Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Retinal Tissue Engineering: Regenerative and Drug Delivery Approaches

Author(s): Azadeh Izadyari Aghmiuni, Saeed Heidari Keshel*, Ali Rahmani, Samad Nadri*, Farshid Sefat and Alireza Lashay

Volume 18, Issue 5, 2023

Published on: 11 November, 2022

Page: [608 - 640] Pages: 33

DOI: 10.2174/1574888X17666220621153508

Price: $65

conference banner
Abstract

In recent decades, the improvement of photoreceptor-cell transplantation has been used as an effective therapeutic approach to treat retinal degenerative diseases. In this review, the effect of different factors on the differentiation process and stem cells toward photoreceptors along with cell viability, morphology, migration, adhesion, proliferation, and differentiation efficiency is discussed. Scientists are researching to better recognize the reasons for retinal degeneration, as well as discovering novel therapeutic methods to restore lost vision. In this field, several procedures and treatments in the implantation of stem cells-derived retinal cells have been explored for clinical trials. However, the number of these clinical trials is too small to draw sound decisions about whether stem-cell therapies can offer a cure for retinal diseases. Nevertheless, future research directions have started for patients affected by retinal degeneration and promising findings have been obtained.

Keywords: Retinal tissue engineering, Regeneration, Drug delivery, Retinal pigment epithelium, Retinal diseases, Retinal degenerative diseases

[1]
Edwards RB. Culture of ratretinal pigment epithelium. In Vitro 1977; 13(5): 301-4.
[http://dx.doi.org/10.1007/BF02616175] [PMID: 326659]
[2]
Chang CW, Roque RS, Defoe DM, Caldwell RB. An improved method for isolation and culture of pigment epithelial cells from rat retina. Curr Eye Res 1991; 10(11): 1081-6.
[http://dx.doi.org/10.3109/02713689109020348] [PMID: 1782807]
[3]
Sakagami K, Naka H, Hayashi A, Kamei M, Sasabe T, Tano Y. A rapid method for isolation of retinal pigment epithelial cells from rat eyeballs. Ophthalmic Res 1995; 27(5): 262-7.
[http://dx.doi.org/10.1159/000267735] [PMID: 8552366]
[4]
Pinzón-Duarte G, Kohler K, Arango-González B, Guenther E. Cell differentiation, synaptogenesis, and influence of the retinal pigment epithelium in a rat neonatal organotypic retina culture. Vision Res 2000; 40(25): 3455-65.
[http://dx.doi.org/10.1016/S0042-6989(00)00185-1] [PMID: 11115672]
[5]
Heller JP, Kwok JCF, Vecino E, Martin KR, Fawcett JW. A method for the isolation and culture of adult rat retinal pigment epithelial (RPE) cells to study retinal diseases. Front Cell Neurosci 2015; 9: 449.
[http://dx.doi.org/10.3389/fncel.2015.00449] [PMID: 26635529]
[6]
Langenfeld A, Julien S, Schraermeyer U. An improved method for the isolation and culture of retinal pigment epithelial cells from adult rats. Graefes Arch Clin Exp Ophthalmol 2015; 253(9): 1493-502.
[http://dx.doi.org/10.1007/s00417-015-3011-5] [PMID: 25912084]
[7]
Yu H, Vu THK, Cho KS, Guo C, Chen DF. Mobilizing endogenous stem cells for retinal repair. Transl Res 2014; 163(4): 387-98.
[http://dx.doi.org/10.1016/j.trsl.2013.11.011] [PMID: 24333552]
[8]
Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A. P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 2003; 44(3): 1211-20.
[http://dx.doi.org/10.1167/iovs.02-0260] [PMID: 12601051]
[9]
Close JL, Liu J, Gumuscu B, Reh TA. Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina. Glia 2006; 54(2): 94-104.
[http://dx.doi.org/10.1002/glia.20361] [PMID: 16710850]
[10]
Takeda M, Takamiya A, Jiao J, et al. alpha-Aminoadipate induces progenitor cell properties of Müller glia in adult mice. Invest Ophthalmol Vis Sci 2008; 49(3): 1142-50.
[http://dx.doi.org/10.1167/iovs.07-0434] [PMID: 18326742]
[11]
Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA. Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA 2008; 105(49): 19508-13.
[http://dx.doi.org/10.1073/pnas.0807453105] [PMID: 19033471]
[12]
Liu B, Hunter DJ, Rooker S, et al. Wnt signaling promotes Müller cell proliferation and survival after injury. Invest Ophthalmol Vis Sci 2013; 54(1): 444-53.
[http://dx.doi.org/10.1167/iovs.12-10774] [PMID: 23154457]
[13]
Ueki Y, Reh TA. EGF stimulates müller glial proliferation via a BMP-dependent mechanism. Glia 2013; 61(5): 778-89.
[http://dx.doi.org/10.1002/glia.22472] [PMID: 23362023]
[14]
Sagar SM, Edwards RH, Sharp FR. Epidermal growth factor and transforming growth factor? induce c-fos gene expression in retinal muller cells in vivo. J Neurosci Res 1991; 29(4): 549-59.
[http://dx.doi.org/10.1002/jnr.490290416] [PMID: 1791642]
[15]
Bhatia B, Jayaram H, Singhal S, Jones MF, Limb GA. Differences between the neurogenic and proliferative abilities of Müller glia with stem cell characteristics and the ciliary epithelium from the adult human eye. Exp Eye Res 2011; 93(6): 852-61.
[http://dx.doi.org/10.1016/j.exer.2011.09.015] [PMID: 21989110]
[16]
Qu L, Gao L, Xu H, et al. Combined transplantation of human mesenchymal stem cells and human retinal progenitor cells into the subretinal space of RCS rats. Sci Rep 2017; 7(1): 199.
[http://dx.doi.org/10.1038/s41598-017-00241-5] [PMID: 28298640]
[17]
Yang JM, Chung S, Yun K, et al. Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Exp Mol Med 2021; 53(4): 631-42.
[http://dx.doi.org/10.1038/s12276-021-00588-w] [PMID: 33828232]
[18]
Liu Y, Xu HW, Wang L, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov 2018; 4(1): 50.
[http://dx.doi.org/10.1038/s41421-018-0053-y] [PMID: 30245845]
[19]
Zou T, Gao L, Zeng Y, et al. Organoid-derived C-Kit+/SSEA4− human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nat Commun 2019; 10(1): 1205.
[http://dx.doi.org/10.1038/s41467-019-08961-0] [PMID: 30872578]
[20]
Wiley LA, Burnight ER, DeLuca AP, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep 2016; 6(1): 30742.
[http://dx.doi.org/10.1038/srep30742] [PMID: 27471043]
[21]
Wang Z, Gao F, Zhang M, et al. Intravitreal injection of human retinal progenitor cells for treatment of retinal degeneration. Med Sci Monit 2020; 26, e921184.
[http://dx.doi.org/10.12659/MSM.921184] [PMID: 32221273]
[22]
Tuekprakhon A, Sangkitporn S, Trinavarat A, et al. Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther 2021; 12(1): 52.
[http://dx.doi.org/10.1186/s13287-020-02122-7] [PMID: 33422139]
[23]
Vilela CAP, Messias A, Calado RT, et al. Retinal function after intravitreal injection of autologous bone marrow-derived mesenchymal stromal cells in advanced glaucoma Doc Ophthalmol 2021.Available from:. http://link.springer.com/10.1007/s10633-021-09817-z
[http://dx.doi.org/10.1007/s10633-021-09817-z]
[24]
Yazdanyar A, Zhang P, Dolf C, et al. Effects of intravitreal injection of human CD34+ bone marrow stem cells in a murine model of diabetic retinopathy. Exp Eye Res 2020; 190, 107865.
[http://dx.doi.org/10.1016/j.exer.2019.107865] [PMID: 31682846]
[25]
da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 2018; 36(4): 328-37.
[http://dx.doi.org/10.1038/nbt.4114] [PMID: 29553577]
[26]
Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 2013; 31(8): 741-7.
[http://dx.doi.org/10.1038/nbt.2643] [PMID: 23873086]
[27]
Pennington BO, Bailey JK, Faynus MA, et al. Xeno-free cryopreservation of adherent retinal pigmented epithelium yields viable and functional cells in vitro and in vivo. Sci Rep 2021; 11(1): 6286.
[http://dx.doi.org/10.1038/s41598-021-85631-6] [PMID: 33737600]
[28]
Zeng Z, Lam PT, Robinson ML, Del Rio-Tsonis K, Saul JM. Design and characterization of biomimetic kerateine aerogel-electrospun polycaprolactone scaffolds for retinal cell culture Ann Biomed Eng 2021.Available from:. http://link.springer.com/10.1007/s10439-021-02756-5
[http://dx.doi.org/10.1007/s10439-021-02756-5]
[29]
Bohrer LR, Han IC, Cooke JA, et al. Development of 3D retinal grafts for the treatment of retinal degenerative blindness. Invest Ophthalmol Vis Sci 2020; 61(7): 2511.
[30]
Gandhi JK, Mano F, Iezzi R, et al. Fibrin hydrogels are safe, degradable scaffolds for sub-retinal implantation Lewin AS, editor.PLoS One.2020; 5(1): e0227641.
[http://dx.doi.org/10.1371/journal.pone.0227641]
[31]
Kashani AH, Lebkowski JS, Rahhal FM, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 2018; 10(435), eaao4097.
[http://dx.doi.org/10.1126/scitranslmed.aao4097] [PMID: 29618560]
[32]
Deng CL, Hu CB, Ling ST, et al. Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ 2021; 28(3): 1041-61.
[http://dx.doi.org/10.1038/s41418-020-00636-4] [PMID: 33082517]
[33]
Anasagasti A, Lara-López A, Milla-Navarro S, et al. Inhibition of MicroRNA 6937 delays photoreceptor and vision loss in a mouse model of retinitis pigmentosa. Pharmaceutics 2020; 12(10): 913.
[http://dx.doi.org/10.3390/pharmaceutics12100913] [PMID: 32987664]
[34]
Kampik D, Basche M, Luhmann U F O, et al. In in situ regeneration of retinal pigment epithelium by gene transfer of E2F2: A potential strategy for treatment of macular degenerations. Gene Ther 2017; 24(12): 810-8.
[http://dx.doi.org/10.1038/gt.2017.89] [PMID: 29188796]
[35]
Dreismann AK, McClements ME, Barnard AR, et al. Functional expression of complement factor I following AAV-mediated gene delivery in the retina of mice and human cells. Gene Ther 2021; 28(5): 265-76.
[http://dx.doi.org/10.1038/s41434-021-00239-9] [PMID: 33750925]
[36]
Kim K, Park SW, Kim JH, et al. Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 2017; 27(3): 419-26.
[http://dx.doi.org/10.1101/gr.219089.116] [PMID: 28209587]
[37]
Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390(10097): 849-60.
[http://dx.doi.org/10.1016/S0140-6736(17)31868-8] [PMID: 28712537]
[38]
Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 2019; 25(2): 229-33.
[http://dx.doi.org/10.1038/s41591-018-0327-9] [PMID: 30664785]
[39]
Chen G, Abdeen AA, Wang Y, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat Nanotechnol 2019; 14(10): 974-80.
[http://dx.doi.org/10.1038/s41565-019-0539-2] [PMID: 31501532]
[40]
Shah SS, Denham LV, Elison JR, et al. Drug delivery to the posterior segment of the eye for pharmacologic therapy. Expert Rev Ophthalmol 2010; 5(1): 75-93.
[http://dx.doi.org/10.1586/eop.09.70] [PMID: 20305803]
[41]
Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 2007; 4(4): 371-88.
[http://dx.doi.org/10.1517/17425247.4.4.371] [PMID: 17683251]
[42]
Sethi S, Malik MA, Goswami S, et al. Expression of P-glycoprotein in human retinoblastoma and its clinical significance. Tumour Biol 2014; 35(12): 11735-40.
[http://dx.doi.org/10.1007/s13277-014-2116-5] [PMID: 25173639]
[43]
Farkouh A, Frigo P, Czejka M. Systemic side effects of eye drops: a pharmacokinetic perspective. Clin Ophthalmol 2016; 10: 2433-41.
[http://dx.doi.org/10.2147/OPTH.S118409] [PMID: 27994437]
[44]
Gadad AP. Mastiholimath vs. moxifloxacin loaded polymeric nanoparticles for sustained ocular drug delivery. Int J Pharm Sci Nanotechnol 2012; 5(2): 1727-34.https://www.ijpsnonline.com/index.php/ijpsn/article/view/578
[45]
Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol 2(2): 47-64.http://www.ncbi.nlm.nih.gov/pubmed/25590022
[46]
Destruel PL, Zeng N, Maury M, Mignet N, Boudy V. in vitro and in vivo evaluation of in in situ gelling systems for sustained topical ophthalmic delivery: state of the art and beyond. Drug Discov Today 2017; 22(4): 638-51.
[http://dx.doi.org/10.1016/j.drudis.2016.12.008] [PMID: 28017837]
[47]
Cholkar K, Patel SP, Vadlapudi AD, Mitra AK. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther 2013; 29(2): 106-23.
[http://dx.doi.org/10.1089/jop.2012.0200] [PMID: 23215539]
[48]
Fraunfelder FT, Hanna C. Ophthalmic drug delivery systems. Surv Ophthalmol 1974; 18: 292-8.
[49]
Omerović N, Vranić E. Application of nanoparticles in ocular drug delivery systems. Health Technol (Berl) 2020; 10(1): 61-78.
[http://dx.doi.org/10.1007/s12553-019-00381-w]
[50]
Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 2006; 58(11): 1131-5.
[http://dx.doi.org/10.1016/j.addr.2006.07.027] [PMID: 17097758]
[51]
Amrite AC, Kompella UB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J Pharm Pharmacol 2010; 57(12): 1555-63.
[http://dx.doi.org/10.1211/jpp.57.12.0005] [PMID: 16354399]
[52]
Ubale RV, Addo RT. Retracted chapter: in vitro and in vivo evaluation of ocular drugs and delivery systems.In: Ocular Drug Delivery: Advances, Challenges and Applications. Cham: Springer International Publishing 2016; pp. 101-15.
[http://dx.doi.org/10.1007/978-3-319-47691-9_7]
[53]
Mitra AK, Kwatra D, Vadlapudi AD. Drug delivery Jones & Bartlett Learning. 2014.Available from. https://books.google.com/books?id=pwdvBAAAQBAJ
[54]
Shah TJ, Conway MD, Peyman GA. Intracameral dexamethasone injection in the treatment of cataract surgery induced inflammation: Design, development, and place in therapy. Clin Ophthalmol 2018; 12: 2223-35.
[http://dx.doi.org/10.2147/OPTH.S165722] [PMID: 30464383]
[55]
Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv 2004; 1(1): 99-114.
[http://dx.doi.org/10.1517/17425247.1.1.99] [PMID: 16296723]
[56]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[57]
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine (Lond) 2010; 5(3): 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[58]
Li M, Xin M, Guo C, Lin G, Wu X. New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm 2017; 43(11): 1846-57.
[http://dx.doi.org/10.1080/03639045.2017.1349787] [PMID: 28665151]
[59]
Singhvi G, Banerjee S, Khosa A. Lyotropic liquid crystal nanoparticles.In: Organic Materials as Smart Nanocarriers for Drug Delivery. Elsevier 2018; pp. 471-517.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00011-7]
[60]
Solanki A, Smalling R, Parola AH, et al. Humanin nanoparticles for reducing pathological factors characteristic of age-related macular degeneration. Curr Drug Deliv 2019; 16(3): 226-32.
[http://dx.doi.org/10.2174/1567201815666181031163111] [PMID: 30381074]
[61]
Singhvi G, Hans N, Shiva N, Kumar Dubey S. Xanthan gum in drug delivery applications.In: Natural Polysaccharides in Drug Delivery and Biomedical Applications. Elsevier 2019; pp. 121-44.
[http://dx.doi.org/10.1016/B978-0-12-817055-7.00005-4]
[62]
Paolicelli P, Prego C, Sanchez A, Alonso MJ. Surface-modified PLGA-based nanoparticles that can efficiently associate and deliver virus-like particles. Nanomedicine (Lond) 2010; 5(6): 843-53.
[http://dx.doi.org/10.2217/nnm.10.69] [PMID: 20735221]
[63]
Kondiah PPD, Choonara YE, Kondiah PJ, et al. Nanocomposites for therapeutic application in multiple sclerosis.In: Applications of Nanocomposite Materials in Drug Delivery. Elsevier 2018; pp. 391-408.
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00017-0]
[64]
Hwang JY, Li Z, Loh XJ. Small molecule therapeutic-loaded liposomes as therapeutic carriers: From development to clinical applications. RSC Advances 2016; 6(74): 70592-615.
[http://dx.doi.org/10.1039/C6RA09854A]
[65]
Gorantla S, Singhvi G, Rapalli VK, Waghule T, Dubey SK, Saha RN. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: Recent advancement and clinical status. Ther Deliv 2020; 11(4): 269-84.
[http://dx.doi.org/10.4155/tde-2020-0029] [PMID: 32434463]
[66]
Herrero-Vanrell R, Vicario de la Torre M, Andrés-Guerrero V, Barbosa-Alfaro D, Molina-Martínez IT, Bravo-Osuna I. Nano and microtechnologies for ophthalmic administration, an overview. J Drug Deliv Sci Technol 2013; 23(2): 75-102.
[http://dx.doi.org/10.1016/S1773-2247(13)50016-5]
[67]
Bachu R, Chowdhury P, Al-Saedi Z, Karla P, Boddu S. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018; 10(1): 28.
[http://dx.doi.org/10.3390/pharmaceutics10010028] [PMID: 29495528]
[68]
Sahoo S, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008; 13(3-4): 144-51.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[69]
Lancina MG III, Yang H. Dendrimers for ocular drug delivery. Can J Chem 2017; 95(9): 897-902.
[http://dx.doi.org/10.1139/cjc-2017-0193] [PMID: 29147035]
[70]
Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 2005; 102(1): 23-38.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.015] [PMID: 15653131]
[71]
Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: A promising drug delivery strategy. J Pharm Pharmacol 2010; 56(7): 827-40.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[72]
Vandamme TF. Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog Retin Eye Res 2002; 21(1): 15-34.
[http://dx.doi.org/10.1016/S1350-9462(01)00017-9] [PMID: 11906809]
[73]
Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases Eur J Pharm Biopharm 2015; 95(Pt B): 279-93.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.019] [PMID: 25725262 ]
[74]
Junghanns J-UAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 2008; 3(3): 295-309.
[PMID: 18990939]
[75]
Silva M, Calado R, Marto J, Bettencourt A, Almeida A, Gonçalves L. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 2017; 15(12): 370.
[http://dx.doi.org/10.3390/md15120370] [PMID: 29194378]
[76]
De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 2001; 224(1-2): 159-68.
[http://dx.doi.org/10.1016/S0378-5173(01)00760-8] [PMID: 11472825]
[77]
Bhatta RS, Chandasana H, Chhonker YS, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In vitro and pharmacokinetics studies. Int J Pharm 2012; 432(1-2): 105-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.060] [PMID: 22569234]
[78]
Di Tommaso C, Bourges JL, Valamanesh F, et al. Novel micelle carriers for cyclosporin A topical ocular delivery: In vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm 2012; 81(2): 257-64.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.014] [PMID: 22445900]
[79]
De Campos A, Sánchez A, Gref R, Calvo P, Alonso MJ. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 2003; 20(1): 73-81.
[http://dx.doi.org/10.1016/S0928-0987(03)00178-7] [PMID: 13678795]
[80]
Duxfield L, Sultana R, Wang R, et al. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharm Dev Technol 2016; 21(2): 172-9.
[http://dx.doi.org/10.3109/10837450.2015.1091839] [PMID: 26794936]
[81]
Aksungur P, Demirbilek M, Denkbaş EB, Vandervoort J, Ludwig A, Ünlü N. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies. J Control Release 2011; 151(3): 286-94.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.010] [PMID: 21241752]
[82]
Sharma UK, Verma A, Prajapati SK, Pandey H, Pandey AC. In vitro, in vivo and pharmacokinetic assessment of amikacin sulphate laden polymeric nanoparticles meant for controlled ocular drug delivery. Appl Nanosci 2015; 5(2): 143-55.
[http://dx.doi.org/10.1007/s13204-014-0300-y]
[83]
Ogunjimi AT, Melo SMG, Vargas-Rechia CG, Emery FS, Lopez RFV. Hydrophilic polymeric nanoparticles prepared from Delonix galactomannan with low cytotoxicity for ocular drug delivery. Carbohydr Polym 2017; 157: 1065-75.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.076] [PMID: 27987808]
[84]
Chomchalao P, Nimtrakul P, Pham DT, Tiyaboonchai W. Development of amphotericin B-loaded fibroin nanoparticles: A novel approach for topical ocular application. J Mater Sci 2020; 55(12): 5268-79.
[http://dx.doi.org/10.1007/s10853-020-04350-x]
[85]
Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH. Natamycin solid lipid nanoparticles – sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: Preparation and optimization. Int J Nanomedicine 2019; 14: 2515-31.
[http://dx.doi.org/10.2147/IJN.S190502] [PMID: 31040672]
[86]
Soliman OAEA, Mohamed EA, Khatera NAA. Enhanced ocular bioavailability of fluconazole from niosomal gels and microemulsions: Formulation, optimization, and in vitro–in vivo evaluation. Pharm Dev Technol 2019; 24(1): 48-62.
[http://dx.doi.org/10.1080/10837450.2017.1413658] [PMID: 29210317]
[87]
Sanders NN, Peeters L, Lentacker I, Demeester J, De Smedt SC. Wanted and unwanted properties of surface PEGylated nucleic acid nanoparticles in ocular gene transfer. J Control Release 2007; 122(3): 226-35.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.004] [PMID: 17574287]
[88]
Nasr FH, Khoee S, Dehghan MM, Chaleshtori SS, Shafiee A. Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery. Biomacromolecules 2016; 17(2): 485-95.
[http://dx.doi.org/10.1021/acs.biomac.5b01387] [PMID: 26652301]
[89]
Eid HM, Elkomy MH, El Menshawe SF, Salem HF. Development, optimization, and in vitro/in vivo characterization of enhanced lipid nanoparticles for ocular delivery of ofloxacin: The influence of pegylation and chitosan coating. AAPS PharmSciTech 2019; 20(5): 183.
[http://dx.doi.org/10.1208/s12249-019-1371-6] [PMID: 31054011]
[90]
Lakhani P, Patil A, Wu KW, et al. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int J Pharm 2019; 572, 118771.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118771] [PMID: 31669555]
[91]
Fetih G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J Drug Deliv Sci Technol 2016; 35: 8-15.
[http://dx.doi.org/10.1016/j.jddst.2016.06.002]
[92]
Acheampong AA, Shackleton M, John B, Burke J, Wheeler L, Tang-Liu D. Distribution of brimonidine into anterior and posterior tissues of monkey, rabbit, and rat eyes. Drug Metab Dispos 2002; 30(4): 421-9.
[http://dx.doi.org/10.1124/dmd.30.4.421] [PMID: 11901096]
[93]
Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 2011; 2011, 863734.
[http://dx.doi.org/10.1155/2011/863734] [PMID: 21490757]
[94]
Earla R, Boddu SHS, Cholkar K, Hariharan S, Jwala J, Mitra AK. Development and validation of a fast and sensitive bioanalytical method for the quantitative determination of glucocorticoids—Quantitative measurement of dexamethasone in rabbit ocular matrices by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2010; 52(4): 525-33.
[http://dx.doi.org/10.1016/j.jpba.2010.01.015] [PMID: 20172680]
[95]
Aurinia Pharmaceuticals, Inc. Topical drug delivery systems for ophthalmic use US Patent 9017725B2,, 2015.
