Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Combination of Chrysin and Cisplatin Induces Apoptosis in HepG2 through Down-regulation of cFLIP and Activity of Caspase

Author(s): Yang-Xin Luo, Bao-Ying Peng, Zheng-Hao Chen, Xi-Kun Xiong, Jun-Ming Huang, Mei-Fen Chen, Feng-Yan Wang, Xin Li* and Jian-Ning Wang*

Volume 23, Issue 4, 2023

Published on: 19 September, 2022

Page: [432 - 439] Pages: 8

DOI: 10.2174/1871520622666220615121525

Price: $65

Abstract

Abstract: Aim: The study aims to investigate the combined effects of chrysin and cisplatin on hepatoma(HepG2) cell lines in vivo and in vitro.

Objective: Studies have suggested that chrysin can enhance the sensitivity of tumor cells to apoptosis. Drug resistance in tumor cells reduced the effectiveness of chemotherapy drugs such as cisplatin. We investigated whether the combination of chrysin and cisplatin can induce more apoptosis than chrysin alone and cisplatin alone.

Methods: HepG2 cells were pretreated with chrysin for 2 h, followed by the addition of cisplatin for another 24 h. The morphologic changes were observed under inverted microscope and the cell viability was measured using the MTT test. The protein and cleavage of caspase-3,8,9, PARP, and cFLIP were determined by Western blotting.

Results: The cell viability of the HepG2 cell can be reduced by the combination of chrysin pretreatment for 2 h and cisplatin addition for 24 h; Caspase-3,8,9 and PARP were cleaved after 12 h treatment with chrysin and cisplatin; Pancaspase inhibitor, Z-VAD-fmk, could reverse the apoptosis induced by chrysin and cisplatin in HepG2 cells; cFLIP was down-regulated by the combination of chrysin and cisplatin, and could be reversed by Z-VAD-fmk; the xenografted HepG2 cells formed a tumor in one week; At the end of the experiment, there were significant differences in relative tumor volume (RTV) and relative tumor proliferation rate between the combined group and the control group, the chrysin group and the cisplatin group; Western blotting showed that the levels of PARP, cFLIP, and caspase-3 proteins in isolated tumor tissues also decreased under the combined action of chrysin and cisplatin.

Conclusion: The combination of chrysin and cisplatin induces apoptosis of hepatic tumor in vivo and in vitro. It downregulates cFLIP and then activates caspase-8, which triggers caspase-mediated apoptosis of HepG2 cell.

Keywords: Chrysin, cisplatin, apoptosis, cFLIP, caspase , HepG2.

[1]
Shu, X.L.; Fan, C.B.; Long, B.; Zhou, X.; Wang, Y. The anti-cancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(21), 4459-4465.
[PMID: 27874954]
[2]
Okano, H.; Shiraki, K.; Inoue, H.; Kawakita, T.; Yamanaka, T.; Deguchi, M.; Sugimoto, K.; Sakai, T.; Ohmori, S.; Fujikawa, K.; Murata, K.; Nakano, T. Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular car-cinoma. Lab. Invest., 2003, 83(7), 1033-1043.
[http://dx.doi.org/10.1097/01.LAB.0000079328.76631.28] [PMID: 12861043]
[3]
Wang, P.; Cui, J.; Wen, J.; Guo, Y.; Zhang, L.; Chen, X. Cisplatin induces HepG2 cell cycle arrest through targeting specific long noncoding RNAs and the p53 signaling pathway. Oncol. Lett., 2016, 12(6), 4605-4612.
[http://dx.doi.org/10.3892/ol.2016.5288] [PMID: 28105167]
[4]
Cocetta, V.; Ragazzi, E.; Montopoli, M. Links between cancer metabolism and cisplatin resistance. Int. Rev. Cell Mol. Biol., 2020, 354, 107-164.
[http://dx.doi.org/10.1016/bs.ircmb.2020.01.005] [PMID: 32475471]
[5]
Kleinesudeik, L.; Rohde, K.; Fulda, S. Regulation of the antiapoptotic protein cFLIP by the glucocorticoid Dexamethasone in ALL cells. Oncotarget, 2018, 9(23), 16521-16532.
[http://dx.doi.org/10.18632/oncotarget.24782] [PMID: 29662664]
[6]
Kong, X.; Luo, J.; Xu, T.; Zhou, Y.; Pan, Z.; Xie, Y.; Zhao, L.; Lu, Y.; Han, X.; Li, Z.; Liu, L. Plumbagin enhances TRAIL-induced apop-tosis of human leukemic Kasumi 1 cells through upregulation of TRAIL death receptor expression, activation of caspase-8 and inhibition of cFLIP. Oncol. Rep., 2017, 37(6), 3423-3432.
[http://dx.doi.org/10.3892/or.2017.5627] [PMID: 28498435]
[7]
Shen, L.; Sun, Z.; Zhao, F.; Wang, W.; Zhang, W.; Zhu, H. Expression of c-FLIP in a rat model of sepsis and its effects on endothelial apoptosis. Mol. Med. Rep., 2017, 16(1), 231-237.
[http://dx.doi.org/10.3892/mmr.2017.6564] [PMID: 28498469]
[8]
Kim, H.J.; Seo, B.G.; Kim, K.D.; Yoo, J.; Lee, J.H.; Min, B.S.; Lee, J.H.; Hwangbo, C. C5, A cassaine diterpenoid amine, induces apoptosis via the extrinsic pathways in human lung cancer cells and human lymphoma cells. Int. J. Mol. Sci., 2020, 21(4), E1298.
[http://dx.doi.org/10.3390/ijms21041298] [PMID: 32075108]
[9]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[10]
Chen, L.; Li, Q.; Jiang, Z.; Li, C.; Hu, H.; Wang, T.; Gao, Y.; Wang, D. Chrysin induced cell apoptosis through H19/let-7a/COPB2 axis in gastric cancer cells and inhibited tumor growth. Front. Oncol., 2021, 11, 651644.
[http://dx.doi.org/10.3389/fonc.2021.651644] [PMID: 34150620]
[11]
Rashid, S.; Nafees, S.; Vafa, A.; Afzal, S.M.; Ali, N.; Rehman, M.U.; Hasan, S.K.; Siddiqi, A.; Barnwal, P.; Majed, F.; Sultana, S. Inhibition of precancerous lesions development in kidneys by chrysin via regulating hyperproliferation, inflammation and apoptosis at pre clinical stage. Arch. Biochem. Biophys., 2016, 606, 1-9.
[http://dx.doi.org/10.1016/j.abb.2016.07.004] [PMID: 27403965]
[12]
Zhang, Q.; Ma, S.; Liu, B.; Liu, J.; Zhu, R.; Li, M. Chrysin induces cell apoptosis via activation of the p53/Bcl-2/caspase-9 pathway in hepatocellular carcinoma cells. Exp. Ther. Med., 2016, 12(1), 469-474.
[http://dx.doi.org/10.3892/etm.2016.3282] [PMID: 27347080]
[13]
Lin, Y.M.; Chen, C.I.; Hsiang, Y.P.; Hsu, Y.C.; Cheng, K.C.; Chien, P.H.; Pan, H.L.; Lu, C.C.; Chen, Y.J. Chrysin attenuates cell viability of human colorectal cancer cells through autophagy induction unlike 5-fluorouracil/oxaliplatin. Int. J. Mol. Sci., 2018, 19(6), E1763.
[http://dx.doi.org/10.3390/ijms19061763] [PMID: 29899208]
[14]
Kandemir, F.M.; Kucukler, S.; Eldutar, E.; Caglayan, C.; Gülçin, İ. Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: A multi-biomarker approach. Sci. Pharm., 2017, 85(1), E4.
[http://dx.doi.org/10.3390/scipharm85010004] [PMID: 28134775]
[15]
Talebi, M.; Talebi, M.; Farkhondeh, T.; Simal-Gandara, J.; Kopustinskiene, D.M.; Bernatoniene, J.; Samarghandian, S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int., 2021, 21(1), 214.
[http://dx.doi.org/10.1186/s12935-021-01906-y] [PMID: 33858433]
[16]
Xu, D.; Jin, J.; Yu, H.; Zhao, Z.; Ma, D.; Zhang, C.; Jiang, H. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2. J. Exp. Clin. Cancer Res., 2017, 36(1), 44.
[http://dx.doi.org/10.1186/s13046-017-0514-4] [PMID: 28320429]
[17]
Raina, R.; Afroze, N.; Kedhari Sundaram, M.; Haque, S.; Bajbouj, K.; Hamad, M.; Hussain, A. Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(5), 2206-2220.
[PMID: 33755959]
[18]
Jan, R.; Chaudhry, G.E. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv. Pharm. Bull., 2019, 9(2), 205-218.
[http://dx.doi.org/10.15171/apb.2019.024] [PMID: 31380246]
[19]
Belharazem, D.; Grass, A.; Paul, C.; Vitacolonna, M.; Schalke, B.; Rieker, R.J.; Körner, D.; Jungebluth, P.; Simon-Keller, K.; Hohenberger, P.; Roessner, E.M.; Wiebe, K.; Gräter, T.; Kyriss, T.; Ott, G.; Geserick, P.; Leverkus, M.; Ströbel, P.; Marx, A. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-κB signalling. Oncotarget, 2017, 8(52), 89580-89594.
[http://dx.doi.org/10.18632/oncotarget.15929] [PMID: 29163772]
[20]
Um, H.J.; Chauhan, A.K.; Min, K.J.; Kwon, T.K. Differential expression patterns of the short and long isoform of cFLIP on FasL mediated apoptosis. Oncol. Rep., 2018, 39(5), 2443-2449.
[http://dx.doi.org/10.3892/or.2018.6317] [PMID: 29565452]
[21]
Padmanabhan, C.; Rellinger, E.J.; Zhu, J.; An, H.; Woodbury, L.G.; Chung, D.H.; Waterson, A.G.; Lindsley, C.W.; Means, A.L.; Beau-champ, R.D. cFLIP critically modulates apoptotic resistance in epithelial-to-mesenchymal transition. Oncotarget, 2017, 8(60), 101072-101086.
[http://dx.doi.org/10.18632/oncotarget.19557] [PMID: 29254146]
[22]
Rocha, C.R.R.; Silva, M.M.; Quinet, A.; Cabral-Neto, J.B.; Menck, C.F.M. DNA repair pathways and cisplatin resistance: An intimate rela-tionship. Clinics (São Paulo), 2018, 73(Suppl. 1), e478s.
[http://dx.doi.org/10.6061/clinics/2018/e478s] [PMID: 30208165]
[23]
Sophonnithiprasert, T.; Mahabusarakam, W.; Watanapokasin, R. Artonin E sensitizes TRAIL-induced apoptosis by DR5 upregulation and cFLIP downregulation in TRAIL-refractory colorectal cancer LoVo cells. J. Gastrointest. Oncol., 2019, 10(2), 209-217.
[http://dx.doi.org/10.21037/jgo.2018.12.02] [PMID: 31032087]
[24]
Liu, D.; Fan, Y.; Li, J.; Cheng, B.; Lin, W.; Li, X.; Du, J.; Ling, C. Inhibition of cFLIP overcomes acquired resistance to sorafenib via re-ducing ER stress related autophagy in hepatocellular carcinoma. Oncol. Rep., 2018, 40(4), 2206-2214.
[http://dx.doi.org/10.3892/or.2018.6606] [PMID: 30066934]
[25]
Vanbervliet-Defrance, B.; Delaunay, T.; Daunizeau, T.; Kepenekian, V.; Glehen, O.; Weber, K.; Estornes, Y.; Ziverec, A.; Djemal, L.; Delphin, M.; Lantuéjoul, S.; Passot, G.; Grégoire, M.; Micheau, O.; Blanquart, C.; Renno, T.; Fonteneau, J.F.; Lebecque, S.; Mahtouk, K. Cisplatin unleashes Toll-like receptor 3-mediated apoptosis through the downregulation of c-FLIP in malignant mesothelioma. Cancer Lett., 2020, 472, 29-39.
[http://dx.doi.org/10.1016/j.canlet.2019.12.016] [PMID: 31838086]
[26]
Hirpara, J.L.; Subramaniam, K.; Bellot, G.; Qu, J.; Seah, S.; Loh, T.; Tucker-Kellogg, L.; Clement, M.V.; Pervaiz, S. Superoxide induced inhibition of death receptor signaling is mediated via induced expression of apoptosis inhibitory protein cFLIP. Redox Biol., 2020, 30, 101403.
[http://dx.doi.org/10.1016/j.redox.2019.101403] [PMID: 31954371]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy