Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Research Article

Study on Single-molecule Biophysics and Biochemistry in Dilute Liquids and Live Cells without Immobilization or Significant Hydrodynamic Flow: The Thermodynamic Single-molecule Demon

Author(s): Gerd Baumann and Zeno Foldes-Papp*

Volume 23, Issue 14, 2022

Published on: 22 August, 2022

Page: [1750 - 1757] Pages: 8

DOI: 10.2174/1389201023666220616123928

Abstract

Since mathematics provides a way to answer questions about the thermodynamic jitter in a clear, rational manner, with evidence to support it, mathematics is the reliable method necessary to get the best information on the movement of a single molecule / a single particle at the molecular scale in dilute liquids and live cells without immobilization or hydrodynamic flow. The Brownian movement (normal diffusive systems) and generally the thermodynamic jitter (anomalous diffusive systems) are ultimately the direct or indirect cause of every measurement signal at the molecular scale in diffraction limited and unlimited optical systems in dilute liquids and live cells without immobilization or hydrodynamic flow. For example, emitted photons are the epiphenomenon of the underlying process of thermodynamic jitter of single molecules / single particles at the molecular scale. The key question is: How far apart do two molecules / two particles have to be in the time domain so that the required degree of separation between the two individual molecules / the two individual particles can be quantified at the molecular scale in order to distinguish them as separate entities without immobilization or hydrodynamic flow? The Földes-Papp’s limits of the singlemolecule time resolution in dilute liquids and live cells without immobilization or hydrodynamic flow are the exact answers. The diffusive process is complicated and not minimalist. A minimalist model has a third possibility, it may be right but irrelevant.

Keywords: Live cell, Brownian movement, normal diffusive systems, thermodynamic jitter, anomalous diffusive systems, CTRW.

Graphical Abstract

[1]
Kay, E.R.; Leigh, D.A.; Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed., 2007, 46(1-2), 72-191.
[http://dx.doi.org/10.1002/anie.200504313] [PMID: 17133632]
[2]
Dey, K.K.; Pong, F.Y.; Breffke, J.; Pavlick, R.; Hatzakis, E.; Pacheco, C.; Sen, A. Dynamic coupling at the angstom scale. Angew. Chem. Int. Ed., 2021, 55(3), 1113-1117.
[http://dx.doi.org/10.1002/anie.201509237]
[3]
Ghosh, S.; Somasundar, A.; Sen, A. Enzymes as active matter. Annu. Rev. Condens. Matter Phys., 2021, 12(1), 177-200.
[http://dx.doi.org/10.1146/annurev-conmatphys-061020-053036]
[4]
Földes-Papp, Z. Individual macromolecule motion in a crowded living cell. Curr. Pharm. Biotechnol., 2015, 16(1), 1-2.
[http://dx.doi.org/10.2174/1389201016666141229103953] [PMID: 25543662]
[5]
Földes-Papp, Z. ‘True’ single-molecule molecule observations by fluorescence correlation spectroscopy and two-color fluorescence cross-correlation spectroscopy. Exp. Mol. Pathol., 2007, 82(2), 147-155.
[http://dx.doi.org/10.1016/j.yexmp.2006.12.002] [PMID: 17258199]
[6]
Földes-Papp, Z. What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy. Exp. Mol. Pathol., 2006, 80(3), 209-218.
[http://dx.doi.org/10.1016/j.yexmp.2006.01.001] [PMID: 16515783]
[7]
Földes-Papp, Z.; Baumann, G.; Li, L.C. Visualization of subdiffusive sites in a live single cell. J. Biol. Methods, 2021, 8(1), e142.
[http://dx.doi.org/10.14440/jbm.2021.348] [PMID: 33604394]
[8]
Földes-Papp, Z. Single-molecule time resolution in dilute liquids and live cells at the molecular scale: Constraints on the measurement time. Am. J. Trans. Med., 2021, 5(3), 154-165.
[9]
Földes-Papp, Z. Fluorescence fluctuation spectroscopic approaches to the study of a single molecule diffusing in solution and a live cell without systemic drift or convection: A theoretical study. Curr. Pharm. Biotechnol., 2007, 8(5), 261-273.
[http://dx.doi.org/10.2174/138920107782109930] [PMID: 17979724]
[10]
Földes-Papp, Z.; Baumann, G.; Kinjo, M.; Tamura, M. Single-phase single- molecule fluorescence correlation spectroscopy (SPSM-FCS). Encyclopedia of Medical Genomics and Proteomics; Fuchs, J; Podda, M., Ed.; Taylor & Francis: New York, 2004, pp. 1-7.
[11]
Földes-Papp, Z.; Baumann, G. Fluorescence molecule counting for single-molecule studies in crowded environment of living cells without and with broken ergodicity. Curr. Pharm. Biotechnol., 2011, 12(5), 824-833.
[http://dx.doi.org/10.2174/138920111795470949] [PMID: 21446904]
[12]
Baumann, G.; Place, R.F.; Földes-Papp, Z. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy. Curr. Pharm. Biotechnol., 2010, 11(5), 527-543.
[http://dx.doi.org/10.2174/138920110791591454] [PMID: 20553227]
[13]
Baumann, G.; Kinjo, M.; Földes-Papp, Z. Anomalous subdiffusive measure- ments by fluorescence correlation spectroscopy and simula-tions of translational diffusive behavior in live cells. J. Biol. Methods, 2014, 1(1), e3.
[http://dx.doi.org/10.14440/jbm.2014.17]
[14]
Földes-Papp, Z. Measurements of single molecules in solution and live cells over longer observation times than those currently possible: The meaningful time. Curr. Pharm. Biotechnol., 2013, 14(4), 441-444.
[http://dx.doi.org/10.2174/1389201011314040009] [PMID: 23369193]
[15]
Baumann, G.; Gryczynski, I.; Földes-Papp, Z. Anomalous behavior in length distributions of 3D random Brownian walks and measured photon count rates within observation volumes of single-molecule trajectories in fluorescence fluctuation microscopy. Opt. Express, 2010, 18(17), 17883-17896.
[http://dx.doi.org/10.1364/OE.18.017883] [PMID: 20721175]
[16]
Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 1994, 19(11), 780-782.
[http://dx.doi.org/10.1364/OL.19.000780] [PMID: 19844443]
[17]
Hell, S.W.; Kroug, M. Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B, 1995, 60(5), 495-497.
[http://dx.doi.org/10.1007/BF01081333]
[18]
Hell, S.W. Microscopy and its focal switch. Nat. Methods, 2009, 6(1), 24-32.
[http://dx.doi.org/10.1038/nmeth.1291] [PMID: 19116611]
[19]
Moerner, W.E.; Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett., 1989, 62(21), 2535-2538.
[http://dx.doi.org/10.1103/PhysRevLett.62.2535] [PMID: 10040013]
[20]
Dickson, R.M.; Cubitt, A.B.; Tsien, R.Y.; Moerner, W.E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature, 1997, 388(6640), 355-358.
[http://dx.doi.org/10.1038/41048] [PMID: 9237752]
[21]
Moerner, W.E. Single-molecule mountains yield nanoscale cell images. Nat. Methods, 2006, 3(10), 781-782.
[http://dx.doi.org/10.1038/nmeth1006-781] [PMID: 16990808]
[22]
Sahl, S.J.; Moerner, W.E. Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struct. Biol., 2013, 23(5), 778-787.
[http://dx.doi.org/10.1016/j.sbi.2013.07.010] [PMID: 23932284]
[23]
Betzig, E. Proposed method for molecular optical imaging. Opt. Lett., 1995, 20(3), 237-239.
[http://dx.doi.org/10.1364/OL.20.000237] [PMID: 19859146]
[24]
Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S. Boni- facino, J.S; Davidson, M.W; Lippincott-Schwartz, J; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 2006, 313(5793), 1642-1645.
[http://dx.doi.org/10.1126/science.1127344] [PMID: 16902090]
[25]
Rust, M.J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 2006, 3(10), 793-795.
[http://dx.doi.org/10.1038/nmeth929] [PMID: 16896339]
[26]
Hess, S.T.; Girirajan, T.P.; Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Curr. Opin. Struct. Biol., 2006, 2006(91), 4258-4272.
[27]
Valli, J.; Garcia-Burgos, A.; Rooney, L.M.; Vale de Melo, E. Oliveira, B.; Duncan, R.R.; Rickman, C. Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique. J. Biol. Chem., 2021, 297(1), 100791.
[http://dx.doi.org/10.1016/j.jbc.2021.100791] [PMID: 34015334]
[28]
Hirschfeld, T. Optical microscopic observation of single small molecules. Appl. Opt., 1976, 15(12), 2965-2966.
[http://dx.doi.org/10.1364/AO.15.002965] [PMID: 20168369]
[29]
Hirschfeld, T. Quantum efficiency independence of the time integrated emission from a fluorescent molecule. Appl. Opt., 1976, 15(12), 3135-3139.
[http://dx.doi.org/10.1364/AO.15.003135] [PMID: 20168404]
[30]
Shera, E.B.; Seitzinger, N.K.; Davis, L.M.; Keller, R.A.; Soper, S.A. Detection of single fluorescent molecules. Chem. Phys. Lett., 1990, 174(6), 553-557.
[http://dx.doi.org/10.1016/0009-2614(90)85485-U]
[31]
Weiss, S. Fluorescence spectroscopy of single biomolecules. Science, 1999, 283(5408), 1676-1683.
[http://dx.doi.org/10.1126/science.283.5408.1676] [PMID: 10073925]
[32]
Földes-Papp, Z.; Liao, S.C.; You, T.; Terpetschnig, E.; Barbieri, B. Confocal fluctuation spectroscopy and imaging. Curr. Pharm. Biotechnol., 2010, 11(6), 639-653.
[http://dx.doi.org/10.2174/138920110792246618] [PMID: 20497113]
[33]
Fukushima, R.; Yamamoto, J.; Kinjo, M. Empirical bayes method using surrounding pixel information for number and brightness analy-sis. Biophys. J., 2021, 120(11), 2156-2171.
[http://dx.doi.org/10.1016/j.bpj.2021.03.033] [PMID: 33812845]
[34]
Montroll, E.W.; Weiss, G.H. Random walks on lattices. II. J. Math. Phys., 1965, 6(2), 167-181.
[http://dx.doi.org/10.1063/1.1704269]
[35]
Klafter, J.; Sokolov, I.M. First Steps in Random Walks: From Tools to Appli- cations; Oxford University Press: Oxford, 2011.
[http://dx.doi.org/10.1093/acprof:oso/9780199234868.001.0001]
[36]
Meerschaert, M.M.; Benson, D.A.; Scheffler, H.P.; Becker-Kern, P. Governing equations and solutions of anomalous random walk limits. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2002, 66(6 Pt 1), 060102.
[http://dx.doi.org/10.1103/PhysRevE.66.060102] [PMID: 12513258]
[37]
Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Func- tions, Related Topics and Applications; Springer Monographs in Mathematics; Springer: Berlin, Heidelberg, 2014.
[38]
Baumann, G. Sinc based inverse Laplace Transforms, Mittag-Leffler functions and their approximation for fractional calculus. Fractal Fract., 2021, 5(2), 43.
[http://dx.doi.org/10.3390/fractalfract5020043]

© 2024 Bentham Science Publishers | Privacy Policy