[1]
Tadesse S, Anshabo AT, Portman N, et al. Targeting CDK2 in cancer: Challenges and opportunities for therapy. Drug Discov Today 2020; 25(2): 406-13.
[http://dx.doi.org/10.1016/j.drudis.2019.12.001] [PMID: 31839441]
[http://dx.doi.org/10.1016/j.drudis.2019.12.001] [PMID: 31839441]
[2]
Echalier A, Hole AJ, Lolli G, Endicott JA, Noble MEM. An inhibitor’s-eye view of the ATP-binding site of CDKs in different regulatory states. ACS Chem Biol 2014; 9(6): 1251-6.
[http://dx.doi.org/10.1021/cb500135f] [PMID: 24669831]
[http://dx.doi.org/10.1021/cb500135f] [PMID: 24669831]
[3]
Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V. How selective are pharmacological inhibitors of cell-cycle-regulating cyclindependent kinases? J Med Chem 2018; 61(20): 9105-20.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00049] [PMID: 30234987]
[http://dx.doi.org/10.1021/acs.jmedchem.8b00049] [PMID: 30234987]
[4]
Whittaker SR, Mallinger A, Workman P, Clarke PA. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther 2017; 173: 83-105.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.008] [PMID: 28174091]
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.008] [PMID: 28174091]
[5]
Zhang M, Zhang L, Hei R, et al. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res 2021; 11(5): 1913-35.
[PMID: 34094661]
[PMID: 34094661]
[6]
Sabnis RW. Novel CDK2 Inhibitors for treating cancer. ACS Med Chem Lett 2020; 11(12): 2346-7.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00500] [PMID: 33335646]
[http://dx.doi.org/10.1021/acsmedchemlett.0c00500] [PMID: 33335646]
[7]
Wang Y, Zhi Y, Jin Q, et al. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia. J Med Chem 2018; 61(4): 1499-518.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01261] [PMID: 29357250]
[http://dx.doi.org/10.1021/acs.jmedchem.7b01261] [PMID: 29357250]
[8]
Freeman-Cook KD, Hoffman RL, Behenna DC, et al. Discovery of PF-06873600, a CDK2/4/6 inhibitor for the treatment of cancer. J Med Chem 2021; 64(13): 9056-77.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00159] [PMID: 34110834]
[http://dx.doi.org/10.1021/acs.jmedchem.1c00159] [PMID: 34110834]
[9]
Tasneem A, Aberle L, Ananth H, et al. The database for aggregate analysis of ClinicalTrials.gov (AACT) and subsequent regrouping by clinical specialty. PLoS One 2012; 7(3): e33677.
[http://dx.doi.org/10.1371/journal.pone.0033677] [PMID: 22438982]
[http://dx.doi.org/10.1371/journal.pone.0033677] [PMID: 22438982]
[10]
Behenna DC, Freeman-Cook KD, Hoffman RL, Nagata A, Ninkovic S, Sutton SC. CDK2 inhibitors WO Patent 2020157652A2, 2020.
[11]
Patel H, Periyasamy M, Sava GP, et al. ICEC0942, an orally bioavailable selective inhibitor of CDK7 for cancer treatment. Mol Cancer Ther 2018; 17(6): 1156-66.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0847] [PMID: 29545334]
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0847] [PMID: 29545334]
[12]
Frame S, Saladino C, MacKay C, et al. Fadraciclib (CYC065), a novel CDK inhibitor, targets key pro-survival and oncogenic pathways in cancer. PLoS One 2020; 15(7): e0234103.
[http://dx.doi.org/10.1371/journal.pone.0234103] [PMID: 32645016]
[http://dx.doi.org/10.1371/journal.pone.0234103] [PMID: 32645016]
[13]
Goh KC, Novotny-Diermayr V, Hart S, et al. TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia 2012; 26(2): 236-43.
[http://dx.doi.org/10.1038/leu.2011.218] [PMID: 21860433]
[http://dx.doi.org/10.1038/leu.2011.218] [PMID: 21860433]
[14]
Roskoski R Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res 2019; 139: 471-88.
[http://dx.doi.org/10.1016/j.phrs.2018.11.035] [PMID: 30508677]
[http://dx.doi.org/10.1016/j.phrs.2018.11.035] [PMID: 30508677]
[15]
Chu C, Geng Y, Zhou Y, Sicinski P. Cyclin E in normal physiology and disease states. Trends Cell Biol 2021; 31(9): 732-46.
[http://dx.doi.org/10.1016/j.tcb.2021.05.001] [PMID: 34052101]
[http://dx.doi.org/10.1016/j.tcb.2021.05.001] [PMID: 34052101]
[16]
Pandey K, Park N, Park K-S, et al. Combined CDK2 and CDK4/6 inhibition overcomes palbociclib resistance in breast cancer by enhancing senescence. Cancers (Basel) 2020; 12(12): 3566.
[http://dx.doi.org/10.3390/cancers12123566] [PMID: 33260316]
[http://dx.doi.org/10.3390/cancers12123566] [PMID: 33260316]
[17]
Li Z, Zou W, Zhang J, et al. Mechanisms of CDK4/6 inhibitor resistance in luminal breast cancer. Front Pharmacol 2020; 11: 580251.
[http://dx.doi.org/10.3389/fphar.2020.580251] [PMID: 33364954]
[http://dx.doi.org/10.3389/fphar.2020.580251] [PMID: 33364954]
[18]
Satriyo PB, Su CM, Ong JR, et al. 4-Acetylantroquinonol B induced DNA damage response signaling and apoptosis via suppressing CDK2/CDK4 expression in triple negative breast cancer cells. Toxicol Appl Pharmacol 2021; 422115493.
[http://dx.doi.org/10.1016/j.taap.2021.115493] [PMID: 33727089]
[http://dx.doi.org/10.1016/j.taap.2021.115493] [PMID: 33727089]
[19]
Freeman-Cook K, Hoffman RL, Miller N, et al. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 2021; 39(10): 1404-1421.e11.
[http://dx.doi.org/10.1016/j.ccell.2021.08.009] [PMID: 34520734]
[http://dx.doi.org/10.1016/j.ccell.2021.08.009] [PMID: 34520734]
[20]
Nuvation Bio Inc. Phase 1/2 dose escalation, safety, pharmacokinetics, and efficacy study of NUV-422 in adults with recurrent or refractory high-grade gliomas and solid tumors Report No: NCT0454-1225 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT-04541225
[21]
Pfizer. Phase 1/2a dose escalation, finding and expansion study evaluating safety, tolerability, pharmacokinetics, pharmacodynamics and anti tumor activity of pf-07104091 as a single agent and in combination therapy Report No: NCT04553133 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04553133
[22]
Pfizer. Phase 1/2a dose escalation and expansion study evaluating safety, tolerability, pharmacokinetic, pharmacodynamics and anti-tumor activity of PF-06873600 as a single agent and in combination with endocrine therapy Report No: NCT03519178 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT03519178
[23]
Piezzo M, Cocco S, Caputo R, et al. Targeting cell cycle in breast cancer: CDK4/6 inhibitors. Int J Mol Sci 2020; 21(18): 6479.
[http://dx.doi.org/10.3390/ijms21186479] [PMID: 32899866]
[http://dx.doi.org/10.3390/ijms21186479] [PMID: 32899866]
[24]
Adon T, Shanmugarajan D, Kumar HY. CDK4/6 inhibitors: A brief overview and prospective research directions. RSC Adv 2021; 11(47): 29227-46.
[http://dx.doi.org/10.1039/D1RA03820F] [PMID: 35479560]
[http://dx.doi.org/10.1039/D1RA03820F] [PMID: 35479560]
[25]
Asghar US, Kanani R, Roylance R, Mittnacht S. Systematic review of molecular biomarkers predictive of resistance to CDK4/6 inhibition in metastatic breast cancer. JCO Precis Oncol 2022; 6(6): e2100002.
[http://dx.doi.org/10.1200/PO.21.00002] [PMID: 35005994]
[http://dx.doi.org/10.1200/PO.21.00002] [PMID: 35005994]
[26]
Kanska J, Zakhour M, Taylor-Harding B, Karlan BY, Wiedemeyer WR. Cyclin E as a potential therapeutic target in high grade serous ovarian cancer. Gynecol Oncol 2016; 143(1): 152-8.
[http://dx.doi.org/10.1016/j.ygyno.2016.07.111] [PMID: 27461360]
[http://dx.doi.org/10.1016/j.ygyno.2016.07.111] [PMID: 27461360]
[27]
Tadesse S, Caldon EC, Tilley W, Wang S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An Update. J Med Chem 2019; 62(9): 4233-51.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01469] [PMID: 30543440]
[http://dx.doi.org/10.1021/acs.jmedchem.8b01469] [PMID: 30543440]
[28]
Wang L, Shao X, Zhong T, et al. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol 2021; 17(5): 567-75.
[http://dx.doi.org/10.1038/s41589-021-00742-5] [PMID: 33664520]
[http://dx.doi.org/10.1038/s41589-021-00742-5] [PMID: 33664520]