[96]
Sundaram UBKRS. Methods and Compositions for Targeted Deliveryof Therapeutic Agents. US Patent 84403706P,, 2009.
[97]
Patel S, Garapati C, Chowdhury P, et al. Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application. J Ocul Pharmacol Ther 2015; 31(4): 215-27.
[http://dx.doi.org/10.1089/jop.2014.0152] [PMID: 25839185]
[98]
Lajunen T, Hisazumi K, Kanazawa T, et al. Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes. Eur J Pharm Sci 2014; 62: 23-32.
[http://dx.doi.org/10.1016/j.ejps.2014.04.018] [PMID: 24810393]
[99]
Tai L, Liu C, Jiang K, et al. A novel penetratin-modified complex for noninvasive intraocular delivery of antisense oligonucleotides. Int J Pharm 2017; 529(1-2): 347-56.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.090] [PMID: 28673859]
[100]
Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 2016; 109: 214-23.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[101]
Shulman S, Jóhannesson G, Stefánsson E, Loewenstein A, Rosenblatt A, Habot-Wilner Z. Topical dexamethasone-cyclodextrin nanoparticle eye drops for non-infectious Uveitic macular oedema and vitritis - a pilot study. Acta Ophthalmol 2015; 93(5): 411-5. http://doi.wiley.com/10.1111/aos.12744
[http://dx.doi.org/10.1111/aos.12744] [PMID: 25988730]
[102]
Kalam MA. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. Int J Biol Macromol 2016; 89: 127-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.070] [PMID: 27126165]
[103]
Shen Y, Tu J. Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J 2007; 9(3): E371-7.
[http://dx.doi.org/10.1208/aapsj0903044] [PMID: 18170984]
[104]
Hosny KM. Ciprofloxacin as ocular liposomal hydrogel. AAPS PharmSciTech 2010; 11(1): 241-6.
[http://dx.doi.org/10.1208/s12249-009-9373-4] [PMID: 20151337]
[105]
Danion A, Arsenault I, Vermette P. Antibacterial activity of contact lenses bearing surface-immobilized layers of intact liposomes loaded with levofloxacin. J Pharm Sci 2007; 96(9): 2350-63.
[http://dx.doi.org/10.1002/jps.20871] [PMID: 17541976]
[106]
Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies. AAPS PharmSciTech 2007; 8(1): E1-E12.
[http://dx.doi.org/10.1208/pt0801001] [PMID: 17408209]
[107]
Zhang R, He R, Qian J, Guo J, Xue K, Yuan Y. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophthalmol Vis Sci 2010; 51(7): 3575-82.
[http://dx.doi.org/10.1167/iovs.09-4373] [PMID: 20164461]
[108]
Fukushima A, Ozaki A, Ishida W, Vanrooijen N, Fukata K, Ueno H. Suppression of macrophage infiltration into the conjunctiva by clodronate liposomes in experimental immune-mediated blepharoconjunctivitis. Cell Biol Int 2005; 29(4): 277-86.
[http://dx.doi.org/10.1016/j.cellbi.2004.12.011] [PMID: 15893479]
[109]
Liu H, Liu Y, Ma Z, Wang J, Zhang Q. A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model. Invest Ophthalmol Vis Sci 2011; 52(7): 4789-94.
[http://dx.doi.org/10.1167/iovs.10-5891] [PMID: 21519028]
[110]
Rajala A, Wang Y, Zhu Y, et al. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett 2014; 14(9): 5257-63.
[http://dx.doi.org/10.1021/nl502275s] [PMID: 25115433]
[111]
Wang Y, Rajala A, Cao B, et al. Cell-specific promoters enable lipid-based nanoparticles to deliver genes to specific cells of the retina in vivo. Theranostics 2016; 6(10): 1514-27.
[http://dx.doi.org/10.7150/thno.15230] [PMID: 27446487]
[112]
Camelo S, Lajavardi L, Bochot A, et al. Ocular and systemic bio-distribution of rhodamine-conjugated liposomes loaded with VIP injected into the vitreous of Lewis rats. Mol Vis 2007; 13: 2263-74.
[PMID: 18451986]
[113]
Zhang R, Qian J, Li X, Yuan Y. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of infliximab encapsulated in liposomes. Br J Ophthalmol 2017; 101(12): 1731-8.
[http://dx.doi.org/10.1136/bjophthalmol-2016-310044] [PMID: 28986343]
[114]
Nekouian S, Sojoodi M, Nadri S. Fabrication of conductive fibrous scaffold for photoreceptor differentiation of mesenchymal stem cell. J Cell Physiol 2019; 234(9): 15800-8.
[http://dx.doi.org/10.1002/jcp.28238] [PMID: 30714142]
[115]
Yu H, Enayati S, Chang K, et al. Noninvasive electrical stimulation improves photoreceptor survival and retinal function in mice with inherited photoreceptor degeneration. Invest Ophthalmol Vis Sci 2020; 61(4): 5.
[http://dx.doi.org/10.1167/iovs.61.4.5] [PMID: 32271885]
[116]
Saigal R, Cimetta E, Tandon N, et al. Electrical stimulation via a biocompatible conductive polymer directs retinal progenitor cell differentiation Annual International Conference of the IEEE Engineeringin Medicine and Biology Society (EMBC). 2013; 1627-31.
[http://dx.doi.org/10.1109/EMBC.2013.6609828]
[117]
Enayati S, Chang K, Achour H, et al. Electrical stimulation induces retinal müller cell proliferation and their progenitor cell potential. Cells 2020; 9(3): 781.
[http://dx.doi.org/10.3390/cells9030781] [PMID: 32210151]
[118]
Chemla Y, Avraham ES, Markus A, et al. Carbon nanostructures as a scaffold for human embryonic stem cell differentiation toward photoreceptor precursors. Nanoscale 2020; 12(36): 18918-30.
[http://dx.doi.org/10.1039/D0NR02256J] [PMID: 32910131]
[119]
Yao J, Ko CW, Baranov PY, et al. Enhanced differentiation and delivery of mouse retinal progenitor cells using a micropatterned biodegradable thin-film polycaprolactone scaffold. Tissue Eng Part A 2015; 21(7-8): 1247-60.
[http://dx.doi.org/10.1089/ten.tea.2013.0720] [PMID: 25517296]
[120]
Steedman MR, Tao SL, Klassen H, Desai TA. Enhanced differentiation of retinal progenitor cells using microfabricated topographical cues. Biomed Microdevices 2010; 12(3): 363-9.
[http://dx.doi.org/10.1007/s10544-009-9392-7] [PMID: 20077017]
[121]
Xia T. Retinal stem cell culture on planar scaffold for transplantation in animal models of retinal degeneration; Yale Medicine Thesis Digital Library. 2018; 3459.
[122]
Chen TC, She PY, Chen DF, et al. Polybenzyl glutamate biocompatible scaffold promotes the efficiency of retinal differentiation toward retinal ganglion cell lineage from human-induced pluripotent stem cells. Int J Mol Sci 2019; 20(1): 178.
[http://dx.doi.org/10.3390/ijms20010178] [PMID: 30621308]
[123]
Romo P, Madigan MC, Provis JM, Cullen KM. Differential effects of TGF-β and FGF-2 on in vitro proliferation and migration of primate retinal endothelial and Müller cells. Acta Ophthalmol 2011; 89(3): e263-8.
[http://dx.doi.org/10.1111/j.1755-3768.2010.01968.x] [PMID: 20670342]
[124]
Ikeda T, Waldbillig RJ, Puro DG. Truncation of IGF-I yields two mitogens for retinal Müller glial cells. Brain Res 1995; 686(1): 87-92.
[http://dx.doi.org/10.1016/0006-8993(95)00473-4] [PMID: 7583275]
[125]
Zhao X, Das AV, Soto-Leon F, Ahmad I. Growth factor-responsive progenitors in the postnatal mammalian retina. Dev Dyn 2005; 232(2): 349-58.
[http://dx.doi.org/10.1002/dvdy.20290] [PMID: 15637695]
[126]
Abdouh M, Bernier G. in vivo reactivation of a quiescent cell population located in the ocular ciliary body of adult mammals. Exp Eye Res 2006; 83(1): 153-64.
[http://dx.doi.org/10.1016/j.exer.2005.11.016] [PMID: 16563378]
[127]
Kubo F, Nakagawa S. Hairy1 acts as a node downstream of Wnt signaling to maintain retinal stem cell-like progenitor cells in the chick ciliary marginal zone. Development 2009; 136(11): 1823-33.
[http://dx.doi.org/10.1242/dev.029272] [PMID: 19386663]
[128]
Inoue T, Kagawa T, Fukushima M, et al. Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin. Stem Cells 2006; 24(1): 95-104.
[http://dx.doi.org/10.1634/stemcells.2005-0124] [PMID: 16223856]
[129]
De Marzo A, Aruta C, Marigo V. PEDF promotes retinal neurosphere formation and expansion in vitro. Adv Exp Med Biol 2010; 664: 621-30.
[http://dx.doi.org/10.1007/978-1-4419-1399-9_71] [PMID: 20238066]
[130]
Bharti K. Patching the retina with stem cells. Nat Biotechnol 2018; 36(4): 311-3.
[http://dx.doi.org/10.1038/nbt.4118] [PMID: 29621220]
[131]
Jha BS, Bharti K. Regenerating retinal pigment epithelial cells to cure blindness: A road towards personalized artificial tissue. Curr Stem Cell Rep 2015; 1(2): 79-91.
[http://dx.doi.org/10.1007/s40778-015-0014-4] [PMID: 26146605]
[132]
Humayun MS, de Juan E Jr, del Cerro M, et al. Human neural retinal transplantation. Invest Ophthalmol Vis Sci 2000; 41(10): 3100-6.http://www.ncbi.nlm.nih.gov/pubmed/10967070
[PMID: 10967070]
[133]
Berger AS, Tezel TH, Del Priore LV, Kaplan HJ. Photoreceptor transplantation in retinitis pigmentosa: Short-term follow-up. Ophthalmology 2003; 110(2): 383-91.
[http://dx.doi.org/10.1016/S0161-6420(02)01738-4] [PMID: 12578785]
[134]
Kaplan HJ, Tezel TH, Berger AS, Wolf ML, Del Priore LV. Human photoreceptor transplantation in retinitis pigmentosa. A safety study. Arch Ophthalmol (Chicago, Ill 1960) 1960; 115(9): 1168-72.
[PMID: 9298059]
[135]
Radtke ND, Aramant RB, Seiler M, Petry HM. Preliminary report: Indications of improved visual function after retinal sheet transplantation in retinitis pigmentosa patients11Norman D. Am J Ophthalmol 1999; 128(3): 384-7.
[http://dx.doi.org/10.1016/S0002-9394(99)00250-0] [PMID: 10511047]
[136]
Mohand-Said S, Hicks D, Dreyfus H, Sahel JA. Selective transplantation of rods delays cone loss in a retinitis pigmentosa model Arch Ophthalmol (Chicago, Ill 1960) 1960; 118(6): 807-11.http://www.ncbi.nlm.nih.gov/pubmed/10865319
[137]
Arai S, Thomas BB, Seiler MJ, et al. Restoration of visual responses following transplantation of intact retinal sheets in rd mice. Exp Eye Res 2004; 79(3): 331-41.
[http://dx.doi.org/10.1016/j.exer.2004.05.013] [PMID: 15336495]
[138]
Liljekvist-Soltic I, Olofsson J, Johansson K. Progenitor cell-derived factors enhance photoreceptor survival in rat retinal explants. Brain Res 2008; 1227: 226-33.
[http://dx.doi.org/10.1016/j.brainres.2008.06.077] [PMID: 18621034]
[139]
Seiler MJ, Sagdullaev BT, Woch G, Thomas BB, Aramant RB. Transsynaptic virus tracing from host brain to subretinal transplants. Eur J Neurosci 2005; 21(1): 161-72.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03851.x] [PMID: 15654853]
[140]
Radtke ND, Aramant RB, Petry HM, Green PT, Pidwell DJ, Seiler MJ. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 2008; 146(2): 172-182.e1.
[http://dx.doi.org/10.1016/j.ajo.2008.04.009] [PMID: 18547537]
[141]
Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: A preliminary report. Lancet 2012; 379(9817): 713-20.
[http://dx.doi.org/10.1016/S0140-6736(12)60028-2] [PMID: 22281388]
[142]
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet 2015; 385(9967): 509-16.
[http://dx.doi.org/10.1016/S0140-6736(14)61376-3] [PMID: 25458728]
[143]
Sakaguchi DS, Hoffelen SJ, Young MJ. Differentiation and morphological integration of neural progenitor cells transplanted into the developing mammalian eye. Ann N Y Acad Sci 2003; 995(1): 127-39.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb03216.x] [PMID: 12814945]
[144]
Sakaguchi DS, van Hoffelen SJ, Theusch E, et al. Transplantation of neural progenitor cells into the developing retina of the Brazilian opossum: An in vivo system for studying stem/progenitor cell plasticity. Dev Neurosci 2004; 26(5-6): 336-45.
[http://dx.doi.org/10.1159/000082275] [PMID: 15855762]
[145]
Van Hoffelen SJ, Young MJ, Shatos MA, Sakaguchi DS. Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci 2003; 44(1): 426-34.
[http://dx.doi.org/10.1167/iovs.02-0269] [PMID: 12506105]
[146]
Chacko DM, Rogers JA, Turner JE, Ahmad I. Survival and differentiation of cultured retinal progenitors transplanted in the subretinal space of the rat. Biochem Biophys Res Commun 2000; 268(3): 842-6.
[http://dx.doi.org/10.1006/bbrc.2000.2153] [PMID: 10679293]
[147]
Young MJ, Ray J, Whiteley SJO, Klassen H, Gage FH. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 2000; 16(3): 197-205.
[http://dx.doi.org/10.1006/mcne.2000.0869] [PMID: 10995547]
[148]
Takahashi M, Palmer TD, Takahashi J, Gage FH. Widespread integration and survival of adult-derived neural progenitor cells in the developing optic retina. Mol Cell Neurosci 1998; 12(6): 340-8.
[http://dx.doi.org/10.1006/mcne.1998.0721] [PMID: 9888988]
[149]
Marquardt T, Gruss P. Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci 2002; 25(1): 32-8.
[http://dx.doi.org/10.1016/S0166-2236(00)02028-2] [PMID: 11801336]
[150]
Klassen H, Sakaguchi DS, Young MJ. Stem cells and retinal repair. Prog Retin Eye Res 2004; 23(2): 149-81.
[http://dx.doi.org/10.1016/j.preteyeres.2004.01.002] [PMID: 15094129]
[151]
Verhaagen J. Preface. Prog Brain Res 2009; 175(09): ix.
[http://dx.doi.org/10.1016/S0079-6123(09)17536-2] [PMID: 19660644]
[152]
Joussen AM, Heussen FMA, Joeres S, et al. Autologous translocation of the choroid and retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 2006; 142(1): 17-30.e8.
[http://dx.doi.org/10.1016/j.ajo.2006.01.090] [PMID: 16815247]
[153]
Maaijwee K, Heimann H, Missotten T, Mulder P, Joussen A, van Meurs J. Retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: long-term results. Graefes Arch Clin Exp Ophthalmol 2007; 245(11): 1681-9.
[http://dx.doi.org/10.1007/s00417-007-0607-4] [PMID: 17562066]
[154]
Maaijwee KJM, van Meurs JC, Kirchhof B, et al. Histological evidence for revascularisation of an autologous retinal pigment epithelium-choroid graft in the pig. Br J Ophthalmol 2007; 91(4): 546-50.
[http://dx.doi.org/10.1136/bjo.2006.103259] [PMID: 16987900]
[155]
Maaijwee K, Joussen AM, Kirchhof B, van Meurs JC. Retinal pigment epithelium (RPE)-choroid graft translocation in the treatment of an RPE tear: Preliminary results. Br J Ophthalmol 2008; 92(4): 526-9.
[http://dx.doi.org/10.1136/bjo.2007.131383] [PMID: 18369068]
[156]
da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog Retin Eye Res 2007; 26(6): 598-635.
[http://dx.doi.org/10.1016/j.preteyeres.2007.07.001] [PMID: 17920328]
[157]
Bertolotti E, Neri A, Camparini M, Macaluso C, Marigo V. Stem cells as source for retinal pigment epithelium transplantation. Prog Retin Eye Res 2014; 42: 130-44.
[http://dx.doi.org/10.1016/j.preteyeres.2014.06.002] [PMID: 24933042]
[158]
Bharti K, Nguyen MTT, Skuntz S, Bertuzzi S, Arnheiter H. The other pigment cell: Specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res 2006; 19(5): 380-94.
[http://dx.doi.org/10.1111/j.1600-0749.2006.00318.x] [PMID: 16965267]
[159]
Bharti K, Miller SS, Arnheiter H. The new paradigm: Retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res 2011; 24(1): 21-34.
[http://dx.doi.org/10.1111/j.1755-148X.2010.00772.x] [PMID: 20846177]
[160]
Meyer JS, Shearer RL, Capowski EE, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci USA 2009; 106(39): 16698-703.
[http://dx.doi.org/10.1073/pnas.0905245106] [PMID: 19706890]
[161]
Idelson M, Alper R, Obolensky A, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 2009; 5(4): 396-408.
[http://dx.doi.org/10.1016/j.stem.2009.07.002] [PMID: 19796620]
[162]
Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 2004; 6(3): 217-45.
[http://dx.doi.org/10.1089/clo.2004.6.217] [PMID: 15671670]
[163]
May-Simera HL, Wan Q, Jha BS, et al. Primary cilium-mediated retinal pigment epithelium maturation is disrupted in ciliopathy patient cells. Cell Rep 2018; 22(1): 189-205.
[http://dx.doi.org/10.1016/j.celrep.2017.12.038] [PMID: 29298421]
[164]
Miyagishima KJ, Wan Q, Corneo B, et al. In pursuit of authenticity: Induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl Med 2016; 5(11): 1562-74.
[http://dx.doi.org/10.5966/sctm.2016-0037] [PMID: 27400791]
[165]
Wen R, Tao W, Li Y, Sieving PA. CNTF and retina. Prog Retin Eye Res 2012; 31(2): 136-51.
[http://dx.doi.org/10.1016/j.preteyeres.2011.11.005] [PMID: 22182585]
[166]
Chew EY, Clemons TE, Peto T, et al. Ciliary neurotrophic factor for macular telangiectasia type 2: Results from a phase 1 safety trial. Am J Ophthalmol 2015; 159(4): 659-666.e1.
[http://dx.doi.org/10.1016/j.ajo.2014.12.013] [PMID: 25528956]
[167]
Kauper K, McGovern C, Sherman S, et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Investig Opthalmology Vis Sci 2012; 53(12): 7484.
[http://dx.doi.org/10.1167/iovs.12-9970]
[168]
Sieving PA, Caruso RC, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci USA 2006; 103(10): 3896-901.
[http://dx.doi.org/10.1073/pnas.0600236103] [PMID: 16505355]
[169]
Baranov PY, Tucker BA, Young MJ. Low-oxygen culture conditions extend the multipotent properties of human retinal progenitor cells. Tissue Eng Part A 2014; 20(9-10): 1465-75.
[http://dx.doi.org/10.1089/ten.tea.2013.0361] [PMID: 24320879]
[170]
Tucker BA, Redenti SM, Jiang C, et al. The use of progenitor cell/biodegradable MMP2–PLGA polymer constructs to enhance cellular integration and retinal repopulation. Biomaterials 2010; 31(1): 9-19.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.015] [PMID: 19775744]
[171]
Peneda Pacheco D, Suárez Vargas N, Visentin S, Petrini P. From tissue engineering to engineering tissues: The role and application of in vitro models. Biomater Sci 2021; 9(1): 70-83.
[http://dx.doi.org/10.1039/D0BM01097A] [PMID: 33191420]
[172]
Akter F. Principles of Tissue Engineering. Elsevier 2016; pp. 2016-316.
[http://dx.doi.org/10.1016/B978-0-12-805361-4.00002-3]
[173]
Soleimannejad M, Ebrahimi-Barough S, Nadri S, et al. Retina tissue engineering by conjunctiva mesenchymal stem cells encapsulated in fibrin gel: Hypotheses on novel approach to retinal diseases treatment. Med Hypotheses 2017; 101: 75-7.
[http://dx.doi.org/10.1016/j.mehy.2017.02.019] [PMID: 28351499]
[174]
Jedari B, Rahmani A, Naderi M, Nadri S. MicroRNA‐7 promotes neural differentiation of trabecular meshwork mesenchymal stem cell on nanofibrous scaffold. J Cell Biochem 2020; 121(4): 2818-27.
[http://dx.doi.org/10.1002/jcb.29513] [PMID: 31692062]
[175]
Ranjbarnejad F, Nadri S, Biglari A, Mohammadi-Yeganeh S, Paryan M. Effect of let-7a overexpression on the differentiation of conjunctiva mesenchymal stem cells into photoreceptor-like cells. Iran J Basic Med Sci 2019; 22(8): 878-83.
[PMID: 31579443]
[176]
Abedin Zadeh M, Khoder M, Al-Kinani AA, Younes HM, Alany RG. Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discov Today 2019; 24(8): 1669-78.
[http://dx.doi.org/10.1016/j.drudis.2019.04.009] [PMID: 31051266]
[177]
Feng X, Chen P, Zhao X, Wang J, Wang H. Transplanted embryonic retinal stem cells have the potential to repair the injured retina in mice. BMC Ophthalmol 2021; 21(1): 26.
[http://dx.doi.org/10.1186/s12886-020-01795-1] [PMID: 33422026]
[178]
Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Advances 2019; 9(45): 26252-62.
[http://dx.doi.org/10.1039/C9RA05214C]
[179]
Zhang D, Ni N, Chen J, et al. Electrospun SF/PLCL nanofibrous membrane: A potential scaffold for retinal progenitor cell proliferation and differentiation. Sci Rep 2015; 5(1): 14326.
[http://dx.doi.org/10.1038/srep14326] [PMID: 26395224]
[180]
Sepahvandi A, Eskandari M, Moztarzadeh F. Fabrication and characterization of SrAl2O4: Eu2+Dy3+/CS-PCL electrospun nanocomposite scaffold for retinal tissue regeneration. Mater Sci Eng C 2016; 66: 306-14.
[http://dx.doi.org/10.1016/j.msec.2016.03.028] [PMID: 27207067]
[181]
Tezel TH, Del Priore LV, Berger AS, Kaplan HJ. Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol 2007; 143(4): 584-595.e2.
[http://dx.doi.org/10.1016/j.ajo.2006.12.007] [PMID: 17303061]
[182]
Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med 2017; 376(11): 1038-46.
[http://dx.doi.org/10.1056/NEJMoa1608368] [PMID: 28296613]
[183]
Kuriyan AE, Albini TA, Townsend JH, et al. Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med 2017; 376(11): 1047-53.
[http://dx.doi.org/10.1056/NEJMoa1609583] [PMID: 28296617]
[184]
Park SS, Bauer G, Abedi M, et al. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: Preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci 2015; 56(1): 81-9.
[http://dx.doi.org/10.1167/iovs.14-15415] [PMID: 25491299]
[185]
Jain N, Stinnett SS, Jaffe GJ. Prospective study of a fluocinolone acetonide implant for chronic macular edema from central retinal vein occlusion: Thirty-six-month results. Ophthalmology 2012; 119(1): 132-7.
[http://dx.doi.org/10.1016/j.ophtha.2011.06.019] [PMID: 21924503]
[186]
Reh TA, Hindges R. MicroRNAs in retinal development. Annu Rev Vis Sci 2018; 4(1): 25-44.
[http://dx.doi.org/10.1146/annurev-vision-091517-034357] [PMID: 29889656]
[187]
Pawlick JS, Zuzic M, Pasquini G, Swiersy A, Busskamp V. MiRNA regulatory functions in photoreceptors. Front Cell Dev Biol 2021; 8, 620249.
[http://dx.doi.org/10.3389/fcell.2020.620249] [PMID: 33553155]
[188]
Rahmani A, Naderi M, Barati G, Arefian E, Jedari B, Nadri S. The potency of hsa-miR-9-1 overexpression in photoreceptor differentiation of conjunctiva mesenchymal stem cells on a 3D nanofibrous scaffold. Biochem Biophys Res Commun 2020; 529(3): 526-32.
[http://dx.doi.org/10.1016/j.bbrc.2020.06.006] [PMID: 32736669]
[189]
Cabral T, DiCarlo JE, Justus S, Sengillo JD, Xu Y, Tsang SH. CRISPR applications in ophthalmologic genome surgery. Curr Opin Ophthalmol 2017; 28(3): 252-9.
[http://dx.doi.org/10.1097/ICU.0000000000000359] [PMID: 28141764]
[190]
Peng YQ, Tang LS, Yoshida S, Zhou YD. Applications of CRISPR/Cas9 in retinal degenerative diseases. Int J Ophthalmol 2017; 10(4): 646-51.
[PMID: 28503441]
[191]
Ling S, Yang S, Hu X, et al. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice. Nat Biomed Eng 2021; 5(2): 144-56.
[http://dx.doi.org/10.1038/s41551-020-00656-y] [PMID: 33398131]
[192]
Jiménez Blanco JL, Benito JM, Ortiz Mellet C, García Fernández JM. Molecular nanoparticle-based gene delivery systems. J Drug Deliv Sci Technol 2017; 42: 18-37.
[http://dx.doi.org/10.1016/j.jddst.2017.03.012]
[193]
Li Z, Ho W, Bai X, et al. Nanoparticle depots for controlled and sustained gene delivery. J Control Release 2020; 322: 622-31.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.021] [PMID: 32194173]
[194]
Pharmaceuticals N. Study of efficacy and safety of voretigene neparvovec in japanese patients with biallelic RPE65 mutation-associated retinal dystrophy ClinicalTrialsgov beta 2014.
[195]
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular disease therapeutics: Design and delivery of drugs for diseases of the eye. J Med Chem 2020; 63(19): 10533-93.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01033] [PMID: 32482069]
[196]
Patel U, Boucher M, de Léséleuc L, Visintini S. Voretigene neparvovec: An emerging gene therapy for the treatment of inherited blindness. CADTH Issues in Emerging Health Technologies 2016. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30855774
[197]
Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm 2002; 28(4): 353-69.
[http://dx.doi.org/10.1081/DDC-120002997] [PMID: 12056529]
[198]
Ye T, Yuan K, Zhang W, et al. Prodrugs incorporated into nanotechnology-based drug delivery systems for possible improvement in bioavailability of ocular drugs delivery. AAPS PharmSciTech [Internet] 2013; 11(2): 610-20.
[http://dx.doi.org/10.1016/j.ajps.2013.09.002]
[199]
Liu Y, Liu J, Zhang X, Zhang R, Huang Y, Wu C. In in situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech 2010; 11(2): 610-20.
[http://dx.doi.org/10.1208/s12249-010-9413-0] [PMID: 20354916]
[200]
Yadav D, Varma LT, Yadav K. Drug delivery to posterior segment of the eye: Conventional delivery strategies, their barriers, and restrictions. In: Drug Delivery for the Retina and Posterior Segment Disease. Cham: Springer International Publishing 2018; pp. 51-67.
[http://dx.doi.org/10.1007/978-3-319-95807-1_3]
[201]
Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: Emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006; 58(11): 1136-63.
[http://dx.doi.org/10.1016/j.addr.2006.07.024] [PMID: 17081648]
[202]
Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: Anatomy, physiology and barriers to drug delivery.In: Ocular Transporters and Receptors. Elsevier 2013; pp. 1-36.
[http://dx.doi.org/10.1533/9781908818317.1]
[203]
Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: A review. Open Ophthalmol J 2010; 4(1): 52-9.
[http://dx.doi.org/10.2174/1874364101004010052] [PMID: 21293732]
[204]
Salamzadeh J. Translational research in pharmaceutical sciences. Iran J Pharm Res IJPR 2018; 17 (Suppl.): 1. http://www.ncbi.nlm.nih.gov/pubmed/29796023
[205]
Mann BK, Stirland DL, Lee HK, Wirostko BM. Ocular translational science: A review of development steps and paths. Adv Drug Deliv Rev 2018; 126: 195-203.
[http://dx.doi.org/10.1016/j.addr.2018.01.012] [PMID: 29355668]
[206]
Girdhar V, Patil S, Banerjee S, Singhvi G. Nanocarriers for drug delivery: Mini review. Curr Nanomed 2018; 8(2): 88-99.
[http://dx.doi.org/10.2174/2468187308666180501092519]
[207]
Singhvi G, Patil S, Girdhar V, Dubey SK. Nanocarriers for topical drug delivery: Approaches and advancements. Nanosci Nanotechnol-Asia 2019; 9(3): 329-6. http://www.eurekaselect.com/160578/article
[208]
Tsai CH, Wang PY, Lin IC, Huang H, Liu GS, Tseng CL. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci 2018; 19(9): 2830.
[http://dx.doi.org/10.3390/ijms19092830] [PMID: 30235809]
[209]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[210]
Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother 2018; 107: 1564-82.
[http://dx.doi.org/10.1016/j.biopha.2018.08.138] [PMID: 30257375]
[211]
Bu HZ, Gukasyan H, Goulet L, Lou XJ, Xiang C, Koudriakova T. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 2007; 8(2): 91-107.
[http://dx.doi.org/10.2174/138920007779815977] [PMID: 17305490]
[212]
Greaves JL, Wilson CG. Treatment of diseases of the eye with mucoadhesive delivery systems. Adv Drug Deliv Rev 1993; 11(3): 349-83.
[http://dx.doi.org/10.1016/0169-409X(93)90016-W]
[213]
Shen J, Wang Y, Ping Q, Xiao Y, Huang X. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release 2009; 137(3): 217-23.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.021] [PMID: 19393270]
[214]
Tan G, Yu S, Pan H, et al. Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate Int J Biol Macromol (Pt A) 2017; 94: 355-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.035] [PMID: 27760378]
[215]
Vasconcelos A, Vega E, Pérez Y, Gómara MJ, García ML, Haro I. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int J Nanomedicine 2015; 10: 609-31.
[PMID: 25670897]
[216]
Apaolaza PS, Busch M, Asin-Prieto E, et al. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp Eye Res 2020; 198, 108151.
[http://dx.doi.org/10.1016/j.exer.2020.108151] [PMID: 32721426]
[217]
Stewart MW. Treatment of diabetic retinopathy: Recent advances and unresolved challenges. World J Diabetes 2016; 7(16): 333-41.
[http://dx.doi.org/10.4239/wjd.v7.i16.333] [PMID: 27625747]
[218]
Ghasemi Falavarjani K, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye (Lond) 2013; 27(7): 787-94.
[http://dx.doi.org/10.1038/eye.2013.107] [PMID: 23722722]
[219]
Rhee DJ, Peck RE, Belmont J, et al. Intraocular pressure alterations following intravitreal triamcinolone acetonide. Br J Ophthalmol 2006; 90(8): 999-1003.
[http://dx.doi.org/10.1136/bjo.2006.090340] [PMID: 16597664]
[220]
Özkiriş A, Erkiliç K. Complications of intravitreal injection of triamcinolone acetonide. Can J Ophthalmol 2005; 40(1): 63-8.
[http://dx.doi.org/10.1016/S0008-4182(05)80119-X] [PMID: 15825532]
[221]
Thompson JT. Cataract formation and other complications of intravitreal triamcinolone for macular edema. Am J Ophthalmol 2006; 141(4): 629-629.e10.
[http://dx.doi.org/10.1016/j.ajo.2005.11.050] [PMID: 16564796]
[222]
Jonas JB. Intravitreal triamcinolone acetonide: A change in a paradigm. Ophthalmic Res 2006; 38(4): 218-45.
[http://dx.doi.org/10.1159/000093796] [PMID: 16763379]
[223]
Sanborn GE, Anand R, Torti RE, et al. Sustained-release ganciclovir therapy for treatment of cytomegalovirus retinitis. Use of an intravitreal device. Arch Ophthalmol 1992; 110(2): 188-95.
[http://dx.doi.org/10.1001/archopht.1992.01080140044023] [PMID: 1310587]
[224]
Watsky MA, Jablonski MM, Edelhauser HF. Comparison of conjunctival and corneal surface areas in rabbit and human. Curr Eye Res 1988; 7(5): 483-6.
[http://dx.doi.org/10.3109/02713688809031801] [PMID: 3409715]
[225]
Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 2000; 41(5): 961-4.
[PMID: 10752928]
[226]
Mitra AK. Role of transporters in ocular drug delivery system. Springer 2009.
[http://dx.doi.org/10.1007/s11095-009-9862-x]
[227]
Kidron H, del Amo EM, Vellonen KS, Urtti A. Prediction of the vitreal half-life of small molecular drug-like compounds. Pharm Res 2012; 29(12): 3302-11.
[http://dx.doi.org/10.1007/s11095-012-0822-5] [PMID: 22777295]
[228]
Sridhar Duvvuri SM. Expert Opin Biol Ther 2003; 3(1): 45-56.
[http://dx.doi.org/10.1517/14712598.3.1.45] [PMID: 12718730]
[229]
Gaudana R, Jwala J, Boddu SHS, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009; 26(5): 1197-216.
[http://dx.doi.org/10.1007/s11095-008-9694-0] [PMID: 18758924]
[230]
Lian T, Ho RJY. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001; 90(6): 667-80.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[231]
Muntz A, Subbaraman LN, Sorbara L, Jones L. Tear exchange and contact lenses: A review. J Optom 2015; 8(1): 2-11.
[http://dx.doi.org/10.1016/j.optom.2014.12.001] [PMID: 25575892]
[232]
Bengani LC, Hsu KH, Gause S, Chauhan A. Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv 2013; 10(11): 1483-96.
[http://dx.doi.org/10.1517/17425247.2013.821462] [PMID: 23875917]
[233]
Li CC, Chauhan A. Modeling ophthalmic drug delivery by soaked contact lenses. Ind Eng Chem Res 2006; 45(10): 3718-34.
[http://dx.doi.org/10.1021/ie0507934]
[234]
Niesman MR. The use of liposomes as drug carriers in ophthalmology. Crit Rev Ther Drug Carrier Syst 1992; 9(1): 1-38.
[PMID: 1544173]
[235]
Zeng L, Wu X. Modeling the sustained release of lipophilic drugs from liposomes. Appl Phys Lett 2010; 97(7), 073701.
[http://dx.doi.org/10.1063/1.3479924]
[236]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[237]
Loftsson T, Sigurđsson HH, Konrádsdóttir F, Gísladóttir S, Jansook P, Stefánsson E. Topical drug delivery to the posterior segment of the eye: anatomical and physiological considerations. Pharmazie 2008; 63(3): 171-9.
[PMID: 18444504]
[238]
Boddu S, Gupta H, Patel S. Drug delivery to the back of the eye following topical administration: an update on research and patenting activity. Recent Pat Drug Deliv Formul 2014; 8(1): 27-36.
[http://dx.doi.org/10.2174/1872211308666140130093301] [PMID: 24475918]
[239]
Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: Addressing the challenge of preclinical to clinical translation. Pharm Res 2018; 35(12): 245.
[http://dx.doi.org/10.1007/s11095-018-2519-x] [PMID: 30374744]
[240]
Hughes P, Olejnik O, Changlin J, Wilson C. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 2005; 57(14): 2010-32.
[http://dx.doi.org/10.1016/j.addr.2005.09.004] [PMID: 16289435]
[241]
Van Santvliet L, Ludwig A. Determinants of eye drop size. Surv Ophthalmol 2004; 49(2): 197-213.
[http://dx.doi.org/10.1016/j.survophthal.2003.12.009] [PMID: 14998692]
[242]
Järvinen K, Järvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev 1995; 16(1): 3-19.
[http://dx.doi.org/10.1016/0169-409X(95)00010-5]
[243]
Hämäläinen K-M, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 1997; 38(3): 627-34.
[PMID: 9071216]
[244]
Andrés-Guerrero V, Herrero-Vanrell R. Ocular drug absorption by topical route. Role of conjunctiva. Arch Soc Esp Oftalmol 2008; 83(12): 683-5.
[PMID: 19085638]
[245]
Cavallotti C, Corrado BG, Feher J. The human choriocapillaris: Evidence for an intrinsic regulation of the endothelium? J Anat 2005; 206(3): 243-7.
[http://dx.doi.org/10.1111/j.1469-7580.2005.00389.x] [PMID: 15733296]
[246]
Guymer RH, Bird AC, Hageman GS. Cytoarchitecture of choroidal capillary endothelial cells. Invest Ophthalmol Vis Sci 2004; 45(6): 1660-6.
[http://dx.doi.org/10.1167/iovs.03-0913] [PMID: 15161823]
[247]
Sugita A, Hamasaki M, Higashi R. Regional difference in fenestration of choroidal capillaries in Japanese monkey eye. Jpn J Ophthalmol 1982; 26(1): 47-52.
[PMID: 7109332]
[248]
Davis BM, Normando EM, Guo L, et al. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small 2014; 10(8): 1575-84.
[http://dx.doi.org/10.1002/smll.201303433] [PMID: 24596245]
[249]
Masuda I, Matsuo T, Yasuda T, Matsuo N. Gene transfer with liposomes to the intraocular tissues by different routes of administration. Invest Ophthalmol Vis Sci 1996; 37(9): 1914-20.
[PMID: 8759362]
[250]
Cun X, Hosta-Rigau L. Topography: A biophysical approach to direct the fate of mesenchymal stem cells in tissue engineering applications. Nanomaterials (Basel) 2020; 10(10): 2070.
[http://dx.doi.org/10.3390/nano10102070] [PMID: 33092104]
[251]
Metavarayuth K, Sitasuwan P, Zhao X, Lin Y, Wang Q. Influence of surface topographical cues on the differentiation of mesenchymal stem cells in vitro. ACS Biomater Sci Eng 2016; 2(2): 142-51.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00377] [PMID: 33418629]
[252]
Hou Y, Yu L, Xie W, et al. Surface roughness and substrate stiffness synergize to drive cellular mechanoresponse. Nano Lett 2020; 20(1): 748-57.
[http://dx.doi.org/10.1021/acs.nanolett.9b04761] [PMID: 31820645]
[253]
Yang TC, Chuang JH, Buddhakosai W, et al. Elongation of axon extension for human iPSC-derived retinal ganglion cells by a nano-imprinted scaffold. Int J Mol Sci 2017; 18(9): 2013.
[http://dx.doi.org/10.3390/ijms18092013] [PMID: 28930148]
[254]
Rahmani A, Nadri S, Kazemi HS, Mortazavi Y, Sojoodi M. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells. Artif Organs 2019; 43(8): 780-90.
[http://dx.doi.org/10.1111/aor.13425] [PMID: 30674064]
[255]
Serena E, Figallo E, Tandon N, et al. Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 2009; 315(20): 3611-9.
[http://dx.doi.org/10.1016/j.yexcr.2009.08.015] [PMID: 19720058]
[256]
Rajabi AH, Jaffe M, Arinzeh TL. Piezoelectric materials for tissue regeneration: A review. Acta Biomater 2015; 24: 12-23.
[http://dx.doi.org/10.1016/j.actbio.2015.07.010] [PMID: 26162587]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy