Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Phytosome: An Effective Transdermal Drug Delivery System for Phytoconstituents

Author(s): Arezoo Gohari Mahmoudabad, Vahid Shirshahi, Mohsen Mehrabi*, Fatemeh Gheybi, Anneh Mohammad Gharravi, Majid Salehi and Alireza Masoudi

Volume 20, Issue 8, 2023

Published on: 27 August, 2022

Page: [1020 - 1030] Pages: 11

DOI: 10.2174/1570180819666220615092854

Price: $65

Abstract

Herbal medicine and phytochemicals have always been great therapeutic options to treat various diseases due to their compatibility, safety, easy production, low cost and side effects. However, low absorption rate, and poor bioavailability are notable challenges that have limited the use of most phytoconstituents. To address these challenges, different drug delivery methods have been proposed for generating operative carrier systems for phytochemicals. Among them, transdermal drug delivery (TDD) using nanophytosome has been introduced as a promising candidate for the delivery of insoluble phytoconstituents. Phytosomes can overcome skin barriers, and are therefore effective carriers for herbal medicines. They are generally produced by combining phytoconstituent agents in medicinal plant extracts with phospholipid molecules. They have improved the clinical applications of phytoconstituents such as polyphenols by enhancing their bioavailability and uptake. In this review, the main benefits of transdermal delivery systems, advantages of nanophytosome over other lipid nanoparticles in TDD of phytochemicals, and methods of phytosome preparation and characterization are briefly reviewed.

Keywords: Phytosome, phytochemicals, nanocarrier, transdermal drug delivery, topical drug delivery

[1]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[2]
Ajazuddin, Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[3]
Soni, V. Development and characterization of novel vesicular system using purpurin-phosphatidyl choline as a skin antiaging agent. Asian Journal of Pharmaceutics (AJP), 2019, 12(04)
[4]
Dharadhar, S.; Majumdar, A.; Dhoble, S.; Patravale, V. Microneedles for transdermal drug delivery: A systematic review. Drug Dev. Ind. Pharm., 2019, 45(2), 188-201.
[http://dx.doi.org/10.1080/03639045.2018.1539497] [PMID: 30348022]
[5]
Kalia, Y.N.; Merino, V.; Guy, R.H. Transdermal drug delivery. Clin Asp. Dermatol. Clin., 1998, 16(2), 289-299.
[http://dx.doi.org/10.1016/S0733-8635(05)70011-5] [PMID: 9589202]
[6]
Ita, K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics, 2015, 7(3), 90-105.
[http://dx.doi.org/10.3390/pharmaceutics7030090] [PMID: 26131647]
[7]
Wang, F-Y.; Chen, Y.; Huang, Y.Y.; Cheng, C.M. Transdermal drug delivery systems for fighting common viral infectious diseases. Drug Deliv. Transl. Res., 2021, 11(4), 1498-1508.
[http://dx.doi.org/10.1007/s13346-021-01004-6] [PMID: 34024014]
[8]
Varvel, J.R.; Shafer, S.L.; Hwang, S.S.; Coen, P.A.; Stanski, D.R. Absorption characteristics of transdermally administered fentanyl. Anesthesiology, 1989, 70(6), 928-934.
[http://dx.doi.org/10.1097/00000542-198906000-00008] [PMID: 2729633]
[9]
Frei, A.; Andersen, S.; Hole, P.; Jensen, N.H. A one year health economic model comparing transdermal fentanyl with sustained-release morphine in the treatment of chronic noncancer pain. J. Pain Palliat. Care Pharmacother., 2003, 17(2), 5-26.
[http://dx.doi.org/10.1080/J354v17n02_02] [PMID: 14649386]
[10]
Uchida, N.; Yanagi, M.; Hamada, H. Physical enhancement? Nanocarrier? Current progress in transdermal drug delivery. Nanomaterials (Basel), 2021, 11(2), 335.
[http://dx.doi.org/10.3390/nano11020335] [PMID: 33525364]
[11]
Afrin, S.; Jahan, I.; Hasan, A.; Deepa, K. Novel approaches of herbal drug delivery. J. Pharm. Res. Int., 2018, 21(5), 1-11.
[http://dx.doi.org/10.9734/JPRI/2018/39143]
[12]
Kumar, P. Phytosomes: A noval phyto-phospholipid carriers: An overview. Int. J. Pharm. Res. Dev., 2010, 2(6), 1-7.
[13]
Singh, A. Phytosomes: Novel drug delivery system of herbal extract for better therapeutic efficacy and bioavailabilty. International Journal of Pharmacy & Life Sciences, 2020, 11(7), 12.
[14]
Kalia, A.; Kaur, G. Nano-delivery carriers for enhanced bioavailability of antitumor phytochemicals. In: Pharmacotherapeutic Botanicals for Cancer Chemoprevention; Springer, 2020; pp. 189-196.
[http://dx.doi.org/10.1007/978-981-15-5999-0_8]
[15]
Swastila, S. Review of Phytosome Potential of Gotu Kola (Centella Asiatica) Extract to Restore Nerve Cell Membrane and Improve Cognitive Function. Int. J. Adv. Res. Sci. Eng. Technol., 2020, 11(5) [IJARET]
[16]
Singh, A. Phytosome: Drug delivery system for polyphenolic phytoconstituents. Indian J. Pharm. Sci., 2011, 7(4), 209-219.
[17]
Bhise, J.J. Phytosomes: A Novel Drug Delivery for Herbal Extracts. J. Drug Deliv. Ther., 2019, 9(3-s), 924-930.
[18]
Raj, G.M.; Raveendran, R. General and Molecular Pharmacology: Principles of Drug Action. In: Introduction to Basics of Pharmacology and Toxicology; Springer Nature, 2019; 1, .
[19]
Marschütz, M.K.; Bernkop-Schnürch, A. Oral peptide drug delivery: Polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials, 2000, 21(14), 1499-1507.
[http://dx.doi.org/10.1016/S0142-9612(00)00039-9] [PMID: 10872779]
[20]
Yordanov, Y. Caffeic acid phenethyl ester (CAPE): Pharmacodynamics and potential for therapeutic application. Pharmacia, 2019, 66(3), 107-114.
[http://dx.doi.org/10.3897/pharmacia.66.e38573]
[21]
Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics, 2011, 3(4), 793-829.
[http://dx.doi.org/10.3390/pharmaceutics3040793] [PMID: 24309309]
[22]
Patel, A.; Cholkar, K.; Mitra, A.K. Recent developments in protein and peptide parenteral delivery approaches. Ther. Deliv., 2014, 5(3), 337-365.
[http://dx.doi.org/10.4155/tde.14.5] [PMID: 24592957]
[23]
McDonald, T.A.; Zepeda, M.L.; Tomlinson, M.J.; Bee, W.H.; Ivens, I.A. Subcutaneous administration of biotherapeutics: Current experience in animal models. Curr. Opin. Mol. Ther., 2010, 12(4), 461-470.
[PMID: 20677097]
[24]
Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[25]
Pimentel-Moral, S.; Teixeira, M.C.; Fernandes, A.R.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A.; Souto, E.B. Lipid nanocarriers for the loading of polyphenols - A comprehensive review. Adv. Colloid Interface Sci., 2018, 260, 85-94.
[http://dx.doi.org/10.1016/j.cis.2018.08.007] [PMID: 30177215]
[26]
Boer, M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Advances in Dermatology and Allergology, 2016, 33(1), 1.
[http://dx.doi.org/10.5114/pdia.2015.48037]
[27]
Kolarsick, P.A.; Kolarsick, M.A.; Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses Assoc., 2011, 3(4), 203-213.
[http://dx.doi.org/10.1097/JDN.0b013e3182274a98]
[28]
Danso, M.O.; Berkers, T.; Mieremet, A.; Hausil, F.; Bouwstra, J.A. An ex vivo human skin model for studying skin barrier repair. Exp. Dermatol., 2015, 24(1), 48-54.
[http://dx.doi.org/10.1111/exd.12579] [PMID: 25363465]
[29]
Schäfer-Korting, M.; Mehnert, W.; Korting, H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev., 2007, 59(6), 427-443.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[30]
Haldar, S.; Sharma, A.; Gupta, S.; Chauhan, S.; Roy, P.; Lahiri, D. Bioengineered smart trilayer skin tissue substitute for efficient deep wound healing. Mater. Sci. Eng. C, 2019, 105, 110140.
[http://dx.doi.org/10.1016/j.msec.2019.110140] [PMID: 31546402]
[31]
Ramadon, D. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res., 2021, 1-34.
[PMID: 33474709]
[32]
Gupta, R.; Kumar, A. Transfersomes: The Ultra-Deformable Carrier System for Non-Invasive Delivery of Drug. Curr. Drug Deliv., 2020.
[PMID: 32753015]
[33]
Alkilani, A.Z.; McCrudden, M.T.; Donnelly, R.F. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[34]
Desai, J.L.; Pandya, T.; Patel, A. Nanocarriers in transdermal drug delivery.Nanocarriers: Drug Delivery System.Springer, 2021, pp. 383-409.
[http://dx.doi.org/10.1007/978-981-33-4497-6_16]
[35]
de Oliveira, T.C.; Tavares, M.E.V.; Soares-Sobrinho, J.L.; Chaves, L.L. The role of nanocarriers for transdermal application targeted to lymphatic drug delivery: Opportunities and challenges. J. Drug Deliv. Sci. Technol., 2022, 68, 103110.
[http://dx.doi.org/10.1016/j.jddst.2022.103110]
[36]
Akram, M.W.; Jamshaid, H.; Rehman, F.U.; Zaeem, M.; Khan, J.Z.; Zeb, A. Transfersomes: A Revolutionary Nanosystem for Efficient Transdermal Drug Delivery. AAPS PharmSciTech, 2021, 23(1), 7.
[http://dx.doi.org/10.1208/s12249-021-02166-9] [PMID: 34853906]
[37]
Bellefroid, C.; Lechanteur, A.; Evrard, B.; Piel, G. Lipid gene nanocarriers for the treatment of skin diseases: Current state-of-the-art. Eur. J. Pharm. Biopharm., 2019, 137, 95-111.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.012] [PMID: 30794856]
[38]
Lademann, J.; Richter, H.; Teichmann, A.; Otberg, N.; Blume-Peytavi, U.; Luengo, J.; Weiss, B.; Schaefer, U.F.; Lehr, C.M.; Wepf, R.; Sterry, W. Nanoparticles--an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm., 2007, 66(2), 159-164.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.019] [PMID: 17169540]
[39]
Prabhu, A.; Jose, J.; Kumar, L.; Salwa, S.; Vijay Kumar, M.; Nabavi, S.M. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study. AAPS PharmSciTech, 2022, 23(1), 49.
[http://dx.doi.org/10.1208/s12249-021-02186-5] [PMID: 34988698]
[40]
Teaima, M.H.; Badawi, N.M.; Attia, D.A.; El-Nabarawi, M.A.; Elmazar, M.M.; Mousa, S.A. Efficacy of pomegranate extract loaded solid lipid nanoparticles transdermal emulgel against Ehrlich ascites carcinoma. Nanomedicine, 2022, 39, 102466.
[http://dx.doi.org/10.1016/j.nano.2021.102466] [PMID: 34587542]
[41]
Nogueira, N.C.; de Sá, L.L.F.; de Carvalho, A.L.M. Nanostructured Lipid Carriers as a Novel Strategy for Topical Antifungal Therapy. AAPS PharmSciTech, 2021, 23(1), 32.
[http://dx.doi.org/10.1208/s12249-021-02181-w] [PMID: 34931256]
[42]
Jahan, S. Nanostructured lipid carrier for transdermal gliclazide delivery: Development and optimization by Box-Behnken design. In: Inorganic and Nano-Metal Chemistry; , 2022; pp. 1-14.
[43]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[44]
Sarheed, O.; Dibi, M.; Ramesh, K.V.R.N.S.; Drechsler, M. Fabrication of alginate-based O/W nanoemulsions for transdermal drug delivery of lidocaine: Influence of the oil phase and surfactant. Molecules, 2021, 26(9), 2556.
[http://dx.doi.org/10.3390/molecules26092556] [PMID: 33925764]
[45]
Malta, R.; Loureiro, J.B.; Costa, P.; Sousa, E.; Pinto, M.; Saraiva, L.; Amaral, M.H. Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma. J. Drug Deliv. Sci. Technol., 2021, 61, 102226.
[http://dx.doi.org/10.1016/j.jddst.2020.102226]
[46]
Masjedi, M.; Montahaei, T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J. Drug Deliv. Sci. Technol., 2021, 61, 102234.
[http://dx.doi.org/10.1016/j.jddst.2020.102234]
[47]
Chaurasiya, P.; Ganju, E.; Upmanyu, N.; Ray, S.K.; Jain, P. Transfersomes: A novel technique for transdermal drug delivery. J. Drug Deliv. Ther., 2019, 9(1), 279-285.
[http://dx.doi.org/10.22270/jddt.v9i1.2198]
[48]
Babaie, S.; Bakhshayesh, A.R.D.; Ha, J.W.; Hamishehkar, H.; Kim, K.H. Invasome: A novel nanocarrier for transdermal drug delivery. Nanomaterials (Basel), 2020, 10(2), 341.
[http://dx.doi.org/10.3390/nano10020341] [PMID: 32079276]
[49]
Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J., 2013, 4(4), 267-272.
[http://dx.doi.org/10.4103/2229-5178.120635] [PMID: 24350003]
[50]
Yang, J.; Song, B.; Wu, J. Herbal nanoformulations for asthma treatment. Curr. Pharm. Des., 2022, 28(1), 46-57.
[http://dx.doi.org/10.2174/1381612827666210929113528] [PMID: 34587880]
[51]
Parmar, G.R.; Sailor, G.U. Nanotechnological approach for design and delivery of phytopharmaceuticals.Nanocarriers: Drug Delivery System.Springer, 2021, pp. 281-301.
[http://dx.doi.org/10.1007/978-981-33-4497-6_11]
[52]
Patel, S. Phytosomes: An emerging herbal drug carrier system. World J. Pharm. Search, 2016, 5(11), 447-452.
[53]
Jain, N. Phytosome: A novel drug delivery system for herbal medicine. Int. J. Pharm. Sci. Drug Res., 2010, 2(4), 224-228.
[54]
Choubey, A. Phytosome-A novel approach for herbal drug delivery. Int. J. Pharm. Sci. Res., 2011, 2(4), 807.
[55]
Kareparamban, J.A. Phytosome: A novel revolution in herbal drugs. IJRPC, 2012, 2(2), 299-310.
[56]
Kidd, P.; Head, K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (Siliphos). Altern. Med. Rev., 2005, 10(3), 193-203.
[PMID: 16164374]
[57]
Abdelkader, H.; Longman, M.R.; Alany, R.G.; Pierscionek, B. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine. Int. J. Nanomedicine, 2016, 11, 2815-2827.
[http://dx.doi.org/10.2147/IJN.S104774] [PMID: 27366062]
[58]
Khar, R.; Chakraborthy, G.; Saurabh, M. Phytosomes: A brief overview. J. Pharm. Res., 2016, 15(2), 56-62.
[59]
Suriyakala, P. Phospholipids as versatile polymer in drug delivery systems. Int. J. Pharm. Pharm. Sci., 2014, 6(1), 8-11.
[60]
Duric, M.; Sivanesan, S.; Bakovic, M. Phosphatidylcholine functional foods and nutraceuticals: A potential approach to prevent non‐alcoholic fatty liver disease. Eur. J. Lipid Sci. Technol., 2012, 114(4), 389-398.
[http://dx.doi.org/10.1002/ejlt.201100350]
[61]
Lu, M.; Qiu, Q.; Luo, X.; Liu, X.; Sun, J.; Wang, C.; Lin, X.; Deng, Y.; Song, Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci., 2019, 14(3), 265-274.
[http://dx.doi.org/10.1016/j.ajps.2018.05.011] [PMID: 32104457]
[62]
Amit, G.; Ashawat, M.S.; Shailendra, S.; Swarnlata, S. Phytosome: A novel approach towards functional cosmetics. J. Plant Sci., 2007, 2(6), 644-649.
[http://dx.doi.org/10.3923/jps.2007.644.649]
[63]
Bonechi, C.; Martini, S.; Ciani, L.; Lamponi, S.; Rebmann, H.; Rossi, C.; Ristori, S. Using liposomes as carriers for polyphenolic compounds: The case of trans-resveratrol. PLoS One, 2012, 7(8), e41438.
[http://dx.doi.org/10.1371/journal.pone.0041438] [PMID: 22936976]
[64]
Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci., 2018, 19(3), 686.
[http://dx.doi.org/10.3390/ijms19030686] [PMID: 29495598]
[65]
Doble, M.H.H. Pharmacokinetics and pharmacodynamics of polyphenols; , 2019.
[66]
Pawar, H.A.; Bhangale, B.D. Phytosome as a novel biomedicine: A microencapsulated drug delivery system. J. Bioanal. Biomed., 2015, 7(1), 6-12.
[67]
Babazadeh, A.; Zeinali, M.; Hamishehkar, H. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr. Drug Targets, 2018, 19(2), 170-180.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[68]
Ghanbarzadeh, B.; Babazadeh, A.; Hamishehkar, H. Nano-phytosome as a potential food-grade delivery system. Food Biosci., 2016, 15, 126-135.
[http://dx.doi.org/10.1016/j.fbio.2016.07.006]
[69]
Amit, P. Phytosome: Phytolipid drug delivery system for improving bioavailability of herbal drug. J. Pharm. Sci. Biosci. Res., 2013, 3(2), 51-57.
[70]
Sharma, S.; Roy, R.K. Phytosomes: An emerging technology. Int. J. Pharm. Res. Dev., 2010, 2(5), 1-7.
[71]
Marena, C.; Lampertico, M. Preliminary clinical development of silipide: A new complex of silybin in toxic liver disorders. Planta Medica, 1991, 57(S2), A124-A125.
[http://dx.doi.org/10.1055/s-2006-960420]
[72]
Maryana, W.; Rachmawati, H.; Mudhakir, D. Formation of phytosome containing silymarin using thin layer-hydration technique aimed for oral delivery. Mater. Today Proc., 2016, 3(3), 855-866.
[http://dx.doi.org/10.1016/j.matpr.2016.02.019]
[73]
Franco, P.; Bombardelli, E. Complex compounds of bioflavonoids with phospholipids, their preparation and uses and pharmaceutical and cosmetic compositions containing them. US Patent 275005, 1998.
[74]
Chi, C.; Zhang, C.; Liu, Y.; Nie, H.; Zhou, J.; Ding, Y. Phytosome-nanosuspensions for silybin-phospholipid complex with increased bioavailability and hepatoprotection efficacy. Eur. J. Pharm. Sci., 2020, 144, 105212.
[http://dx.doi.org/10.1016/j.ejps.2020.105212] [PMID: 31923602]
[75]
Rasaee, S. Nano phytosomes of quercetin: A promising formulation for fortification of food products with antioxidants. Pharm. Sci., 2014, 20(3), 96-101.
[76]
Patel, J. An overview of phytosomes as an advanced herbal drug delivery system. Asian J. Pharm. Sci., 2009, 4(6), 363-371.
[77]
Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem., 2015, 175, 556-567.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.013] [PMID: 25577120]
[78]
Acharya, N.; Parihar, G.; Acharya, S. Phytosomes: novel approach for delivering herbal extract with improved bioavailability. Pharma Sci. Monitor, 2011, 2(1), 144-160.
[79]
Udapurkar, P. Phyto-phospholipid complex vesicles for phytoconstituents and herbal extracts: A promising drug delivery system. Int. J. Herb. Med., 2016, 4(5), 14-20.
[80]
Anwar, E.; Farhana, N. Formulation and evaluation of phytosome-loaded maltodextrin-gum Arabic microsphere system for delivery of camellia sinensis extract. J. Young Pharm., 2018, 10, S56-S62.
[http://dx.doi.org/10.5530/jyp.2018.2s.11]
[81]
Varde, N. Phytosomes: A potential phospholipid nanoparticulate carrier for the bioavailability enhancement of herbal extracts. Pharm. Glob., 2012, 3(10), 1.
[82]
Soman, S. Phytosomes-A novel approach for herbal drug delivery. J. Animal. Res., 2020, 10(4), 479-485.
[http://dx.doi.org/10.30954/2277-940X.04.2020.1]
[83]
Sanha, A.M.F.; Sharma, P.K.; Kumar, S. Phytosome as a prominent option in drug delivery for the treatment of the diseases. A review. Indo Global J Pharm Sci, 2018, 8(3), 119-123.
[84]
Maffei Facino, R.; Carini, M.; Aldini, G.; Bombardell, E.; Morazzoni, P.; Morelli, R. Free-radicals scavenging action and anti-enzyme activities of procyanidines from vitis-vinifera-a mechanism for their capillary protective action. Arzneimitted Forschung, 1994, 44(5), 592-601.
[85]
Shivanand, P.; Kinjal, P. Phytosomes: Technical revolution in phytomedicine. Int. J. Pharm. Tech. Res., 2010, 2(1), 627-631.
[86]
Amin, T.; Bhat, S.V. A review on phytosome technology as a novel approach to improve the bioavailability of nutraceuticals. Int. J. Adv. Res. Technol., 2012, 1(3), 1-5.
[87]
Kuche, K.; Bhargavi, N.; Dora, C.P.; Jain, S. Drug-phospholipid complex—A go through strategy for enhanced oral bioavailability. AAPS PharmSciTech, 2019, 20(2), 43.
[http://dx.doi.org/10.1208/s12249-018-1252-4] [PMID: 30610392]
[88]
Muzzalupo, R.; Tavano, L. Niosomal drug delivery for transdermal targeting: Recent advances. Res. Rep. Transdermal Drug Deliv., 2015, 4, 23-33.
[http://dx.doi.org/10.2147/RRTD.S64773]
[89]
Desai, P.; Patlolla, R.R.; Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol., 2010, 27(7), 247-259.
[http://dx.doi.org/10.3109/09687688.2010.522203] [PMID: 21028936]
[90]
Semalty, A. Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: A critical and meta-analysis. Expert Opin. Drug Deliv., 2014, 11(8), 1255-1272.
[http://dx.doi.org/10.1517/17425247.2014.916271] [PMID: 24909802]
[91]
Kumar, S.; Baldi, A.; Sharma, D. Phytosomes: A Modernistic Approach for Novel Herbal Drug Delivery-Enhancing Bioavailability and Revealing Endless Frontier of Phytopharmaceuticals. J. Dev. Drugs, 2019, 8(1)
[92]
Farinacci, M. Dietary administration of curcumin modifies transcriptional profile of genes involved in inflammatory cascade in horse leukocytes. Ital. J. Anim. Sci., 2009, 8(Suppl. 2), 84-86.
[http://dx.doi.org/10.4081/ijas.2009.s2.84]
[93]
Kohli, K.; Ali, J.; Ansari, M.J.; Raheman, Z. Curcumin: A natural antiinflammatory agent. Indian J. Pharmacol., 2005, 37(3), 141.
[http://dx.doi.org/10.4103/0253-7613.16209]
[94]
Di Pierro, F.; Menghi, A.B.; Barreca, A.; Lucarelli, M.; Calandrelli, A. Greenselect Phytosome as an adjunct to a low-calorie diet for treatment of obesity: A clinical trial. Altern. Med. Rev., 2009, 14(2), 154-160.
[PMID: 19594224]
[95]
Gandhi, A. Recent trends of phytosomes for delivering herbal extract with improved bioavailability. J. Pharmacogn. Phytochem., 2012, 1(4), 6-14.
[96]
Mullaicharam, A.; Deori, G.; Maheswari, R.U. Medicinal values of fenugreek-a review. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(1), 1304-1313.
[97]
Yue, P-F.; Zhang, W.J.; Yuan, H.L.; Yang, M.; Zhu, W.F.; Cai, P.L.; Xiao, X.H. Process optimization, characterization and pharmacokinetic evaluation in rats of ursodeoxycholic acid-phospholipid complex. AAPS PharmSciTech, 2008, 9(1), 322-329.
[http://dx.doi.org/10.1208/s12249-008-9040-1] [PMID: 18446498]
[98]
Kidd, P.M. Phosphatidylcholine, a superior protectant against liver damage. Altern. Med. Rev., 1996, 1(4), 258-274.
[99]
Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B.P.; Mukherjee, P.K. Enhanced therapeutic potential of naringenin-phospholipid complex in rats. J. Pharm. Pharmacol., 2006, 58(9), 1227-1233.
[http://dx.doi.org/10.1211/jpp.58.9.0009] [PMID: 16945181]
[100]
Bombardelli, E.; Bonati, A.; Gabetta, B.; Mustich, G. Triterpenoids of Terminalia sericea. Phytochemistry, 1974, 13(11), 2559-2562.
[http://dx.doi.org/10.1016/S0031-9422(00)86936-8]
[101]
Naik, S.R.; Pilgaonkar, V.W.; Panda, V.S. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain. Phytother. Res., 2006, 20(11), 1013-1016.
[http://dx.doi.org/10.1002/ptr.1976] [PMID: 16909446]
[102]
Agarwal, A.; Chakraborty, P.; Chakraborty, D.D.; Saharan, V.A. Phytosomes: Complexation, utilisation and commerical status. J. Biol. Act. Prod. Nat., 2012, 2(2), 65-77.
[http://dx.doi.org/10.1080/22311866.2012.10719111]
[103]
Raju, T.P.; Reddy, M.S.; Reddy, V.P. Phytosomes: A novel phyto-phospholipid carrier for herbal drug delivery. Int. Res. J. Pharm., 2011, 2(6), 28-33.
[104]
Anjana, R.; Sunil, K.; Hitender, S.; K, K.R. Phytosome drug delivery of natural products: A promising technique for enhancing bioavailability. Int. J. Drug Deliv. Technol., 2017, 7(03), 157-165.
[http://dx.doi.org/10.25258/ijddt.v7i03.9559]
[105]
Mazumder, A.; Dwivedi, A.; Fox, L.T.; Brümmer, A.; du Preez, J.L.; Gerber, M.; du Plessis, J. In vitro skin permeation of sinigrin from its phytosome complex. J. Pharm. Pharmacol., 2016, 68(12), 1577-1583.
[http://dx.doi.org/10.1111/jphp.12594] [PMID: 27696397]
[106]
Zhao, W.; Zhang, W.; Wang, R.; Liu, W.; Liu, A.; Yang, D.; Yang, F.; Karim, M.R.; Zhang, L. Enterocytozoon bieneusi in sika deer (Cervus nippon) and red deer (Cervus elaphus): Deer specificity and zoonotic potential of ITS genotypes. Parasitol. Res., 2014, 113(11), 4243-4250.
[http://dx.doi.org/10.1007/s00436-014-4100-9] [PMID: 25185666]
[107]
Priani, S.E.; Aprilia, S.; Purwanti, L. Antioxidant and tyrosinase inhibitory activity of face serum containing cocoa pod husk phytosome (Theobroma Cacao L). J. Appl. Pharm. Sci., 2019, 9(10), 110-115.
[108]
Cevc, G.; Schätzlein, A.; Blume, G. Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides. J. Control. Release, 1995, 36(1-2), 3-16.
[http://dx.doi.org/10.1016/0168-3659(95)00056-E]
[109]
Bhattacharya, S. Phytosomes: Emerging strategy in delivery of herbal drugs and nutraceuticals. Pharma Times, 2009, 41(3), 9-12.
[110]
Fry, D.W.; White, J.C.; Goldman, I.D. Rapid separation of low molecular weight solutes from liposomes without dilution. Anal. Biochem., 1978, 90(2), 809-815.
[http://dx.doi.org/10.1016/0003-2697(78)90172-0] [PMID: 727510]

© 2025 Bentham Science Publishers | Privacy Policy