413.
[http://dx.doi.org/10.1016/j.bbr.2018.03.036] [PMID: 29580894]
[40]
Wan, L.; Ge, W.R.; Zhang, S.; Sun, Y.L.; Wang, B.; Yang, G. Case-control study of the effects of gut microbiota composition on neurotransmitter metabolic pathways in children with attention deficit hyperactivity disorder. Front. Neurosci., 2020, 14, 127.
[http://dx.doi.org/10.3389/fnins.2020.00127] [PMID: 32132899]
[41]
Ferreira-Halder, C.V.; Faria, A.V.S.; Andrade, S.S. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract. Res. Clin. Gastroenterol., 2017, 31(6), 643-648.
[http://dx.doi.org/10.1016/j.bpg.2017.09.011] [PMID: 29566907]
[42]
Anand, D.; Colpo, G.D.; Zeni, G.; Zeni, C.P.; Teixeira, A.L. Attention-deficit/hyperactivity disorder and inflammation: What does current knowledge tell us? A systematic review. Front. Psychiatry, 2017, 8, 228.
[http://dx.doi.org/10.3389/fpsyt.2017.00228] [PMID: 29170646]
[43]
Charlson, F.; van Ommeren, M.; Flaxman, A.; Cornett, J.; Whiteford, H.; Saxena, S. New WHO prevalence estimates of mental disorders in conflict settings: A systematic review and meta-analysis. Lancet, 2019, 394(10194), 240-248.
[http://dx.doi.org/10.1016/S0140-6736(19)30934-1] [PMID: 31200992]
[44]
Bested, A.C.; Logan, A.C.; Selhub, E.M. Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part I - autointoxication revisited. Gut Pathog., 2013, 5(1), 5.
[http://dx.doi.org/10.1186/1757-4749-5-5] [PMID: 23506618]
[45]
Bested, A.C.; Logan, A.C.; Selhub, E.M. Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part III - convergence toward clinical trials. Gut Pathog., 2013, 5(1), 4.
[http://dx.doi.org/10.1186/1757-4749-5-4] [PMID: 23497650]
[46]
Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[47]
Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; Zhang, X.; Yang, D.; Yang, Y.; Meng, H.; Li, W.; Melgiri, N.D.; Licinio, J.; Wei, H.; Xie, P. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry, 2016, 21(6), 786-796.
[http://dx.doi.org/10.1038/mp.2016.44] [PMID: 27067014]
[48]
Zhu, F.; Guo, R.; Wang, W.; Ju, Y.; Wang, Q.; Ma, Q.; Sun, Q.; Fan, Y.; Xie, Y.; Yang, Z.; Jie, Z.; Zhao, B.; Xiao, L.; Yang, L.; Zhang, T.; Liu, B.; Guo, L.; He, X.; Chen, Y.; Chen, C.; Gao, C.; Xu, X.; Yang, H.; Wang, J.; Dang, Y.; Madsen, L.; Brix, S.; Kristiansen, K.; Jia, H.; Ma, X. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol. Psychiatry, 2020, 25(11), 2905-2918.
[http://dx.doi.org/10.1038/s41380-019-0475-4] [PMID: 31391545]
[49]
Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler., 2020, 26(14), 1816- 1821.
[http://dx.doi.org/10.1177/1352458520970841]
[50]
McFarland, H.F.; Martin, R. Multiple sclerosis: A complicated picture of autoimmunity. Nat. Immunol., 2007, 8(9), 913-919.
[http://dx.doi.org/10.1038/ni1507] [PMID: 17712344]
[51]
Scalfari, A.; Knappertz, V.; Cutter, G.; Goodin, D.S.; Ashton, R.; Ebers, G.C. Mortality in patients with multiple sclerosis. Neurology, 2013, 81(2), 184-192.
[http://dx.doi.org/10.1212/WNL.0b013e31829a3388] [PMID: 23836941]
[52]
Hinds, J.P.; Eidelman, B.H.; Wald, A. Prevalence of bowel dysfunction in multiple sclerosis. Gastroenterology, 1990, 98(6), 1538-1542.
[http://dx.doi.org/10.1016/0016-5085(90)91087-M] [PMID: 2338192]
[53]
Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Paz Soldan, M.M.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; Weinshenker, B.G.; Rodriguez, M.; Kantarci, O.H.; Nelson, H.; Murray, J.A.; Mangalam, A.K. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep., 2016, 6(1), 28484.
[http://dx.doi.org/10.1038/srep28484] [PMID: 27346372]
[54]
Tremlett, H.; Fadrosh, D.W.; Faruqi, A.A.; Zhu, F.; Hart, J.; Roalstad, S.; Graves, J.; Lynch, S.; Waubant, E. Gut microbiota in early pediatric multiple sclerosis: A case-control study. Eur. J. Neurol., 2016, 23(8), 1308-1321.
[http://dx.doi.org/10.1111/ene.13026] [PMID: 27176462]
[55]
Lee, Y.K.; Menezes, J.S.; Umesaki, Y.; Mazmanian, S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4615-4622.
[http://dx.doi.org/10.1073/pnas.1000082107] [PMID: 20660719]
[56]
Miyake, S.; Kim, S.; Suda, W.; Oshima, K.; Nakamura, M.; Matsuoka, T.; Chihara, N.; Tomita, A.; Sato, W.; Kim, S.W.; Morita, H.; Hattori, M.; Yamamura, T. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One, 2015, 10(9), e0137429.
[http://dx.doi.org/10.1371/journal.pone.0137429] [PMID: 26367776]
[57]
Jangi, S.; Gandhi, R.; Cox, L.M.; Li, N.; von Glehn, F.; Yan, R.; Patel, B.; Mazzola, M.A.; Liu, S.; Glanz, B.L.; Cook, S.; Tankou, S.; Stuart, F.; Melo, K.; Nejad, P.; Smith, K.; Topçuolu, B.D.; Holden, J.; Kivisäkk, P.; Chitnis, T.; De Jager, P.L.; Quintana, F.J.; Gerber, G.K.; Bry, L.; Weiner, H.L. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun., 2016, 7(1), 12015.
[http://dx.doi.org/10.1038/ncomms12015] [PMID: 27352007]
[58]
Ochoa-Repáraz, J.; Kirby, T.O.; Kasper, L.H. The gut microbiome and multiple sclerosis. Cold Spring Harb. Perspect. Med., 2018, 8(6), a029017.
[http://dx.doi.org/10.1101/cshperspect.a029017] [PMID: 29311123]
[59]
Berer, K.; Gerdes, L.A.; Cekanaviciute, E.; Jia, X.; Xiao, L.; Xia, Z.; Liu, C.; Klotz, L.; Stauffer, U.; Baranzini, S.E.; Kümpfel, T.; Hohlfeld, R.; Krishnamoorthy, G.; Wekerle, H. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl. Acad. Sci. USA, 2017, 114(40), 10719-10724.
[http://dx.doi.org/10.1073/pnas.1711233114] [PMID: 28893994]
[60]
Borody, T.; Leis, S.; Campbell, J.; Torres, M.; Nowak, A. Fecal Microbiota Transplantation (FMT) in Multiple Sclerosis (MS): 942. Am. J. Gastroenterol., 2011, 106, S352.
[61]
Kouchaki, E.; Tamtaji, O.R.; Salami, M.; Bahmani, F.; Daneshvar Kakhaki, R.; Akbari, E.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2017, 36(5), 1245-1249.
[http://dx.doi.org/10.1016/j.clnu.2016.08.015] [PMID: 27669638]
[62]
Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[63]
Wyss-Coray, T.; Rogers, J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med., 2012, 2(1), a006346.
[http://dx.doi.org/10.1101/cshperspect.a006346] [PMID: 22315714]
[64]
Howcroft, T.K.; Campisi, J.; Louis, G.B.; Smith, M.T.; Wise, B.; Wyss-Coray, T.; Augustine, A.D.; McElhaney, J.E.; Kohanski, R.; Sierra, F. The role of inflammation in age-related disease. Aging (Albany NY), 2013, 5(1), 84-93.
[http://dx.doi.org/10.18632/aging.100531] [PMID: 23474627]
[65]
Cappellano, G.; Carecchio, M.; Fleetwood, T.; Magistrelli, L.; Cantello, R.; Dianzani, U.; Comi, C. Immunity and inflammation in neurodegenerative diseases. Am. J. Neurodegener. Dis., 2013, 2(2), 89-107.
[PMID: 23844334]
[66]
Vogt, N.M.; Romano, K.A.; Darst, B.F.; Engelman, C.D.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Blennow, K.; Zetterberg, H.; Bendlin, B.B.; Rey, F.E. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res. Ther., 2018, 10(1), 124.
[http://dx.doi.org/10.1186/s13195-018-0451-2] [PMID: 30579367]
[67]
Zhang, L.; Wang, Y.; Xiayu, X.; Shi, C.; Chen, W.; Song, N.; Fu, X.; Zhou, R.; Xu, Y.F.; Huang, L.; Zhu, H.; Han, Y.; Qin, C. Altered gut microbiota in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1241-1257.
[http://dx.doi.org/10.3233/JAD-170020] [PMID: 29036812]
[68]
Wang, X.; Sun, G.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.; Chu, X.; Yang, J.; Wang, H.; Chang, S.; Gong, Y.; Ruan, L.; Zhang, G.; Yan, S.; Lian, W.; Du, C.; Yang, D.; Zhang, Q.; Lin, F.; Liu, J.; Zhang, H.; Ge, C.; Xiao, S.; Ding, J.; Geng, M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res., 2019, 29(10), 787-803.
[http://dx.doi.org/10.1038/s41422-019-0216-x] [PMID: 31488882]
[69]
Livshits, G.; Kalinkovich, A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res. Rev., 2019, 56, 100980.
[http://dx.doi.org/10.1016/j.arr.2019.100980] [PMID: 31726228]
[70]
Shintouo, C.M.; Mets, T.; Beckwee, D.; Bautmans, I.; Ghogomu, S.M.; Souopgui, J.; Leemans, L.; Meriki, H.D.; Njemini, R. Is inflammageing influenced by the microbiota in the aged gut? A systematic review. Exp. Gerontol., 2020, 141, 111079.
[http://dx.doi.org/10.1016/j.exger.2020.111079] [PMID: 32882334]
[71]
Armstrong, R.A. Risk factors for Alzheimer’s disease. Folia Neuropathol., 2019, 57(2), 87-105.
[http://dx.doi.org/10.5114/fn.2019.85929] [PMID: 31556570]
[72]
Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. (Vienna), 2017, 124(8), 901-905.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[73]
Lebouvier, T.; Chaumette, T.; Paillusson, S.; Duyckaerts, C.; Bruley des Varannes, S.; Neunlist, M.; Derkinderen, P. The second brain and Parkinson’s disease. Eur. J. Neurosci., 2009, 30(5), 735-741.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06873.x] [PMID: 19712093]
[74]
Natale, G.; Pasquali, L.; Paparelli, A.; Fornai, F. Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterol. Motil., 2011, 23(12), 1056-1065.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01794.x] [PMID: 21951862]
[75]
Wang, L.; Fleming, S.M.; Chesselet, M.F.; Taché, Y. Abnormal colonic motility in mice overexpressing human wild-type α-synuclein. Neuroreport, 2008, 19(8), 873-876.
[http://dx.doi.org/10.1097/WNR.0b013e3282ffda5e] [PMID: 18463504]
[76]
Fasano, A.; Visanji, N.P.; Liu, L.W.C.; Lang, A.E.; Pfeiffer, R.F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol., 2015, 14(6), 625-639.
[http://dx.doi.org/10.1016/S1474-4422(15)00007-1] [PMID: 25987282]
[77]
Hasegawa, S.; Goto, S.; Tsuji, H.; Okuno, T.; Asahara, T.; Nomoto, K.; Shibata, A.; Fujisawa, Y.; Minato, T.; Okamoto, A.; Ohno, K.; Hirayama, M. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s Disease. PLoS One, 2015, 10(11), e0142164.
[http://dx.doi.org/10.1371/journal.pone.0142164] [PMID: 26539989]
[78]
Gerhardt, S.; Mohajeri, M. Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients, 2018, 10(6), 708.
[http://dx.doi.org/10.3390/nu10060708] [PMID: 29857583]
[79]
Scheperjans, F.; Aho, V.; Pereira, P.A.B.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; Kinnunen, E.; Murros, K.; Auvinen, P. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord., 2015, 30(3), 350-358.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[80]
Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord., 2015, 30(10), 1351-1360.
[http://dx.doi.org/10.1002/mds.26307] [PMID: 26179554]
[81]
Hill-Burns, E.M.; Debelius, J.W.; Morton, J.T.; Wissemann, W.T.; Lewis, M.R.; Wallen, Z.D.; Peddada, S.D.; Factor, S.A.; Molho, E.; Zabetian, C.P.; Knight, R.; Payami, H. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord., 2017, 32(5), 739-749.
[http://dx.doi.org/10.1002/mds.26942] [PMID: 28195358]
[82]
Petrov, V.A.; Saltykova, I.V.; Zhukova, I.A.; Alifirova, V.M.; Zhukova, N.G.; Dorofeeva, Y.B.; Tyakht, A.V.; Kovarsky, B.A.; Alekseev, D.G.; Kostryukova, E.S.; Mironova, Y.S.; Izhboldina, O.P.; Nikitina, M.A.; Perevozchikova, T.V.; Fait, E.A.; Babenko, V.V.; Vakhitova, M.T.; Govorun, V.M.; Sazonov, A.E. Analysis of gut microbiota in patients with Parkinson’s disease. Bull. Exp. Biol. Med., 2017, 162(6), 734-737.
[http://dx.doi.org/10.1007/s10517-017-3700-7] [PMID: 28429209]
[83]
Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, D.; Philippeit, H.; Bürmann, J.; Faßbender, K.; Schwiertz, A.; Schäfer, K.H. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord., 2016, 32, 66-72.
[http://dx.doi.org/10.1016/j.parkreldis.2016.08.019] [PMID: 27591074]
[84]
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[85]
Ahmad, R.; Sorrell, M.F.; Batra, S.K.; Dhawan, P.; Singh, A.B. Gut permeability and mucosal inflammation: Bad, good or context dependent. Mucosal Immunol., 2017, 10(2), 307-317.
[http://dx.doi.org/10.1038/mi.2016.128] [PMID: 28120842]
[86]
Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol., 2018, 135(3), 311-336.
[http://dx.doi.org/10.1007/s00401-018-1815-1] [PMID: 29411111]
[87]
Camilleri, M.; Madsen, K.; Spiller, R.; Van Meerveld, B.G.; Verne, G.N.; Verne, G.N. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil., 2012, 24(6), 503-512.
[http://dx.doi.org/10.1111/j.1365-2982.2012.01921.x] [PMID: 22583600]
[88]
Peterson, L.W.; Artis, D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol., 2014, 14(3), 141-153.
[http://dx.doi.org/10.1038/nri3608] [PMID: 24566914]
[89]
Thoo, L.; Noti, M.; Krebs, P. Keep calm: The intestinal barrier at the interface of peace and war. Cell Death Dis., 2019, 10(11), 849.
[http://dx.doi.org/10.1038/s41419-019-2086-z] [PMID: 31699962]
[90]
Spadoni, I.; Zagato, E.; Bertocchi, A.; Paolinelli, R.; Hot, E.; Di Sabatino, A.; Caprioli, F.; Bottiglieri, L.; Oldani, A.; Viale, G.; Penna, G.; Dejana, E.; Rescigno, M. A gut-vascular barrier controls the systemic dissemination of bacteria. Science, 2015, 350(6262), 830-834.
[http://dx.doi.org/10.1126/science.aad0135] [PMID: 26564856]
[91]
Stan, R.V. Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. J. Cell. Mol. Med., 2007, 11(4), 621-643.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00075.x] [PMID: 17760829]
[92]
Hooper, L.V.; Gordon, J.I. Commensal host-bacterial relationships in the gut. Science, 2001, 292(5519), 1115-1118.
[http://dx.doi.org/10.1126/science.1058709] [PMID: 11352068]
[93]
Smith, K.; McCoy, K.D.; Macpherson, A.J. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin. Immunol., 2007, 19(2), 59-69.
[http://dx.doi.org/10.1016/j.smim.2006.10.002] [PMID: 17118672]
[94]
Hooper, L.V.; Wong, M.H.; Thelin, A.; Hansson, L.; Falk, P.G.; Gordon, J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291(5505), 881-884.
[http://dx.doi.org/10.1126/science.291.5505.881] [PMID: 11157169]
[95]
Gordon, H.A.; Bruckner-Kardoss, E. Effect of normal microbial flora on intestinal surface area. Am. J. Physiol., 1961, 201(1), 175-178.
[http://dx.doi.org/10.1152/ajplegacy.1961.201.1.175] [PMID: 13707165]
[96]
Abrams, G.D.; Bauer, H.; Sprinz, H. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest., 1963, 12, 355-364.
[PMID: 14010768]
[97]
Szentkuti, L.; Riedesel, H.; Enss, M.L.; Gaertner, K.; von Engelhardt, W. Pre-epithelial mucus layer in the colon of conventional and germ-free rats. Histochem. J., 1990, 22(9), 491-497.
[http://dx.doi.org/10.1007/BF01007234] [PMID: 1702088]
[98]
Zareie, M.; Johnson-Henry, K.; Jury, J.; Yang, P-C.; Ngan, B-Y.; McKay, D.M.; Soderholm, J.D.; Perdue, M.H.; Sherman, P.M. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut, 2006, 55(11), 1553-1560.
[http://dx.doi.org/10.1136/gut.2005.080739] [PMID: 16638791]
[99]
Mennigen, R.; Nolte, K.; Rijcken, E.; Utech, M.; Loeffler, B.; Senninger, N.; Bruewer, M. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(5), G1140-G1149.
[http://dx.doi.org/10.1152/ajpgi.90534.2008] [PMID: 19221015]
[100]
Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[101]
Suzuki, T.; Yoshida, S.; Hara, H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr., 2008, 100(2), 297-305.
[http://dx.doi.org/10.1017/S0007114508888733] [PMID: 18346306]
[102]
Peng, L.; Li, Z.R.; Green, R.S.; Holzman, I.R.; Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr., 2009, 139(9), 1619-1625.
[http://dx.doi.org/10.3945/jn.109.104638] [PMID: 19625695]
[103]
Segawa, S.; Fujiya, M.; Konishi, H.; Ueno, N.; Kobayashi, N.; Shigyo, T.; Kohgo, Y. Probiotic-derived polyphosphate enhances the epithelial barrier function and maintains intestinal homeostasis through integrin-p38 MAPK pathway. PLoS One, 2011, 6(8), e23278.
[http://dx.doi.org/10.1371/journal.pone.0023278] [PMID: 21858054]
[104]
Allam-Ndoul, B.; Castonguay-Paradis, S.; Veilleux, A. Gut microbiota and intestinal trans-epithelial permeability. Int. J. Mol. Sci., 2020, 21(17), 6402.
[http://dx.doi.org/10.3390/ijms21176402] [PMID: 32899147]
[105]
Keaney, J.; Campbell, M. The dynamic blood-brain barrier. FEBS J., 2015, 282(21), 4067-4079.
[http://dx.doi.org/10.1111/febs.13412] [PMID: 26277326]
[106]
Muoio, V.; Persson, P.B.; Sendeski, M.M. The neurovascular unit - concept review. Acta Physiol. (Oxf.), 2014, 210(4), 790-798.
[http://dx.doi.org/10.1111/apha.12250] [PMID: 24629161]
[107]
Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B.V. Blood-brain barrier: From physiology to disease and back. Physiol. Rev., 2019, 99(1), 21-78.
[http://dx.doi.org/10.1152/physrev.00050.2017] [PMID: 30280653]
[108]
Tărlungeanu, D.C.; Deliu, E.; Dotter, C.P.; Kara, M.; Janiesch, P.C.; Scalise, M.; Galluccio, M.; Tesulov, M.; Morelli, E.; Sonmez, F.M.; Bilguvar, K.; Ohgaki, R.; Kanai, Y.; Johansen, A.; Esharif, S.; Ben-Omran, T.; Topcu, M.; Schlessinger, A.; Indiveri, C.; Duncan, K.E.; Caglayan, A.O.; Gunel, M.; Gleeson, J.G.; Novarino, G. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell, 2016, 167(6), 1481-1494.e18.
[http://dx.doi.org/10.1016/j.cell.2016.11.013] [PMID: 27912058]
[109]
Kealy, J.; Greene, C.; Campbell, M. Blood-brain barrier regulation in psychiatric disorders. Neurosci. Lett., 2020, 726, 133664.
[http://dx.doi.org/10.1016/j.neulet.2018.06.033] [PMID: 29966749]
[110]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[111]
Profaci, C.P.; Munji, R.N.; Pulido, R.S.; Daneman, R. The blood-brain barrier in health and disease: Important unanswered questions. J. Exp. Med., 2020, 217(4), e20190062.
[http://dx.doi.org/10.1084/jem.20190062] [PMID: 32211826]
[112]
Na, K.S.; Jung, H.Y.; Kim, Y.K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48, 277-286.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.022] [PMID: 23123365]
[113]
Elwood, E.; Lim, Z.; Naveed, H.; Galea, I. The effect of systemic inflammation on human brain barrier function. Brain Behav. Immun., 2017, 62, 35-40.
[http://dx.doi.org/10.1016/j.bbi.2016.10.020] [PMID: 27810376]
[114]
Puthenparampil, M.; Tomas-Ojer, P.; Hornemann, T.; Lutterotti, A.; Jelcic, I.; Ziegler, M.; Hülsmeier, A.J.; Cruciani, C.; Faigle, W.; Martin, R.; Sospedra, M. Altered CSF albumin quotient links peripheral inflammation and brain damage in MS. Neurol. Neuroimmunol. Neuroinflamm., 2021, 8(2), e951.
[http://dx.doi.org/10.1212/NXI.0000000000000951] [PMID: 33649179]
[115]
Frank, C.J.; McNay, E.C. Breakdown of the blood-brain barrier: A mediator of increased Alzheimer’s risk in patients with metabolic disorders? J. Neuroendocrinol., 2022, 34(1), e13074.
[http://dx.doi.org/10.1111/jne.13074] [PMID: 34904299]
[116]
Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; Gulyás, B.; Halldin, C.; Hultenby, K.; Nilsson, H.; Hebert, H.; Volpe, B.T.; Diamond, B.; Pettersson, S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med., 2014, 6(263), 263ra158.
[http://dx.doi.org/10.1126/scitranslmed.3009759] [PMID: 25411471]
[117]
Hoyles, L.; Snelling, T.; Umlai, U.K.; Nicholson, J.K.; Carding, S.R.; Glen, R.C.; McArthur, S. Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome, 2018, 6(1), 55.
[http://dx.doi.org/10.1186/s40168-018-0439-y] [PMID: 29562936]
[118]
Erny, D. Hrabě; de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; Schwierzeck, V.; Utermöhlen, O.; Chun, E.; Garrett, W.S.; McCoy, K.D.; Diefenbach, A.; Staeheli, P.; Stecher, B.; Amit, I.; Prinz, M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci., 2015, 18(7), 965-977.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[119]
Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Front. Immunol., 2018, 9, 1832.
[http://dx.doi.org/10.3389/fimmu.2018.01832] [PMID: 30154787]
[120]
Parker, A.; Fonseca, S.; Carding, S.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 2020, 11(2), 135-157.
[http://dx.doi.org/10.1080/19490976.2019.1638722] [PMID: 31368397]
[121]
Banks, W.A.; Gray, A.M.; Erickson, M.A.; Salameh, T.S.; Damodarasamy, M.; Sheibani, N.; Meabon, J.S.; Wing, E.E.; Morofuji, Y.; Cook, D.G.; Reed, M.J. Lipopolysaccharide-induced blood-brain barrier disruption: Roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J. Neuroinflammation, 2015, 12(1), 223.
[http://dx.doi.org/10.1186/s12974-015-0434-1] [PMID: 26608623]
[122]
Waclawiková, B.; El Aidy, S. Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals (Basel), 2018, 11(3), 63.
[http://dx.doi.org/10.3390/ph11030063] [PMID: 29941795]
[123]
Hirschberg, S.; Gisevius, B.; Duscha, A.; Haghikia, A. Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12), 3109.
[http://dx.doi.org/10.3390/ijms20123109] [PMID: 31242699]
[124]
Serlin, Y.; Shelef, I.; Knyazer, B.; Friedman, A. Anatomy and physiology of the blood-brain barrier. Semin. Cell Dev. Biol., 2015, 38, 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002] [PMID: 25681530]
[125]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood-brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[126]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[127]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[128]
Jiang, S.; Khan, M.I.; Lu, Y.; Werstiuk, E.S.; Rathbone, M.P. Acceleration of blood-brain barrier formation after transplantation of enteric glia into spinal cords of rats. Exp. Brain Res., 2005, 162(1), 56-62.
[http://dx.doi.org/10.1007/s00221-004-2119-3] [PMID: 15599730]
[129]
Mowat, A.M.; Agace, W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol., 2014, 14(10), 667-685.
[http://dx.doi.org/10.1038/nri3738] [PMID: 25234148]
[130]
Boschetti, E.; Accarino, A.; Malagelada, C.; Malagelada, J.R.; Cogliandro, R.F.; Gori, A.; Tugnoli, V.; Giancola, F.; Bianco, F.; Bonora, E.; Clavenzani, P.; Volta, U.; Caio, G.; Sternini, C.; Stanghellini, V.; Azpiroz, F.; De Giorgio, R. Gut epithelial and vascular barrier abnormalities in patients with chronic intestinal pseudo‐obstruction. Neurogastroenterol. Motil., 2019, 31(8), e13652.
[http://dx.doi.org/10.1111/nmo.13652] [PMID: 31144425]
[131]
Scalise, A.A.; Kakogiannos, N.; Zanardi, F.; Iannelli, F.; Giannotta, M. The blood–brain and gut–vascular barriers: from the perspective of claudins. Tissue Barriers, 2021, 9(3), 1926190.
[http://dx.doi.org/10.1080/21688370.2021.1926190] [PMID: 34152937]
[132]
Cong, X.; Kong, W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell. Signal., 2020, 66, 109485.
[http://dx.doi.org/10.1016/j.cellsig.2019.109485] [PMID: 31770579]
[133]
Dejana, E.; Orsenigo, F. Endothelial adherens junctions at a glance. J. Cell Sci. 2013, 126(Pt 12), jcs.124529.
[http://dx.doi.org/10.1242/jcs.124529] [PMID: 23781019]
[134]
Sequeira, I.R.; Lentle, R.G.; Kruger, M.C.; Hurst, R.D. Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability. PLoS One, 2014, 9(6), e99256.
[http://dx.doi.org/10.1371/journal.pone.0099256] [PMID: 24901524]
[135]
Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut, 2019, 68(8), 1516-1526.
[http://dx.doi.org/10.1136/gutjnl-2019-318427] [PMID: 31076401]
[136]
Schoultz, I.; Keita, Å.V. The intestinal barrier and current techniques for the assessment of gut permeability. Cells, 2020, 9(8), 1909.
[http://dx.doi.org/10.3390/cells9081909] [PMID: 32824536]
[137]
Sturgeon, C.; Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers, 2016, 4(4), e1251384.
[http://dx.doi.org/10.1080/21688370.2016.1251384] [PMID: 28123927]
[138]
Wang, L.; Llorente, C.; Hartmann, P.; Yang, A.M.; Chen, P.; Schnabl, B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J. Immunol. Methods, 2015, 421, 44-53.
[http://dx.doi.org/10.1016/j.jim.2014.12.015] [PMID: 25595554]
[139]
Vanuytsel, T.; Tack, J.; Farre, R. The role of intestinal permeability in gastrointestinal disorders and current methods of evaluation. Front. Nutr., 2021, 8, 717925.
[http://dx.doi.org/10.3389/fnut.2021.717925] [PMID: 34513903]
[140]
Goldim, M.P.S.; Della Giustina, A.; Petronilho, F. Using evans blue dye to determine Blood‐brain barrier integrity in rodents. Curr. Protoc. Immunol., 2019, 126(1), e83.
[http://dx.doi.org/10.1002/cpim.83] [PMID: 31483106]
[141]
Mark, K.S.; Davis, T.P. Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol., 2002, 282(4), H1485-H1494.
[http://dx.doi.org/10.1152/ajpheart.00645.2001] [PMID: 11893586]
[142]
Li, J.; Li, C.; Yuan, W.; Wu, J.; Li, J.; Li, Z.; Zhao, Y. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation. PLoS One, 2017, 12(3), e0174596.
[http://dx.doi.org/10.1371/journal.pone.0174596] [PMID: 28355299]
[143]
Sun, H.; Hu, H.; Liu, C.; Sun, N.; Duan, C. Methods used for the measurement of blood-brain barrier integrity. Metab. Brain Dis., 2021, 36(5), 723-735.
[http://dx.doi.org/10.1007/s11011-021-00694-8] [PMID: 33635479]
[144]
Kapural, M.; Krizanac-Bengez, L.; Barnett, G.; Perl, J.; Masaryk, T.; Apollo, D.; Rasmussen, P.; Mayberg, M.R.; Janigro, D. Serum S-100β as a possible marker of blood–brain barrier disruption. Brain Res., 2002, 940(1-2), 102-104.
[http://dx.doi.org/10.1016/S0006-8993(02)02586-6] [PMID: 12020881]
[145]
Vos, P.E.; Jacobs, B.; Andriessen, T.M.J.C.; Lamers, K.J.B.; Borm, G.F.; Beems, T.; Edwards, M.; Rosmalen, C.F.; Vissers, J.L.M. GFAP and S100B are biomarkers of traumatic brain injury: An observational cohort study. Neurology, 2010, 75(20), 1786-1793.
[http://dx.doi.org/10.1212/WNL.0b013e3181fd62d2] [PMID: 21079180]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy