Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Review on Analytical Methodologies, Chemical and Therapeutic Perspectives of Curcumin: A Ubiquitous Natural Molecule

Author(s): Umang kumar Shah*, Deep Patel, Drashti Dalsania, Mehul Patel, Meghana Patel, Ashish Patel, Nilay Solanki, Swayamprakash Patel and Samir Patel

Volume 18, Issue 8, 2022

Published on: 18 August, 2022

Page: [777 - 794] Pages: 18

DOI: 10.2174/1573412918666220620154659

Price: $65

Abstract

Curcumin is a lipophilic polyphenolic yellow compound extracted from Curcuma longa Linn. (turmeric) rhizome with a broad spectrum of pharmacological and medicinal properties as propounded by several in vivo, in vitro, and clinical studies. Considerable research over the past century has been extensively carried out on chemical, biological, and analytical perspectives of curcumin. Nowadays, curcumin is widely used in food and pharmaceutical formulations due to its excellent health benefits. Therefore, characterization and quantification of curcuminoids in nutraceuticals and pharmaceuticals are required to measure their quality control parameters to address issues related to processing and storage. This review article specifies the current exploration of analytical methodologies used to extract and quantify curcuminoids in different matrices. Moreover, this review offers phytochemistry, synthetic and biosynthetic pathways, extraction methodologies, degradation and metabolism pathways, and health benefits of the curcumin scurrying from the kitchen shelf toward the clinic.

Keywords: Analytical methods, biological activity, curcumin, phytochemistry, turmeric, natural molecule.

Graphical Abstract

[1]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 1-11.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[2]
Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 283-299.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05648.x] [PMID: 22118895]
[3]
Xu, X.Y.; Meng, X.; Li, S.; Gan, R.Y.; Li, Y.; Li, H.B. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 2018, 10(10), 1-33.
[http://dx.doi.org/10.3390/nu10101553] [PMID: 30347782]
[4]
Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033-1059.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[5]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2016, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[6]
Marton, L.T.; Pescinini-e-Salzedas, L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.F. dos S.; Sinatora, R.V.; Detregiachi, C.R.P.; Girio, R.J.S.; Buchaim, D.V. Cincotto Dos Santos Bueno, P. The effects of curcumin on diabetes mellitus: A systematic review. Front. Endocrinol., 2021, 12, 443.
[7]
Rinkunaite, I.; Simoliunas, E.; Alksne, M.; Dapkute, D.; Bukelskiene, V. Anti-inflammatory effect of different curcumin preparations on adjuvant-induced arthritis in rats. BMC Complement. Med. Ther., 2021, 21(1), 39.
[http://dx.doi.org/10.1186/s12906-021-03207-3] [PMID: 33478498]
[8]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 1-11.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[9]
Qureshi, M.; Al-Suhaimi, E.; Shehzad, A. Chapter 20-Curcumin impact on multiple sclerosis; , 2019, pp. 365-380.
[http://dx.doi.org/10.1016/B978-0-12-815461-8.00020-7]
[10]
Fallahi, F.; Borran, S.; Ashrafizadeh, M.; Zarrabi, A.; Pourhanifeh, M.H.; Khaksary Mahabady, M.; Sahebkar, A.; Mirzaei, H. Curcumin and inflammatory bowel diseases: From in vitro studies to clinical trials. Mol. Immunol., 2021, 130(130), 20-30.
[http://dx.doi.org/10.1016/j.molimm.2020.11.016] [PMID: 33348246]
[11]
S, P.; AK, T. Curcumin and cystic fibrosis defects: A spicy treatment.Hered. Genet; , 2015, pp. 1-2.
[http://dx.doi.org/10.4172/2161-1041.S7-e001]
[12]
Chen, M.; Du, Z.Y.; Zheng, X.; Li, D.L.; Zhou, R.P.; Zhang, K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res., 2018, 13(4), 742-752.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[13]
Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv., 2014, 32(6), 1053-1064.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.004] [PMID: 24793420]
[14]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[15]
Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S.S.R. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med., 1998, 64(4), 353-356.
[http://dx.doi.org/10.1055/s-2006-957450] [PMID: 9619120]
[16]
Shah, U.; Jasani, A.U.V. Spectrophotometric and RP-HPLC methods for simultaneous estimation of isoniazid, rifampicin and piperine in pharmaceutical dosage form. Int. J. Pharm. Pharm. Sci., 2014, 6(10), 274-280.
[17]
Shah, U.; Patel, S.; Raval, M. Stability indicating reverse phase HPLC method for estimation of rifampicin and piperine in pharmaceutical dosage form. Curr. Drug Discov. Technol., 2018, 15(1), 54-64.
[http://dx.doi.org/10.2174/1570163814666170619092224] [PMID: 28625149]
[18]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecule, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[19]
Mazzarino, L.; Bellettini, I.C.; Minatti, E.; Lemos-Senna, E. Development and validation of a fluorimetric method to determine curcumin in lipid and polymeric nanocapsule suspensions. Braz. J. Pharm. Sci., 2010, 46(2), 219-226.
[http://dx.doi.org/10.1590/S1984-82502010000200008]
[20]
Singh, A.; Avupati, V.R. Development and validation of UV-spectrophotometric method for the estimation of curcumin in standardised polyherbal formulations. J. Young Pharm., 2017, 9(4), 491-495.
[http://dx.doi.org/10.5530/jyp.2017.9.96]
[21]
Carolina Alves, R.; Perosa Fernandes, R.; Fonseca-Santos, B.; Damiani Victorelli, F.; Chorilli, M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit. Rev. Anal. Chem., 2019, 49(2), 138-149.
[http://dx.doi.org/10.1080/10408347.2018.1489216] [PMID: 30252504]
[22]
Chahar, M.Y.; Rajashree, M. Development and validation of stability indicating RP-HPLC method for simultaneous estimation of curcumin and piperine in bulk mixture. World J. Pharm. Res., 2016, 5(5), 1262-1276.
[23]
Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecule, 2019, 24(16), 1-27.
[http://dx.doi.org/10.3390/molecules24162930] [PMID: 31412624]
[24]
Hazra, K.; Bagh, M. UV-Visible spectrophotometric estimation of curcumin in nanoformulation. Int. J. Pharmacol., 2015, 2(3), 127-130.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.IJP.2(3).127-30]
[25]
Paramasivam, M.; Poi, R.; Banerjee, H.; Bandyopadhyay, A. High-Performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem., 2009, 113(2), 640-644.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.051]
[26]
Rapalli, V.K.; Kaul, V.; Gorantla, S.; Waghule, T.; Dubey, S.K.; Pandey, M.M.; Singhvi, G.U.V. Spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in-vitro and ex-vivo applications in topical delivery. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 224(224), 117392.
[http://dx.doi.org/10.1016/j.saa.2019.117392] [PMID: 31330421]
[27]
Majumder, K.K.; Sharma, J.B.; Kumar, M.; Bhatt, S.; Saini, V. Development and validation of UV-visible spectrophotometric method for the estimation of curcumin in bulk and pharmaceutical formulation. Pharmacophores, 2020, 10(1), 115-121.
[28]
Mohan, P.R.K.; Sreelakshmi, G.; Muraleedharan, C.V.; Joseph, R. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc., 2012, 2012(62), 77-84.
[http://dx.doi.org/10.1016/j.vibspec.2012.05.002]
[29]
Ge, Y.S.; Jin, C.; Song, Z.; Zhang, J.Q.; Jiang, F.L.; Liu, Y. Multi-spectroscopic analysis and molecular modeling on the interaction of curcumin and its derivatives with human serum albumin: A comparative study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124(124), 265-276.
[http://dx.doi.org/10.1016/j.saa.2014.01.009] [PMID: 24491667]
[30]
Sahu, A.; Kasoju, N.; Bora, U. Fluorescence study of the curcumin-casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules, 2008, 9(10), 2905-2912.
[http://dx.doi.org/10.1021/bm800683f] [PMID: 18785706]
[31]
Ma, Z.; Shayeganpour, A.; Brocks, D.R.; Lavasanifar, A.; Samuel, J. High-performance liquid chromatography analysis of curcumin in rat plasma: Application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomed. Chromatogr., 2007, 21(5), 546-552.
[http://dx.doi.org/10.1002/bmc.795] [PMID: 17340565]
[32]
Heath, D.D.; Pruitt, M.A.; Brenner, D.E.; Rock, C.L. Curcumin in plasma and urine: Quantitation by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2003, 783(1), 287-295.
[http://dx.doi.org/10.1016/S1570-0232(02)00714-6] [PMID: 12450549]
[33]
Schiborr, C.; Eckert, G.P.; Rimbach, G.; Frank, J. A validated method for the quantification of curcumin in plasma and brain tissue by fast narrow-bore high-performance liquid chromatography with fluorescence detection. Anal. Bioanal. Chem., 2010, 397(5), 1917-1925.
[http://dx.doi.org/10.1007/s00216-010-3719-3] [PMID: 20419505]
[34]
Zheng, X.H.; Shao, Y.X.; Li, Z.; Liu, M.; Bu, X.; Luo, H.B.; Hu, X. Quantitative structure-retention relationship of curcumin and its analogues. J. Sep. Sci., 2012, 35(4), 505-512.
[http://dx.doi.org/10.1002/jssc.201100903] [PMID: 22282411]
[35]
Inoue, K.; Nomura, C.; Ito, S.; Nagatsu, A.; Hino, T.; Oka, H. Purification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin by high-speed countercurrent chromatography. J. Agric. Food Chem., 2008, 56(20), 9328-9336.
[http://dx.doi.org/10.1021/jf801815n] [PMID: 18826228]
[36]
Revathy, S.; Elumalai, S.; Benny, M.; Antony, B. Isolation, purification and identification of curcuminoids from turmeric (Curcuma longa L.) by column chromatography. J. Exp. Sci., 2011, 2(7), 21-25.
[37]
Chen, Z.; Quan, L.; Zhou, H.; Zhao, Y.; Chen, P.; Hu, L.; Yang, Z.; Hu, C.; Cao, D. Screening of active fractions from curcuma longa radix isolated by HPLC and GC-MS for promotion of blood circulation and relief of pain. J. Ethnopharmacol., 2019, 234(234), 68-75.
[http://dx.doi.org/10.1016/j.jep.2018.09.035] [PMID: 30268652]
[38]
Xu, H.; Paxton, J.; Lim, J.; Li, Y.; Wu, Z. Development of a gradient high performance liquid chromatography assay for simultaneous analysis of hydrophilic gemcitabine and lipophilic curcumin using a central composite design and its application in liposome development. J. Pharm. Biomed. Anal., 2014, 98(98), 371-378.
[http://dx.doi.org/10.1016/j.jpba.2014.06.022] [PMID: 24998672]
[39]
Heffernan, C.; Ukrainczyk, M.; Gamidi, R.K.; Hodnett, B.K.; Rasmuson, Å.C. Extraction and purification of curcuminoids from crude curcumin by a combination of crystallization and chromatography. Org. Process Res. Dev., 2017, 21(6), 821-826.
[http://dx.doi.org/10.1021/acs.oprd.6b00347]
[40]
Rahimi, M.; Hashemi, P.; Nazari, F. Cold column trapping-cloud point extraction coupled to high performance liquid chromatography for preconcentration and determination of curcumin in human urine. Anal. Chim. Acta, 2014, 826(1), 35-42.
[http://dx.doi.org/10.1016/j.aca.2014.04.012] [PMID: 24793851]
[41]
Gupta, A.P.; Gupta, M.M.; Kumar, S. Simultaneous determination of curcuminoids in curcuma samples using high performance thin layer chromatography. J. Liq. Chromatogr. Relat. Technol., 1999, 22(10), 1561-1569.
[http://dx.doi.org/10.1081/JLC-100101751]
[42]
Abdul Zahar, Z.; Mohsin, H.F.; Ibtisam, A.W. The study on curcuminoids in chromatography, spectroscopy and regioisomerism. J. Phys. Conf. Ser., 2020, 1529(2), 1-7.
[http://dx.doi.org/10.1088/1742-6596/1529/2/022035]
[43]
Lou, Y.; Zheng, J.; Hu, H.; Lee, J.; Zeng, S. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to identify curcumin metabolites produced by human intestinal bacteria. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 985(985), 38-47.
[http://dx.doi.org/10.1016/j.jchromb.2015.01.014] [PMID: 25658514]
[44]
Oyarce, P.; De Meester, B.; Fonseca, F.; de Vries, L.; Goeminne, G.; Pallidis, A.; De Rycke, R.; Tsuji, Y.; Li, Y.; Van den Bosch, S.; Sels, B.; Ralph, J.; Vanholme, R.; Boerjan, W. Introducing curcumin biosynthesis in arabidopsis enhances lignocellulosic biomass processing. Nat. Plants, 2019, 5(2), 225-237.
[http://dx.doi.org/10.1038/s41477-018-0350-3] [PMID: 30692678]
[45]
Srinivasan, K.R. A chromatographic study of the curcuminoids in Curcuma longa L. J. Pharm. Pharmacol., 1953, 5(7), 448-457.
[http://dx.doi.org/10.1111/j.2042-7158.1953.tb14007.x] [PMID: 13070173]
[46]
Lampe, V.; Milobedzka, J. Studien Über Curcumin. Ber. Dtsch. Chem. Ges., 1913, 46(2), 2235-2240.
[http://dx.doi.org/10.1002/cber.191304602149]
[47]
Grynkiewicz, G. Ślifirski, P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochim. Pol., 2012, 59(2), 201-212.
[http://dx.doi.org/10.18388/abp.2012_2139] [PMID: 22590694]
[48]
Agarwal, S.; Mishra, R.; Gupta, A.K.; Gupta, A. Turmeric: Isolation and synthesis of important biological molecules; Elsevier Ltd, 2018, pp. 105-125.
[http://dx.doi.org/10.1016/B978-0-08-102071-5.00005-2]
[49]
Lin, L.; Shi, Q.; Nyarko, A.K.; Bastow, K.F.; Wu, C.C.; Su, C.Y.; Shih, C.C.Y.; Lee, K.H. Antitumor agents. 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J. Med. Chem., 2006, 49(13), 3963-3972.
[http://dx.doi.org/10.1021/jm051043z] [PMID: 16789753]
[50]
Wakte, P.S.; Sachin, B.S.; Patil, A.A.; Mohato, D.M.; Band, T.H.; Shinde, D.B. Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Separ. Purif. Tech., 2011, 79(1), 50-55.
[http://dx.doi.org/10.1016/j.seppur.2011.03.010]
[51]
Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using taguchi L9 orthogonal design. J. Pharm. Biomed. Anal., 2008, 46(2), 322-327.
[http://dx.doi.org/10.1016/j.jpba.2007.10.020] [PMID: 18309573]
[52]
Andrew Anderson, W.M.; Mitchell, M.S.; Mohan, R.S.; Och, C.O. In the laboratory isolation of curcumin from turmeric. J. Chem. Educ., 2000, 77(359), 359-360.
[http://dx.doi.org/10.1021/ed077p359]
[53]
Communication, I.C.; Nabati, M.; Mahkam, M.; Heidari, H. Isolation and characterization of curcumin from powdered rhizomes of turmeric plant marketed in Maragheh city of Iran with soxhlet technique. Iran. Chem. Commun., 2014, 2(4), 236-243.
[54]
Turrini, F.; Donno, D.; Beccaro, G.L.; Zunin, P.; Pittaluga, A.; Boggia, R. Pulsed ultrasound-assisted extraction as an alternative method to conventional maceration for the extraction of the polyphenolic fraction of Ribes nigrum buds: A new category of food supplements proposed by the finnover project. Foods, 2019, 8(10), 1-14.
[http://dx.doi.org/10.3390/foods8100466] [PMID: 31658671]
[55]
Li, M.; Ngadi, M.O.; Ma, Y. Optimisation of pulsed ultrasonic and microwave-assisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chem., 2014, 165(165), 29-34.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.115] [PMID: 25038645]
[56]
Hadi, B.J.; Sanagi, M.M.; Wan Ibrahim, W.A.; Jamil, S. AbdullahiMu’azu, M.; Aboul-Enein, H.Y. Ultrasonic-assisted extraction of curcumin complexed with methyl-β-cyclodextrin. Food Anal. Methods, 2015, 8(6), 1373-1381.
[http://dx.doi.org/10.1007/s12161-014-0016-3]
[57]
Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S.D. Microwave-assisted extraction in natural products isolation. Methods Mol. Biol., 2012, 864, 89-115.
[http://dx.doi.org/10.1007/978-1-61779-624-1_5] [PMID: 22367895]
[58]
Bener, M.; Özyürek, M.; Güçlü, K.; Apak, R. Optimization of microwave-assisted extraction of curcumin from Curcuma longa L. (turmeric) and evaluation of antioxidant activity in multi-test systems. Rec. Nat. Prod., 2016, 10(5), 542-554.
[59]
Ito, Y.; Ma, Y. pH-zone-refining countercurrent chromatography. J. Chromatogr. A, 1996, 753(1), 1-36.
[http://dx.doi.org/10.1016/S0021-9673(96)00565-1] [PMID: 8962503]
[60]
Patel, K.; Krishna, G.; Sokoloski, E.; Ito, Y. Preparative separation of curcuminoids from crude curcumin and turmeric powder by pH-zone-refining countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol., 2000, 23(14), 2209-2218.
[http://dx.doi.org/10.1081/JLC-100100482]
[61]
Ito, Y. pH-zone-refining counter-current chromatography: Origin, mechanism, procedure and applications. J. Chromatogr. A, 2013, 1271(1), 71-85.
[http://dx.doi.org/10.1016/j.chroma.2012.11.024] [PMID: 23219480]
[62]
Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of curcumin: From mechanism to biological implications. J. Agric. Food Chem., 2015, 63(35), 7606-7614.
[http://dx.doi.org/10.1021/acs.jafc.5b00244] [PMID: 25817068]
[63]
Gordon, O.N.; Schneider, C. Vanillin and ferulic acid: Not the major degradation products of curcumin. Trends Mol. Med., 2012, 18(7), 361-363.
[http://dx.doi.org/10.1016/j.molmed.2012.04.011] [PMID: 22652257]
[64]
Gordon, O.N.; Luis, P.B.; Sintim, H.O.; Schneider, C. Unraveling curcumin degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J. Biol. Chem., 2015, 290(8), 4817-4828.
[http://dx.doi.org/10.1074/jbc.M114.618785] [PMID: 25564617]
[65]
Griesser, M.; Pistis, V.; Suzuki, T.; Tejera, N.; Pratt, D.A.; Schneider, C. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J. Biol. Chem., 2011, 286(2), 1114-1124.
[http://dx.doi.org/10.1074/jbc.M110.178806] [PMID: 21071447]
[66]
Aboudiab, B.; Tehrani-Bagha, A.R.; Patra, D. Curcumin degradation kinetics in micellar solutions: Enhanced stability in the presence of cationic surfactants. Colloids Surf. A Physicochem. Eng. Asp., 2020, 2020(592), 1-8.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124602]
[67]
Dei Cas, M.; Ghidoni, R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients, 2019, 11(9), 1-14.
[http://dx.doi.org/10.3390/nu11092147] [PMID: 31500361]
[68]
Stohs, S.J.; Chen, O.; Ray, S.D.; Ji, J.; Bucci, L.R.; Preuss, H.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules, 2020, 25(6), 1-12.
[http://dx.doi.org/10.3390/molecules25061397] [PMID: 32204372]
[69]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[70]
Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev., 2008, 17(6), 1411-1417.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2693] [PMID: 18559556]
[71]
Hassaninasab, A.; Hashimoto, Y.; Tomita-Yokotani, K.; Kobayashi, M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc. Natl. Acad. Sci. USA, 2011, 108(16), 6615-6620.
[http://dx.doi.org/10.1073/pnas.1016217108] [PMID: 21467222]
[72]
Burapan, S.; Kim, M.; Han, J. Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota. J. Agric. Food Chem., 2017, 65(16), 3305-3310.
[http://dx.doi.org/10.1021/acs.jafc.7b00943] [PMID: 28401758]
[73]
Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and health. Molecules, 2016, 21(3), 264.
[http://dx.doi.org/10.3390/molecules21030264] [PMID: 26927041]
[74]
Wahlström, B.; Blennow, G. A study on the fate of curcumin in the rat. Acta Pharmacol. Toxicol., 1978, 43(2), 86-92.
[http://dx.doi.org/10.1111/j.1600-0773.1978.tb02240.x] [PMID: 696348]
[75]
Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A. Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr., 2020, 60(4), 626-659.
[http://dx.doi.org/10.1080/10408398.2018.1546669] [PMID: 30614249]
[76]
Kyung, E.J.; Kim, H.B.; Hwang, E.S.; Lee, S.; Choi, B.K.; Kim, J.W.; Kim, H.J.; Lim, S.M.; Kwon, O.I.; Woo, E.J. Evaluation of hepatoprotective effect of curcumin on liver cirrhosis using a combination of biochemical analysis and magnetic resonance-based electrical conductivity imaging. In: Mediators Inflamm; , 2018; pp. 1-9.
[http://dx.doi.org/10.1155/2018/5491797]
[77]
Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress. A review Neuroscience, 2019, 406(406), 1-21.
[http://dx.doi.org/10.1016/j.neuroscience.2019.02.020] [PMID: 30825584]
[78]
Mazumder, A.; Raghavan, K.; Weinstein, J.; Kohn, K.W.; Pommier, Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem. Pharmacol., 1995, 49(8), 1165-1170.
[http://dx.doi.org/10.1016/0006-2952(95)98514-A] [PMID: 7748198]
[79]
Rivera-Espinoza, Y.; Muriel, P. Pharmacological actions of curcumin in liver diseases or damage. Liver Int., 2009, 29(10), 1457-1466.
[http://dx.doi.org/10.1111/j.1478-3231.2009.02086.x] [PMID: 19811613]
[80]
Mythri, R.B.; Harish, G.; Dubey, S.K.; Misra, K.; Bharath, M.M. Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: Implications for Parkinson’s disease. Mol. Cell. Biochem., 2011, 347(1-2), 135-143.
[http://dx.doi.org/10.1007/s11010-010-0621-4] [PMID: 20972609]
[81]
Wan Mohd Tajuddin, W.N.B.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients, 2019, 11(12), 1-28.
[http://dx.doi.org/10.3390/nu11122989] [PMID: 31817718]
[82]
Zhang, L.; Xu, T.; Wang, S.; Yu, L.; Liu, D.; Zhan, R.; Yu, S.Y. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav. Brain Res., 2012, 235(1), 67-72.
[http://dx.doi.org/10.1016/j.bbr.2012.07.019] [PMID: 22820234]
[83]
Ghoneim, A.I.; Abdel-Naim, A.B.; Khalifa, A.E.; El-Denshary, E.S. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol. Res., 2002, 46(3), 273-279.
[http://dx.doi.org/10.1016/S1043-6618(02)00123-8] [PMID: 12220971]
[84]
Karaman, M.; Firinci, F.; Cilaker, S.; Uysal, P.; Tugyan, K.; Yilmaz, O.; Uzuner, N.; Karaman, O. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergol. Immunopathol., 2012, 40(4), 210-214.
[http://dx.doi.org/10.1016/j.aller.2011.04.006] [PMID: 21862198]
[85]
Ukil, A.; Maity, S.; Karmakar, S.; Datta, N.; Vedasiromoni, J.R.; Das, P.K. Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br. J. Pharmacol., 2003, 139(2), 209-218.
[http://dx.doi.org/10.1038/sj.bjp.0705241] [PMID: 12770926]
[86]
Yeon, K.Y.; Kim, S.A.; Kim, Y.H.; Lee, M.K.; Ahn, D.K.; Kim, H.J.; Kim, J.S.; Jung, S.J.; Oh, S.B. Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J. Dent. Res., 2010, 89(2), 170-174.
[http://dx.doi.org/10.1177/0022034509356169] [PMID: 20040737]
[87]
Dikmen, M.; Canturk, Z.; Ozturk, Y.; Tunali, Y. Investigation of the apoptotic effect of curcumin in human leukemia HL-60 cells by using flow cytometry. Cancer Biother. Radiopharm., 2010, 25(6), 749-755.
[http://dx.doi.org/10.1089/cbr.2010.0822] [PMID: 21204771]
[88]
Cheng, Y.; Ping, J.; Xu, L-M. Effects of curcumin on peroxisome proliferator-activated receptor gamma expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells. Chin. Med. J., 2007, 120(9), 794-801.
[http://dx.doi.org/10.1097/00029330-200705010-00011] [PMID: 17531121]
[89]
Thangapazham, R.L.; Sharma, A.; Maheshwari, R.K. Beneficial role of curcumin in skin diseases. Adv. Exp. Med. Biol., 2007, 595(595), 343-357.
[http://dx.doi.org/10.1007/978-0-387-46401-5_15] [PMID: 17569219]
[90]
Arbiser, J.L.; Klauber, N.; Rohan, R.; Van Leeuwen, R.; Huang, M.T.; Fisher, C.; Flynn, E.; Byers, H.R. Curcumin is an in vivo inhibitor of angiogenesis. Mol. Med., 1998, 4(6), 376-383.
[http://dx.doi.org/10.1007/BF03401744] [PMID: 10780880]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy