Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

IGF2BP3 Worsens Lung Cancer through Modifying Long Non-coding RNA CERS6-AS1/microRNA-1202 Axis

Author(s): An Yan, Xiaowei Song, Bao Liu and Kaibin Zhu*

Volume 30, Issue 7, 2023

Published on: 19 September, 2022

Page: [878 - 891] Pages: 14

DOI: 10.2174/0929867329666220614091445

Price: $65

Abstract

Background: Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) can epigenetically regulate lung cancer progression, but its regulatory mechanism in the disease lacks sufficient exploration.

Objective: The study was conducted to probe the regulatory function of IGF2BP3 in lung cancer via modulating the long non-coding RNA CERS6-AS1/microRNA-1202 (CERS6- AS1/miR-1202) axis.

Methods: Clinical samples were collected to evaluate IGF2BP3, CERS6-AS1, miR-1202 and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) levels. The interactions among IGF2BP3, CERS6-AS1, miR-1202 and GDPD5 were assessed. IGF2BP3-, CERS6-AS1-, and miR-1202-related constructs were transfected into lung cancer cells to determine cell biological functions. Cell tumor formation ability was further detected in vivo.

Results: High expression of IGF2BP3, CERS6-AS1 and GDPD5, and low expression of miR-1202 levels were witnessed in lung cancer tissues. Suppression of IGF2BP3 restrained lung cancer progression. IGF2BP3 positively modulated CERS6-AS1 to regulate miR-1202-targeted GDPD5. Inhibition of CERS6-AS1 or promotion of miR-1202 depressed lung cancer aggravation. CERS6-AS1 silencing or miR-1202 overexpression reversed the impacts induced by IGF2BP3 on lung cancer.

Conclusion: IGF2BP3 facilitates the development of lung cancer cells via binding to the CERS6-AS1 promoter and down-regulating miR-1202, which may be related to GDPD5 upregulation.

Keywords: Lung cancer, Insulin-like growth factor 2 mRNA-binding protein 3, Long non-coding RNA CERS6-AS1, microRNA-1202, Glycerophosphodiester phosphodiesterase domain containing 5

« Previous
[1]
Majem, B.; Nadal, E.; Muñoz-Pinedo, C. Exploiting metabolic vulnerabilities of Non small cell lung carcinoma. Semin. Cell Dev. Biol., 2020, 98, 54-62.
[http://dx.doi.org/10.1016/j.semcdb.2019.06.004] [PMID: 31238096]
[2]
Ruppert, A.M.; Amrioui, F.; Fallet, V. Risk factors and prevention of lung cancer. Rev. Prat., 2020, 70(8), 852-856.
[PMID: 33739684]
[3]
Hoy, H.; Lynch, T.; Beck, M. Surgical treatment of lung cancer. Crit. Care Nurs. Clin. North Am., 2019, 31(3), 303-313.
[http://dx.doi.org/10.1016/j.cnc.2019.05.002] [PMID: 31351552]
[4]
Duma, N.; Santana-Davila, R.; Molina, J.R. Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc., 2019, 94(8), 1623-1640.
[http://dx.doi.org/10.1016/j.mayocp.2019.01.013] [PMID: 31378236]
[5]
Mancarella, C.; Scotlandi, K. IGF2BP3 from physiology to cancer: Novel discoveries, unsolved issues, and future perspectives. Front. Cell Dev. Biol., 2020, 7, 363.
[http://dx.doi.org/10.3389/fcell.2019.00363] [PMID: 32010687]
[6]
Tran, T.M.; Philipp, J.; Bassi, J.S.; Nibber, N.; Draper, J.M.; Lin, T.L.; Palanichamy, J.K.; Jaiswal, A.K.; Silva, O.; Paing, M.; King, J.; Katzman, S.; Sanford, J.R.; Rao, D.S. The RNA-binding protein IGF2BP3 is critical for MLL-AF4-mediated leukemogenesis. Leukemia, 2022, 36(1), 68-79.
[http://dx.doi.org/10.1038/s41375-021-01346-7] [PMID: 34321607]
[7]
Xueqing, H.; Jun, Z.; Yueqiang, J.; Xin, L.; Liya, H.; Yuanyuan, F.; Yuting, Z.; Hao, Z.; Hua, W.; Jian, L.; Tiejun, Y. IGF2BP3 may contributes to lung tumorigenesis by regulating the alternative splicing of PKM. Front. Bioeng. Biotechnol., 2020, 8, 679.
[http://dx.doi.org/10.3389/fbioe.2020.00679] [PMID: 32984260]
[8]
Guo, W.; Huai, Q.; Wan, H.; Guo, L.; Song, P.; Gao, S.; He, J. Prognostic impact of IGF2BP3 expression in patients with surgically resected lung adenocarcinoma. DNA Cell Biol., 2021, 40(2), 316-331.
[http://dx.doi.org/10.1089/dna.2020.6136] [PMID: 33493403]
[9]
Bao, G.; Huang, J.; Pan, W.; Li, X.; Zhou, T. Long noncoding RNA CERS6-AS1 functions as a malignancy promoter in breast cancer by binding to IGF2BP3 to enhance the stability of CERS6 mRNA. Cancer Med., 2020, 9(1), 278-289.
[http://dx.doi.org/10.1002/cam4.2675] [PMID: 31701672]
[10]
Shen, R.; Wang, X.; Wang, S.; Zhu, D.; Li, M. Long noncoding RNA CERS6-AS1 accelerates the proliferation and migration of pancreatic cancer cells by sequestering MicroRNA-15a-5p and MicroRNA-6838-5p and modulating HMGA1. Pancreas, 2021, 50(4), 617-624.
[http://dx.doi.org/10.1097/MPA.0000000000001806] [PMID: 33939677]
[11]
Yun, Z.; Meng, F.; Li, S.; Zhang, P. Long non-coding RNA CERS6-AS1 facilitates the oncogenicity of pancreatic ductal adenocarcinoma by regulating the microRNA-15a-5p/FGFR1 axis. Aging (Albany NY), 2021, 13(4), 6041-6054.
[http://dx.doi.org/10.18632/aging.202540] [PMID: 33581689]
[12]
Tang, X.; Ren, H.; Guo, M.; Qian, J.; Yang, Y.; Gu, C. Review on circular RNAs and new insights into their roles in cancer. Comput. Struct. Biotechnol. J., 2021, 19, 910-928.
[http://dx.doi.org/10.1016/j.csbj.2021.01.018] [PMID: 33598105]
[13]
Takashima, Y.; Kawaguchi, A.; Iwadate, Y.; Hondoh, H.; Fukai, J.; Kajiwara, K.; Hayano, A.; Yamanaka, R. miR-101, miR-548b, miR-554, and miR-1202 are reliable prognosis predictors of the miRNAs associated with cancer immunity in primary central nervous system lymphoma. PLoS One, 2020, 15(2), e0229577.
[http://dx.doi.org/10.1371/journal.pone.0229577] [PMID: 32101576]
[14]
Yang, X.; Yan, Z.; Yang, H.; Ni, H.; Zhang, L.; Wang, Y. Clinical value of combined detection of miR-1202 and miR-195 in early diagnosis of cervical cancer. Oncol. Lett., 2019, 17(3), 3387-3391.
[http://dx.doi.org/10.3892/ol.2019.9956] [PMID: 30867774]
[15]
Salgado-Polo, F.; van Veen, M.; van den Broek, B.; Jalink, K.; Leyton-Puig, D.; Perrakis, A.; Moolenaar, W.H.; Matas-Rico, E. Sequence-dependent trafficking and activity of GDE2, a GPI-specific phospholipase promoting neuronal differentiation. J. Cell Sci., 2020, 133(3), jcs235044.
[http://dx.doi.org/10.1242/jcs.235044] [PMID: 31932507]
[16]
Marchan, R. GDPD5, a choline-generating enzyme and its novel role in tumor cell migration. Arch. Toxicol., 2016, 90(12), 3143-3144.
[http://dx.doi.org/10.1007/s00204-016-1847-z] [PMID: 27696134]
[17]
Cao, C.; Zhou, S.; Hu, J. Long noncoding RNA MAGI2-AS3/miR-218-5p/GDPD5/SEC61A1 axis drives cellular proliferation and migration and confers cisplatin resistance in nasopharyngeal carcinoma. Int. Forum Allergy Rhinol., 2020, 10(8), 1012-1023.
[http://dx.doi.org/10.1002/alr.22562] [PMID: 32450008]
[18]
Cao, M.D.; Döpkens, M.; Krishnamachary, B.; Vesuna, F.; Gadiya, M.M.; Lønning, P.E.; Bhujwalla, Z.M.; Gribbestad, I.S.; Glunde, K. Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer. NMR Biomed., 2012, 25(9), 1033-1042.
[http://dx.doi.org/10.1002/nbm.2766] [PMID: 22279038]
[19]
Hao, X.; Gao, L.Y.; Zhang, N.; Chen, H.; Jiang, X.; Liu, W.; Ao, L.; Cao, J.; Han, F.; Liu, J. Tac2-N acts as a novel oncogene and promotes tumor metastasis via activation of NF-κB signaling in lung cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 319.
[http://dx.doi.org/10.1186/s13046-019-1316-7] [PMID: 31466523]
[20]
Shao, N.; Xiao, Y.; Zhang, J.; Zhu, Y.; Wang, S.; Bao, S. Modifiedsijunzi decoction inhibits epithelial-mesenchymal transition of non-small cell lung cancer by attenuating AKT/GSK3β pathway in vitro and in vivo. Front. Pharmacol., 2022, 12, 821567.
[http://dx.doi.org/10.3389/fphar.2021.821567] [PMID: 35111070]
[21]
Chen, F.; Zhong, Z.; Tan, H.Y.; Guo, W.; Zhang, C.; Cheng, C.S.; Wang, N.; Ren, J.; Feng, Y. Suppression of lncRNA MALAT1 by betulinic acid inhibits hepatocellular carcinoma progression by targeting IAPs via miR-22-3p. Clin. Transl. Med., 2020, 10(6), e190.
[http://dx.doi.org/10.1002/ctm2.190] [PMID: 33135336]
[22]
Liu, X.; Yang, J.; Yang, C.; Huang, X.; Han, M.; Kang, F.; Li, J. Morphine promotes the malignant biological behavior of non-small cell lung cancer cells through the MOR/Src/mTOR pathway. Cancer Cell Int., 2021, 21(1), 622.
[http://dx.doi.org/10.1186/s12935-021-02334-8] [PMID: 34823532]
[23]
Niu, H.; Qu, A.; Guan, C. Suppression of MGAT3 expression and the epithelial-mesenchymal transition of lung cancer cells by miR-188-5p. Biomed. J., 2021, 44(6), 678-685.
[http://dx.doi.org/10.1016/j.bj.2020.05.010] [PMID: 35166206]
[24]
Sun, Q.; Li, Q.; Xie, F. LncRNA-MALAT1 regulates proliferation and apoptosis of ovarian cancer cells by targeting miR-503-5p. OncoTargets Ther., 2019, 12, 6297-6307.
[http://dx.doi.org/10.2147/OTT.S214689] [PMID: 31496733]
[25]
Wu, X.; Li, R.; Song, Q.; Zhang, C.; Jia, R.; Han, Z.; Zhou, L.; Sui, H.; Liu, X.; Zhu, H.; Yang, L.; Wang, Y.; Ji, Q.; Li, Q. JMJD2C promotes colorectal cancer metastasis via regulating histone methylation of MALAT1 promoter and enhancing β-catenin signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 435.
[http://dx.doi.org/10.1186/s13046-019-1439-x] [PMID: 31665047]
[26]
Pan, H.; Pan, Z.; Guo, F.; Meng, F.; Zu, L.; Fan, Y.; Li, Y.; Li, M.; Du, X.; Zhang, X.; Shao, Y.; Wei, M.; Li, X.; Zhou, Q. MicroRNA-1915-3p inhibits cell migration and invasion by targeting SET in non-small-cell lung cancer. BMC Cancer, 2021, 21(1), 1218.
[http://dx.doi.org/10.1186/s12885-021-08961-8] [PMID: 34774019]
[27]
Xu, Y. circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p /Wnt/beta-catenin pathway and oxidative stress. J. Cell. Mol. Med., 2020.
[PMID: 33200535]
[28]
Deng, X.; Xiong, W.; Jiang, X.; Zhang, S.; Li, Z.; Zhou, Y.; Xiang, B.; Zhou, M.; Li, X.; Li, G.; Zeng, Z.; Gong, Z. LncRNA LINC00472 regulates cell stiffness and inhibits the migration and invasion of lung adenocarcinoma by binding to YBX1. Cell Death Dis., 2020, 11(11), 945.
[http://dx.doi.org/10.1038/s41419-020-03147-9] [PMID: 33144579]
[29]
An, Y.; Cai, H.; Zhang, Y.; Liu, S.; Duan, Y.; Sun, D.; Chen, X.; He, X. circZMYM2 competed endogenously with miR-335-5p to regulate JMJD2C in pancreatic cancer. Cell. Physiol. Biochem., 2018, 51(5), 2224-2236.
[http://dx.doi.org/10.1159/000495868] [PMID: 30537731]
[30]
Wadowska, K.; Bil-Lula, I.; Trembecki, Ł.; Śliwińska-Mossoń, M. Genetic markers in lung cancer diagnosis: A review. Int. J. Mol. Sci., 2020, 21(13), E4569.
[http://dx.doi.org/10.3390/ijms21134569] [PMID: 32604993]
[31]
Zhou, Y.; Huang, T.; Siu, H.L.; Wong, C.C.; Dong, Y.; Wu, F.; Zhang, B.; Wu, W.K.; Cheng, A.S.; Yu, J.; To, K.F.; Kang, W. IGF2BP3 functions as a potential oncogene and is a crucial target of miR-34a in gastric carcinogenesis. Mol. Cancer, 2017, 16(1), 77.
[http://dx.doi.org/10.1186/s12943-017-0647-2] [PMID: 28399871]
[32]
Yang, Z.; Wang, T.; Wu, D.; Min, Z.; Tan, J.; Yu, B. RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer. J. Exp. Clin. Cancer Res., 2020, 39(1), 203.
[http://dx.doi.org/10.1186/s13046-020-01714-8] [PMID: 32993738]
[33]
Gao, Y.; Luo, T.; Ouyang, X.; Zhu, C.; Zhu, J.; Qin, X. IGF2BP3 and miR191-5p synergistically increase HCC cell invasiveness by altering ZO-1 expression. Oncol. Lett., 2020, 20(2), 1423-1431.
[http://dx.doi.org/10.3892/ol.2020.11693] [PMID: 32724385]
[34]
Liu, H.; Zeng, Z.; Afsharpad, M.; Lin, C.; Wang, S.; Yang, H.; Liu, S.; Kelemen, L.E.; Xu, W.; Ma, W.; Xiang, Q.; Mastriani, E.; Wang, P.; Wang, J.; Liu, S.L.; Johnston, R.N.; Köbel, M. Overexpression of IGF2BP3 as a potential oncogene in ovarian clear cell carcinoma. Front. Oncol., 2020, 9, 1570.
[http://dx.doi.org/10.3389/fonc.2019.01570] [PMID: 32083017]
[35]
Yan, L.; Li, K.; Feng, Z.; Zhang, Y.; Han, R.; Ma, J.; Zhang, J.; Wu, X.; Liu, H.; Jiang, Y.; Zhang, Y.; Zhu, Y. lncRNA CERS6-AS1 as ceRNA promote cell proliferation of breast cancer by sponging miR-125a-5p to upregulate BAP1 expression. Mol. Carcinog., 2020, 59(10), 1199-1208.
[http://dx.doi.org/10.1002/mc.23249] [PMID: 32808708]
[36]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[37]
Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther., 2021, 6(1), 263.
[http://dx.doi.org/10.1038/s41392-021-00658-5] [PMID: 34248142]
[38]
Yang, L.; Fu, J.; Han, X.; Zhang, C.; Xia, L.; Zhu, R.; Huang, S.; Xiao, W.; Yu, H.; Gao, Y.; Liang, Q.; Li, W.; Zhou, Y. Hsa_circ_0004287 inhibits macrophage-mediated inflammation in an N(6)-methyladenosine-dependent manner in atopic dermatitis and psoriasis. J. Allergy Clin. Immunol., 2021.
[http://dx.doi.org/10.1016/j.jaci.2021.11.024]
[39]
Quan, Y.; Song, Q.; Wang, J.; Zhao, L.; Lv, J.; Gong, S. MiR-1202 functions as a tumor suppressor in glioma cells by targeting Rab1A. Tumour Biol., 2017, 39(4), 1010428317697565.
[http://dx.doi.org/10.1177/1010428317697565] [PMID: 28443461]
[40]
Du, B.; Zhang, P.; Tan, Z.; Xu, J. MiR-1202 suppresses hepatocellular carcinoma cells migration and invasion by targeting cyclin dependent kinase 14. Biomed. Pharmacother., 2017, 96, 1246-1252.
[http://dx.doi.org/10.1016/j.biopha.2017.11.090] [PMID: 29217161]
[41]
Feng, C.; Zhang, L.; Sun, Y.; Li, X.; Zhan, L.; Lou, Y.; Wang, Y.; Liu, L.; Zhang, Y. GDPD5, a target of miR-195-5p, is associated with metastasis and chemoresistance in colorectal cancer. Biomed. Pharmacother., 2018, 101, 945-952.
[http://dx.doi.org/10.1016/j.biopha.2018.03.028] [PMID: 29635904]
[42]
Wang, Y.; Chen, H.; Wei, X. Circ_0007142 downregulates miR-874-3p-mediated GDPD5 on colorectal cancer cells. Eur. J. Clin. Invest., 2021, 51(7), e13541.
[http://dx.doi.org/10.1111/eci.13541] [PMID: 33797091]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy