Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Targeting Virus-Induced Reprogrammed Cell Metabolism via Glycolytic Inhibitors: An Effective Therapeutic Approach Against SARS-CoV-2

Author(s): Dolly Sharma, Mamta Singh, Rajat Gupta, Manoj Garg, Andrea Altieri, Alexander Kurkin, Vinit Kumar* and Reshma Rani*

Volume 23, Issue 2, 2023

Published on: 23 August, 2022

Page: [120 - 130] Pages: 11

DOI: 10.2174/1389557522666220616112042

Price: $65

Abstract

Reprogrammed cell metabolism has been observed in a wide range of virally infected cells. Viruses do not have their metabolism; they rely on the cellular metabolism of the host to ensure the energy and macromolecules requirement for replication. Like other viruses, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) does not own its metabolism, but virus infected cells adopt aberrant cell metabolism. Infected viral use the energy and macromolecules to make their own copies; to do so, they need to increase the rate of metabolism to ensure the requirement of macromolecules. In contrast, the cellular metabolism of noninfected cells is more plastic than infected cells. Therefore, it is essential to examine the virus infection in the context of metabolic alterations of host cells. A novel therapeutic approach is urgently required to treat highly infectious COVID-19 disease and its pathogenesis. Interference of glucose metabolism might be a promising strategy to determine COVID-19 treatment options. Based on the recent research, this mini-review aims to understand the impact of reprogrammed cell metabolism in COVID-19 pathogenesis and explores the potential of targeting metabolic pathways with small molecules as a new strategy for the development of a novel drug to treat COVID-19 disease. This type of research line provides new hope in the development of antiviral drugs by targeting hijacked cell metabolism in case of viral diseases and also in COVID-19.

Keywords: Aberrant cell metabolism, antiviral drugs, COVID-19, Glycolytic inhibitors, metabolic inhibitors, small molecules, SARS-CoV-2.

Graphical Abstract

[1]
Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents, 2020, 55(6), 105948.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105948] [PMID: 32201353]
[2]
Hui, D.S.; I, Azhar E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; Zumla, A.; Petersen, E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus out-break in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[3]
Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet, 2020, 395(10225), 689-697.
[http://dx.doi.org/10.1016/S0140-6736(20)30260-9] [PMID: 32014114]
[4]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[5]
Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of coro-navirus disease 2019 (COVID-19): A review. JAMA, 2020, 324(8), 782-793.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[6]
Reiterer, M.; Rajan, M.; Gomez-Banoy, N.; Lau, J.D.; Gómez-Escobar, L.G. Hyperglycemia in acute COVID-19 is characterized by adipose tissue dysfunction and insulin resistance. SSRN Electron. J, 2021.
[http://dx.doi.org/10.2139/ssrn.3837640]
[7]
Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; Xiang, Z.; Mu, Z.; Chen, X.; Chen, J.; Hu, K.; Jin, Q.; Wang, J.; Qian, Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun., 2020, 11(1), 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[8]
Jin, H.; Hong, C.; Chen, S.; Zhou, Y.; Wang, Y.; Mao, L.; Li, Y.; He, Q.; Li, M.; Su, Y.; Wang, D.; Wang, L.; Hu, B. Consensus for preven-tion and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc. Neurol., 2020, 5(2), 146-151.
[http://dx.doi.org/10.1136/svn-2020-000382] [PMID: 32385132]
[9]
Guthmiller, J. J.; Wilson, P. C. Remembering seasonal coronaviruses. Science (80-)., 2020, 370(6522), 1272-1273.
[http://dx.doi.org/10.1126/science.abf4860]
[10]
Xu, F.; Wen, Y.; Hu, X.; Wang, T.; Chen, G. The potential use of vitamin C to prevent kidney injury in patients with COVID-19. Diseases, 2021, 9(3), 46.
[http://dx.doi.org/10.3390/diseases9030046] [PMID: 34203409]
[11]
Andrade Silva, M.; da Silva, A.R.P.A.; do Amaral, M.A.; Fragas, M.G.; Câmara, N.O.S. Metabolic alterations in SARS-CoV-2 infection and its implication in kidney dysfunction. Front. Physiol., 2021, 12, 624698.
[http://dx.doi.org/10.3389/fphys.2021.624698] [PMID: 33716771]
[12]
Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.; Hod, E.A.; Spitalnik, S.L.; D’Alessandro, A. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight, 2020, 5(14), e140327.
[http://dx.doi.org/10.1172/jci.insight.140327] [PMID: 32559180]
[13]
Wu, D.; Shu, T.; Yang, X.; Song, J.X.; Zhang, M.; Yao, C.; Liu, W.; Huang, M.; Yu, Y.; Yang, Q.; Zhu, T.; Xu, J.; Mu, J.; Wang, Y.; Wang, H.; Tang, T.; Ren, Y.; Wu, Y.; Lin, S.H.; Qiu, Y.; Zhang, D.Y.; Shang, Y.; Zhou, X. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev., 2020, 7(7), 1157-1168.
[http://dx.doi.org/10.1093/nsr/nwaa086] [PMID: 34676128]
[14]
Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; Ge, W.; Liu, W.; Liang, S.; Chen, H.; Zhang, Y.; Li, J.; Xu, J.; He, Z.; Chen, B.; Wang, J.; Yan, H.; Zheng, Y.; Wang, D.; Zhu, J.; Kong, Z.; Kang, Z.; Liang, X.; Ding, X.; Ruan, G.; Xiang, N.; Cai, X.; Gao, H.; Li, L.; Li, S.; Xiao, Q.; Lu, T.; Zhu, Y.; Liu, H.; Chen, H.; Guo, T. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell, 2020, 182(1), 59-72.e15.
[http://dx.doi.org/10.1016/j.cell.2020.05.032] [PMID: 32492406]
[15]
Su, Y.; Chen, D.; Yuan, D.; Lausted, C.; Choi, J.; Dai, C.L.; Voillet, V.; Duvvuri, V.R.; Scherler, K.; Troisch, P.; Baloni, P.; Qin, G.; Smith, B.; Kornilov, S.A.; Rostomily, C.; Xu, A.; Li, J.; Dong, S.; Rothchild, A.; Zhou, J.; Murray, K.; Edmark, R.; Hong, S.; Heath, J.E.; Earls, J.; Zhang, R.; Xie, J.; Li, S.; Roper, R.; Jones, L.; Zhou, Y.; Rowen, L.; Liu, R.; Mackay, S.; O’Mahony, D.S.; Dale, C.R.; Wallick, J.A.; Al-gren, H.A.; Zager, M.A.; Wei, W.; Price, N.D.; Huang, S.; Subramanian, N.; Wang, K.; Magis, A.T.; Hadlock, J.J.; Hood, L.; Aderem, A.; Bluestone, J.A.; Lanier, L.L.; Greenberg, P.D.; Gottardo, R.; Davis, M.M.; Goldman, J.D.; Heath, J.R. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell, 2020, 183(6), 1479-1495.e20.
[http://dx.doi.org/10.1016/j.cell.2020.10.037] [PMID: 33171100]
[16]
Ayres, J.S. A metabolic handbook for the COVID-19 pandemic. Nat. Metab., 2020, 2(7), 572-585.
[http://dx.doi.org/10.1038/s42255-020-0237-2] [PMID: 32694793]
[17]
Thaker, S.K.; Ch’ng, J.; Christofk, H.R. Viral hijacking of cellular metabolism. BMC Biol., 2019, 17(1), 59.
[http://dx.doi.org/10.1186/s12915-019-0678-9] [PMID: 31319842]
[18]
Forbester, J.L.; Clement, M.; Wellington, D.; Yeung, A.; Dimonte, S.; Marsden, M.; Chapman, L.; Coomber, E.L.; Tolley, C.; Lees, E.; Hale, C.; Clare, S.; Udalova, I.; Dong, T.; Dougan, G.; Humphreys, I.R. IRF5 promotes influenza virus-induced inflammatory responses in human induced pluripotent stem cell-derived myeloid cells and murine models. J. Virol., 2020, 94(9), e00121-e00120.
[http://dx.doi.org/10.1128/JVI.00121-20] [PMID: 32075938]
[19]
Munger, J.; Bennett, B.D.; Parikh, A.; Feng, X.J.; McArdle, J.; Rabitz, H.A.; Shenk, T.; Rabinowitz, J.D. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat. Biotechnol., 2008, 26(10), 1179-1186.
[http://dx.doi.org/10.1038/nbt.1500] [PMID: 18820684]
[20]
Yu, Y.; Clippinger, A.J.; Alwine, J.C. Viral effects on metabolism: Changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends Microbiol., 2011, 19(7), 360-367.
[http://dx.doi.org/10.1016/j.tim.2011.04.002] [PMID: 21570293]
[21]
Abrantes, J.L.; Alves, C.M.; Costa, J.; Almeida, F.C.L.; Sola-Penna, M.; Fontes, C.F.; Souza, T.M. Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). Biochim. Biophys. Acta, 2012, 1822(8), 1198-1206.
[http://dx.doi.org/10.1016/j.bbadis.2012.04.011] [PMID: 22542512]
[22]
Sorbara, L.R.; Maldarelli, F.; Chamoun, G.; Schilling, B.; Chokekijcahi, S.; Staudt, L.; Mitsuya, H.; Simpson, I.A.; Zeichner, S.L. Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression. J. Virol., 1996, 70(10), 7275-7279.
[http://dx.doi.org/10.1128/jvi.70.10.7275-7279.1996] [PMID: 8794382]
[23]
Prusinkiewicz, M.A.; Mymryk, J.S. Metabolic reprogramming of the host cell by human adenovirus infection. Viruses, 2019, 11(2), 141.
[http://dx.doi.org/10.3390/v11020141] [PMID: 30744016]
[24]
Miyake-Stoner, S.J.; O’Shea, C.C. Metabolism goes viral. Cell Metab., 2014, 19(4), 549-550.
[http://dx.doi.org/10.1016/j.cmet.2014.03.022] [PMID: 24703688]
[25]
Mushtaq, M.; Darekar, S.; Kashuba, E. DNA tumor viruses and cell metabolism. Oxid. Med. Cell. Longev., 2016, 2016, 6468342.
[http://dx.doi.org/10.1155/2016/6468342] [PMID: 27034740]
[26]
Krishnan, S.; Nordqvist, H.; Ambikan, A.T.; Gupta, S.; Sperk, M. Implications of central carbon metabolism in SARS-CoV-2 replication and disease severity. BioRxiv, 2021.
[http://dx.doi.org/10.1101/2021.02.24.432759]
[27]
Codo, A.C.; Davanzo, G.G.; Monteiro, L.B.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; Jimenez Restrepo, J.L.; Vendramini, P.H.; Reis-de-Oliveira, G.; Bispo Dos Santos, K.; Toledo-Teixeira, D.A.; Parise, P.L.; Martini, M.C.; Marques, R.E.; Carmo, H.R.; Borin, A.; Coimbra, L.D.; Boldrini, V.O.; Brunetti, N.S.; Vieira, A.S.; Mansour, E.; Ulaf, R.G.; Bernardes, A.F.; Nunes, T.A.; Ribeiro, L.C.; Palma, A.C.; Agrela, M.V.; Moretti, M.L.; Sposito, A.C.; Pereira, F.B.; Velloso, L.A.; Vinolo, M.A.R.; Damasio, A.; Proença-Módena, J.L.; Carvalho, R.F.; Mori, M.A.; Martins-de-Souza, D.; Nakaya, H.I.; Farias, A.S.; Moraes-Vieira, P.M. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab., 2020, 32(3), 437-446.e5.
[http://dx.doi.org/10.1016/j.cmet.2020.07.007] [PMID: 32697943]
[28]
Watanabe, Y.; Allen, J. D.; Wrapp, D.; McLellan, J. S.; Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science (80-. ), 2020, 369(6501), 330-333.
[http://dx.doi.org/10.1126/science.abb9983]
[29]
Watanabe, Y.; Bowden, T.A.; Wilson, I.A.; Crispin, M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(10), 1480-1497.
[http://dx.doi.org/10.1016/j.bbagen.2019.05.012] [PMID: 31121217]
[30]
O’Carroll, S.M.; O’Neill, L.A.J. Targeting immunometabolism to treat COVID-19. Immunother. Adv., 2021, 1(1), b013.
[http://dx.doi.org/10.1093/immadv/ltab013] [PMID: 34240083]
[31]
Ramière, C.; Rodriguez, J.; Enache, L.S.; Lotteau, V.; André, P.; Diaz, O. Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A. J. Virol., 2014, 88(6), 3246-3254.
[http://dx.doi.org/10.1128/JVI.02862-13] [PMID: 24390321]
[32]
Ardestani, A.; Azizi, Z. Targeting glucose metabolism for treatment of COVID-19. Signal Transduct. Target. Ther., 2021, 6(1), 112.
[http://dx.doi.org/10.1038/s41392-021-00532-4] [PMID: 33677470]
[33]
Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol., 2021, 17(1), 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[34]
Singh, K.K.; Chaubey, G.; Chen, J.Y.; Suravajhala, P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol., 2020, 319(2), C258-C267.
[http://dx.doi.org/10.1152/ajpcell.00224.2020] [PMID: 32510973]
[35]
Shi, C-S.; Qi, H-Y.; Boularan, C.; Huang, N-N.; Abu-Asab, M.; Shelhamer, J.H.; Kehrl, J.H. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J. Immunol., 2014, 193(6), 3080-3089.
[http://dx.doi.org/10.4049/jimmunol.1303196] [PMID: 25135833]
[36]
Guzzi, P.H.; Mercatelli, D.; Ceraolo, C.; Giorgi, F.M. Master regulator analysis of the SARS-CoV-2/human interactome. J. Clin. Med., 2020, 9(4), 982.
[http://dx.doi.org/10.3390/jcm9040982] [PMID: 32244779]
[37]
Ajaz, S.; McPhail, M.J.; Singh, K.K.; Mujib, S.; Trovato, F.M.; Napoli, S.; Agarwal, K. Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19. Am. J. Physiol. Cell Physiol., 2021, 320(1), C57-C65.
[http://dx.doi.org/10.1152/ajpcell.00426.2020] [PMID: 33151090]
[38]
Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Baßler, K.; Schlickeiser, S.; Zhang, B.; Krämer, B.; Krammer, T.; Brumhard, S.; Bonaguro, L.; De Domenico, E.; Wendisch, D.; Grasshoff, M.; Kapellos, T.S.; Beckstette, M.; Pecht, T.; Saglam, A.; Dietrich, O.; Mei, H.E.; Schulz, A.R.; Conrad, C.; Kunkel, D.; Vafadarnejad, E.; Xu, C.J.; Horne, A.; Herbert, M.; Drews, A.; Thibeault, C.; Pfeiffer, M.; Hippenstiel, S.; Hocke, A.; Müller-Redetzky, H.; Heim, K.M.; Machleidt, F.; Uhrig, A.; Bosquillon de Jarcy, L.; Jürgens, L.; Stegemann, M.; Glösenkamp, C.R.; Volk, H.D.; Goffinet, C.; Landthaler, M.; Wyler, E.; Georg, P.; Schneider, M.; Dang-Heine, C.; Neuwinger, N.; Kappert, K.; Tauber, R.; Corman, V.; Raabe, J.; Kaiser, K.M.; Vinh, M.T.; Rieke, G.; Meisel, C.; Ulas, T.; Becker, M.; Geffers, R.; Witzenrath, M.; Drosten, C.; Suttorp, N.; von Kalle, C.; Kurth, F.; Händler, K.; Schultze, J.L.; Aschenbrenner, A.C.; Li, Y.; Nattermann, J.; Sawitzki, B.; Saliba, A.E.; Sander, L.E.; Angelov, A.; Bals, R.; Bartholomäus, A.; Becker, A.; Bezdan, D.; Bonifacio, E.; Bork, P.; Clavel, T.; Colome-Tatche, M.; Die-fenbach, A.; Dilthey, A.; Fischer, N.; Förstner, K.; Frick, J-S.; Gagneur, J.; Goesmann, A.; Hain, T.; Hummel, M.; Janssen, S.; Kalinowski, J.; Kallies, R.; Kehr, B.; Keller, A.; Kim-Hellmuth, S.; Klein, C.; Kohlbacher, O.; Korbel, J.O.; Kurth, I.; Landthaler, M.; Li, Y.; Ludwig, K.; Makarewicz, O.; Marz, M.; McHardy, A.; Mertes, C.; Nöthen, M.; Nürnberg, P.; Ohler, U.; Ossowski, S.; Overmann, J.; Peter, S.; Pfeffer, K.; Poetsch, A.R.; Pühler, A.; Rajewsky, N.; Ralser, M.; Rieß, O.; Ripke, S.; Nunes da Rocha, U.; Rosenstiel, P.; Saliba, A-E.; Sander, L.E.; Sawitzki, B.; Schiffer, P.; Schulte, E-C.; Schultze, J.L.; Sczyrba, A.; Stegle, O.; Stoye, J.; Theis, F.; Vehreschild, J.; Vogel, J.; von Kleist, M.; Walker, A.; Walter, J.; Wieczorek, D.; Ziebuhr, J. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell, 2020, 182(6), 1419-1440.e23.
[http://dx.doi.org/10.1016/j.cell.2020.08.001] [PMID: 32810438]
[39]
Raud, B.; McGuire, P.J.; Jones, R.G.; Sparwasser, T.; Berod, L. Fatty acid metabolism in CD8+ T cell memory: Challenging current concepts. Immunol. Rev., 2018, 283(1), 213-231.
[http://dx.doi.org/10.1111/imr.12655] [PMID: 29664569]
[40]
Bharadwaj, S.; Singh, M.; Kirtipal, N.; Kang, S.G. SARS-CoV-2 and glutamine: SARS-CoV-2 triggered pathogenesis via metabolic reprogramming of glutamine in host cells. Front. Mol. Biosci., 2021, 7, 627842.
[http://dx.doi.org/10.3389/fmolb.2020.627842] [PMID: 33585567]
[41]
Abu-Farha, M.; Thanaraj, T.A.; Qaddoumi, M.G.; Hashem, A.; Abubaker, J.; Al-Mulla, F. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int. J. Mol. Sci., 2020, 21(10), 3544.
[http://dx.doi.org/10.3390/ijms21103544] [PMID: 32429572]
[42]
My Personal News for Recruitment and counselling Home https://www.mpnrc.org/drdo-anti-covid-drug-2dg-medicine-released
[44]
Kang, H.T.; Hwang, E.S. 2-Deoxyglucose: An anticancer and antiviral therapeutic, but not anymore a low glucose mimetic. Life Sci., 2006, 78(12), 1392-1399.
[http://dx.doi.org/10.1016/j.lfs.2005.07.001] [PMID: 16111712]
[45]
Pajak, B.; Siwiak, E.; Sołtyka, M.; Priebe, A.; Zieliński, R.; Fokt, I.; Ziemniak, M.; Jaśkiewicz, A.; Borowski, R.; Domoradzki, T.; Priebe, W. 2-Deoxy-D-Glucose and its analogs: From diagnostic to therapeutic agents. Int. J. Mol. Sci., 2019, 21(1), 234.
[http://dx.doi.org/10.3390/ijms21010234] [PMID: 31905745]
[46]
Pasquereau, S.; Nehme, Z.; Haidar Ahmad, S.; Daouad, F.; Van Assche, J.; Wallet, C.; Schwartz, C.; Rohr, O.; Morot-Bizot, S.; Herbein, G. Resveratrol inhibits hcov-229e and sars-cov-2 coronavirus replication in vitro. Viruses, 2021, 13(2), 354.
[http://dx.doi.org/10.3390/v13020354] [PMID: 33672333]
[47]
Yang, M.; Wei, J.; Huang, T.; Lei, L.; Shen, C.; Lai, J.; Yang, M.; Liu, L.; Yang, Y.; Liu, G.; Liu, Y. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phytother. Res., 2021, 35(3), 1127-1129.
[http://dx.doi.org/10.1002/ptr.6916] [PMID: 33222316]
[48]
Wahedi, H.M.; Ahmad, S.; Abbasi, S.W. Stilbene-based natural compounds as promising drug candidates against COVID-19. J. Biomol. Struct. Dyn., 2021, 39(9), 3225-3234.
[http://dx.doi.org/10.1080/07391102.2020.1762743] [PMID: 32345140]
[49]
Côté, C.D.; Rasmussen, B.A.; Duca, F.A.; Zadeh-Tahmasebi, M.; Baur, J.A.; Daljeet, M.; Breen, D.M.; Filippi, B.M.; Lam, T.K. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat. Med., 2015, 21(5), 498-505.
[http://dx.doi.org/10.1038/nm.3821] [PMID: 25849131]
[50]
Dragelj, J.; Mroginski, M.A.; Ebrahimi, K.H. Hidden in plain sight: Natural products of commensal microbiota as an environmental selec-tion pressure for the rise of new variants of SARS-CoV-2. ChemBioChem, 2021, 22(20), 2946-2950.
[http://dx.doi.org/10.1002/cbic.202100346] [PMID: 34265150]
[51]
Di Pierro, F.; Iqtadar, S.; Khan, A.; Ullah Mumtaz, S.; Masud Chaudhry, M.; Bertuccioli, A.; Derosa, G.; Maffioli, P.; Togni, S.; Riva, A.; Allegrini, P.; Khan, S. Potential clinical benefits of quercetin in the early stage of COVID-19: Results of a second, pilot, randomized, controlled and open-label clinical trial. Int. J. Gen. Med., 2021, 14, 2807-2816.
[http://dx.doi.org/10.2147/IJGM.S318949] [PMID: 34194240]
[52]
Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol., 2020, 164, 1693-1703.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.235] [PMID: 32745548]
[53]
Derosa, G.; Maffioli, P.; D’Angelo, A.; Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother. Res., 2021, 35(3), 1230-1236.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[54]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-COV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar. Drugs, 2020, 18(4), E225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[55]
Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[56]
Liu, X.; Raghuvanshi, R.; Ceylan, F.D.; Bolling, B.W. Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. J. Agric. Food Chem., 2020, 68(47), 13982-13989.
[http://dx.doi.org/10.1021/acs.jafc.0c05064] [PMID: 33179911]
[57]
Qiao, J.; Li, Y. S.; Zeng, R.; Liu, F. L.; Luo, R. H. SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Science (80-. ), 2021, 371, 6536.
[58]
Chen, Z.; Cui, Q.; Cooper, L.; Zhang, P.; Lee, H.; Chen, Z.; Wang, Y.; Liu, X.; Rong, L.; Du, R. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci., 2021, 11(1), 45.
[http://dx.doi.org/10.1186/s13578-021-00564-x] [PMID: 33640032]
[59]
Hong, S.; Seo, S.H.; Woo, S.J.; Kwon, Y.; Song, M.; Ha, N.C. Epigallocatechin gallate inhibits the uridylate-specific endoribonuclease nsp15 and efficiently neutralizes the SARS-CoV-2 strain. J. Agric. Food Chem., 2021, 69(21), 5948-5954.
[http://dx.doi.org/10.1021/acs.jafc.1c02050] [PMID: 34015930]
[60]
Zhu, Y.; Xie, D.Y. Docking characterization and in vitro inhibitory activity of Flavan-3-ols and dimeric proanthocyanidins against the main protease activity of SARS-Cov-2. Front. Plant Sci., 2020, 11, 601316.
[http://dx.doi.org/10.3389/fpls.2020.601316] [PMID: 33329667]
[61]
Xiao, T.; Cui, M.; Zheng, C.; Wang, M.; Sun, R.; Gao, D.; Bao, J.; Ren, S.; Yang, B.; Lin, J.; Li, X.; Li, D.; Yang, C.; Zhou, H. Myricetin inhibits SARS-CoV-2 viral replication by targeting Mpro and ameliorates pulmonary inflammation. Front. Pharmacol., 2021, 12, 669642.
[http://dx.doi.org/10.3389/fphar.2021.669642] [PMID: 34220507]
[62]
Clementi, N.; Scagnolari, C.; D’Amore, A.; Palombi, F.; Criscuolo, E.; Frasca, F.; Pierangeli, A.; Mancini, N.; Antonelli, G.; Clementi, M.; Carpaneto, A.; Filippini, A. Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro. Pharmacol. Res., 2021, 163, 105255.
[http://dx.doi.org/10.1016/j.phrs.2020.105255] [PMID: 33096221]
[63]
Yang, L.; Wang, Z. Natural products, alone or in combination with fda-approved drugs, to treat covid-19 and lung cancer. Biomedicines, 2021, 9(6), 689.
[http://dx.doi.org/10.3390/biomedicines9060689] [PMID: 34207313]
[64]
Samec, M.; Liskova, A.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Buhrmann, C.; Varghese, E.; Abotaleb, M.; Qaradakhi, T.; Zulli, A.; Kello, M.; Mojzis, J.; Zubor, P.; Kwon, T.K.; Shakibaei, M.; Büsselberg, D.; Sarria, G.R.; Golubnitschaja, O.; Kubatka, P. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J., 2020, 11(3), 377-398.
[http://dx.doi.org/10.1007/s13167-020-00217-y] [PMID: 32843908]
[65]
Jabalia, N.; Kumar, A.; Kumar, V. In silico approach in drug design and drug discovery. An update., 2021, 245-271. [https://www.rcsb.org/]
[66]
Xu, C.; Ke, Z.; Liu, C.; Wang, Z.; Liu, D.; Zhang, L.; Wang, J.; He, W.; Xu, Z.; Li, Y.; Yang, Y.; Huang, Z.; Lv, P.; Wang, X.; Han, D.; Li, Y.; Qiao, N.; Liu, B. Systemic in silico screening in drug discovery for coronavirus disease (covid-19) with an online interactive web ser-ver. J. Chem. Inf. Model., 2020, 60(12), 5735-5745.
[http://dx.doi.org/10.1021/acs.jcim.0c00821] [PMID: 32786695]
[67]
Jain, S.; Talley, D.C.; Baljinnyam, B.; Choe, J.; Hanson, Q.; Zhu, W.; Xu, M.; Chen, C.Z.; Zheng, W.; Hu, X.; Shen, M.; Rai, G.; Hall, M.D.; Simeonov, A.; Zakharov, A.V. Hybrid in silico approach reveals novel inhibitors of multiple SARS-CoV-2 variants. ACS Pharmacol. Transl. Sci., 2021, 4(5), 1675-1688.
[http://dx.doi.org/10.1021/acsptsci.1c00176] [PMID: 34608449]
[68]
Kumar, A.; Khandelwal, M.; Gupta, S.K. Fourier transform infrared spectroscopy: Data interpretation and applications in structure elucidation and analysis of small molecules and nanostructures in; Data Processing Handbook for Complex Biological Data Sources, 2019, pp. 77-96.
[http://dx.doi.org/10.1016/B978-0-12-816548-5.00006-X]
[69]
Guo, W.; Li, M.; Dong, Y.; Zhou, H.; Zhang, Z.; Tian, C.; Qin, R.; Wang, H.; Shen, Y.; Du, K.; Zhao, L.; Fan, H.; Luo, S.; Hu, D. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab. Res. Rev., 2020, 36(7), e3319.
[http://dx.doi.org/10.1002/dmrr.3319] [PMID: 32233013]
[70]
Kumar, V.; Rani, R. Selective inhibitors of human lactate dehydrogenase A to fight against metabolic cancer: a patent landscape. Pharm. Pat. Anal., 2020, 9(6), 155-157.
[http://dx.doi.org/10.4155/ppa-2020-0025] [PMID: 33275465]
[71]
Rani, R.; Kumar, V. When will small molecule LDH inhibitors realize their potential in the cancer clinic? Future Med. Chem., 2017, 9(11), 1113-1115.
[http://dx.doi.org/10.4155/fmc-2017-0082] [PMID: 28722474]
[72]
Rani, R.; Kumar, V. Recent update on human lactate dehydrogenase enzyme 5 (hLDH5) inhibitors: A promising approach for cancer chemotherapy. J. Med. Chem., 2016, 59(2), 487-496.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00168] [PMID: 26340601]
[73]
Granchi, C.; Paterni, I.; Rani, R.; Minutolo, F. Small-molecule inhibitors of human LDH5. Future Med. Chem., 2013, 5(16), 1967-1991.
[http://dx.doi.org/10.4155/fmc.13.151] [PMID: 24175747]
[74]
Kumar, A.; Singh, M.; Sharma, D.; Kumar, V.; Rani, R. Tumor metabolism: Focused on tumor glycolysis, progress, and prospects in cancer therapy. In: Burger’s Med. Chem. Drug Discov; , 2021; 6, pp. 1-33.
[http://dx.doi.org/10.1002/0471266949.bmc286]
[75]
Kumar, V.; Rani, R. Lactate dehydrogenase enzyme: An old enzyme but new viable target offers new hope in cancer therapeutics. In: Lact. Dehydrogenase Biochem. Funct. Clin. Significance; , 2019.
[76]
Rani, R. Small molecules inhibitors of the Plasmodium Falciparum LDH enzyme and their therapeutic applications. In: Lact. Dehydroge-nase Biochem. Funct. Clin. Significance; , 2019.
[77]
Kumar, V.; Kumar, A. Reshmi, Rana. Regulation/Inhibition of human lactate dehydrogenase A: An innovative and potential approach for anti-cancer drugs development. In: Topics in Anticancer Res; , 2017; 6, pp. 1-29.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy