Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Antihypertensive Activity of Prunus armeniaca in Hypertensive Rats

Author(s): Ismail Bouadid, Mourad Akdad and Mohamed Eddouks*

Volume 21, Issue 1, 2023

Published on: 09 September, 2022

Page: [20 - 30] Pages: 11

DOI: 10.2174/1871525720666220613164559

Price: $65

Abstract

Aims: The goal of this work was to evaluate the antihypertensive activity of Prunus armeniaca.

Background: Prunus armeniaca is known for its beneficial medicinal properties.

Objective: This study aimed to evaluate the effect of the aqueous extract of Prunus armeniaca L. (P. armeniaca) leaves (PAAE) on arterial blood pressure in normotensive and hypertensive rats.

Materials and Methods: In the in vivo examination, N-omega-Nitro-L-arginine methyl ester hydrochloride( L-NAME)-induced hypertensive and normotensive rats received PAAE (160 and 100 mg/kg) orally for the acute experiment spanning 6 hours and for seven days for the subchronic treatment; their blood pressure parameters were also evaluated. In the in vitro experiment, isolated intact thoracic aortic rings were precontracted with KCl (80 mM) and epinephrine (EP) (10 μM), and vascular dilatation was assessed.

Results: PAAE lowered blood pressure parameters in L-NAME-induced hypertensive without affecting normotensive rats following oral administration, suggesting that PAAE possesses an antihypertensive effect. In addition, PAAE (0.25-1 mg/mL) revealed a vasorelaxant effect in thoracic aortic rings precontracted by EP (10 μM), and this effect was especially reduced in the presence of glibenclamide or nifedipine. However, PAAE (0.25-1 mg/mL) had only a minimal vasorelaxant effect on thoracic aortic rings precontracted by KCl (80 mM).

Conclusion: The results demonstrate that the P. armeniaca aqueous extract possesses potent antihypertensive and vasorelaxant activity, and its vasorelaxant activity seems to be mediated through the opening of ATP-sensitive K+ channels and inhibition of L-type calcium channels.

Keywords: Prunus armeniaca L., hypertension, vasorelaxant, L-NAME, K+ channels, calcium channels.

Graphical Abstract

[1]
Ali, W.; Bakris, G. The management of hypertension in 2018: What should the targets be? Curr. Hypertens. Rep., 2019, 21(6), 41.
[http://dx.doi.org/10.1007/s11906-019-0946-7]
[2]
Biswas, S.; Dastidar, D.G.; Roy, K.S.; Pal, S.K.; Biswas, T.K.; Ganguly, S.B. Complications of hypertension as encountered by primary care physician. J. Indian Med. Assoc., 2003, 101(4), 257-259.
[PMID: 12964646]
[3]
Jordan, J.; Kurschat, C.; Reuter, H. Arterial hypertension - diagnosis and treatment. J. Dtsch Arztebl Int, 2018, 115, 557-568.
[4]
Eddouks, M.; Maghrani, M.; Lemhadri, A.; Ouahidi, M-L.; Jouad, H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol., 2002, 82(2-3), 97-103.
[http://dx.doi.org/10.1016/S0378-8741(02)00164-2] [PMID: 12241983]
[5]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[6]
Hacısefero ˘gulları, H.; Gezer, I; Özcan, M.M.; MuratAsma, B. Post-harvest chemical and physical-mechanical properties of some apricot varieties cultivated in Turkey. J. Food Eng., 2007, 79(1), 364-373.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.02.003]
[7]
Lee, H.H.; Ahn, J.H.; Kwon, A.R.; Lee, E.S.; Kwak, J.H.; Min, Y.H. Chemical composition and antimicrobial activity of the essential oil of apricot seed. Phytother. Res., 2014, 28(12), 1867-1872.
[http://dx.doi.org/10.1002/ptr.5219] [PMID: 25219371]
[8]
Faust, M.; Suranyl, D.; Nyujto, F. Origin and dissemination of apricot. Hortic. Rev. (Am. Soc. Hortic. Sci.), 1998, 22, 225-266.
[9]
Raafat, K.; El-Darra, N.; Saleh, F.A.; Rajha, H.N.; Maroun, R.G.; Louka, N. Infrared-assisted extraction and HPLC-analysis of Prunus armeniaca L. pomace and detoxified-kernel and their antidiabetic effects. Phytochem. Anal., 2018, 29(2), 156-167.
[http://dx.doi.org/10.1002/pca.2723] [PMID: 28895235]
[10]
Yiğit, D.; Yiğit, N.; Mavi, A. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz. J. Med. Biol. Res., 2009, 42(4), 346-352.
[http://dx.doi.org/10.1590/S0100-879X2009000400006]
[11]
Erdogan-Orhan, I.; Kartal, M. Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Res. Int., 2011, 44(5), 1238-1243.
[http://dx.doi.org/10.1016/j.foodres.2010.11.014]
[12]
Ajebli, M.; Eddouks, M.; Buxussempervirens, L. Improves streptozotocin-induced diabetes mellitus in rats. J. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17, 142-152.
[http://dx.doi.org/10.2174/1871529X17666170918140817] [PMID: 28925906]
[13]
Ajebli, M.; Eddouks, M. Eucalyptus globulus possesses antihypertensive activity in L-NAME-induced hypertensive rats and relaxes isolated rat thoracic aorta through nitric oxide pathway. Nat. Prod. Res., 2021, 35(5), 819-821.
[http://dx.doi.org/10.1080/14786419.2019.1598992] [PMID: 30966776]
[14]
Ajebli, M.; Eddouks, M. Vasorelaxant and antihypertensive effects of Mentha pulegium L. in rats: An in vitro and in vivo approach. J. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(7), 1289-1299.
[http://dx.doi.org/10.2174/1871530320666200909093908] [PMID: 32901591]
[15]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 24, 2112039.
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[16]
Novakovic, A.; Bukarica, L.G.; Kanjuh, V.; Heinle, H. Potassium channels-mediated vasorelaxation of rat aorta induced by resveratrol. Basic Clin. Pharmacol. Toxicol., 2006, 99(5), 360-364.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_531.x] [PMID: 17076688]
[17]
Jackson, W.F. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv. Pharmacol., 2017, 78, 89-144.
[http://dx.doi.org/10.1016/bs.apha.2016.07.001]
[18]
Quast, U. Do the K+ channel openers relax smooth muscle by opening K+ channels? Trends Pharmacol. Sci., 1993, 14(9), 332-337.
[http://dx.doi.org/10.1016/0165-6147(93)90006-6] [PMID: 8249154]
[19]
Taira, N. Nifedipine: A novel vasodilator. Drugs, 2006, 66(Spec No 1), 1-3.
[http://dx.doi.org/10.2165/00003495-200666991-00002] [PMID: 18203343]
[20]
Karaki, H.; Ozaki, H.; Hori, M.; Mitsui-Saito, M.; Amano, K.; Harada, K.; Miyamoto, S.; Nakazawa, H.; Won, K.J.; Sato, K. Calcium movements, distribution, and functions in smooth muscle. Pharmacol. Rev., 1997, 49(2), 157-230.
[PMID: 9228665]
[21]
Karaki, H.; Weiss, G.B. Calcium channels in smooth muscle. Gastroenterology, 1984, 87(4), 960-970.
[http://dx.doi.org/10.1016/0016-5085(84)90096-9] [PMID: 6088352]
[22]
Meisheri, K.D.; Hwang, O.; van Breemen, C. Evidence for two separated Ca2+ pathways in smooth muscle plasmalemma. J. Membr. Biol., 1981, 59(1), 19-25.
[http://dx.doi.org/10.1007/BF01870817] [PMID: 7241573]
[23]
Yamamoto, H.; van Breemen, C. Ca2+ compartments in saponin-skinned cultured vascular smooth muscle cells. J. Gen. Physiol., 1986, 87(3), 369-389.
[http://dx.doi.org/10.1085/jgp.87.3.369] [PMID: 3514788]
[24]
Chaumais, M.C.; Macari, E.A.; Sitbon, O. Calcium-channel blockers in pulmonary arterial hypertension. Handb. Exp. Pharmacol., 2013, 218, 161-175.
[http://dx.doi.org/10.1007/978-3-662-45805-1_7] [PMID: 24092340]
[25]
Gollasch, M.; Bychkov, R.; Ried, C.; Behrendt, F.; Scholze, S.; Luft, F.C.; Haller, H. Pinacidil relaxes porcine and human coronary arteries by activating ATP-dependent potassium channels in smooth muscle cells. J. Pharmacol. Exp. Ther., 1995, 275(2), 681-692.
[PMID: 7473155]
[26]
Wilson, C.; Buckingham, R.E.; Mootoo, S.; Parrott, L.S.; Hamilton, T.S.; Pratt, S.C.; Cawthorne, M.A. In vivo and in vitro studies of cromakalim (BRL 34915) and glibenclamide in the rat. J. Br. J. Pharmacol., 1988, 93, 126P.
[27]
Amssayef, A.; Eddouks, M. Aqueous extract of matricaria pubescens exhibits antihypertensive activity in L-NAME-induced hypertensive rats through its vasorelaxant effect. J. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(2), 135-143.
[http://dx.doi.org/10.2174/1871525717666191007151413] [PMID: 31589128]
[28]
Akdad, M.; Ajebli, M.; Breuer, A.; Khallouki, F.; Owen, R.W.; Eddouks, M. Study of Antihypertensive activity of Anvillea radiata in L-name-induced hypertensive rats and HPLC-ESI-MS analysis. J. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(7), 1059-1072.
[http://dx.doi.org/10.2174/1871530319666191115114023] [PMID: 31729295]
[29]
Santos, B.A.; Roman-Campos, D.; Carvalho, M.S.; Miranda, F.M.F.; Carneiro, D.C.; Cavalcante, P.H.; Cândido, E.A.F.; Filho, L.X.; Cruz, J.S.; Gondim, A.N.S. Cardiodepressive effect elicited by the essential oil of Alpinia speciosa is related to L-type Ca2+ current blockade. Phytomedicine, 2011, 18(7), 539-543.
[http://dx.doi.org/10.1016/j.phymed.2010.10.015] [PMID: 21112750]
[30]
de Mouran, R.S.; Jasbik, W. Actions of cromakalim in isolated human saphenous vein. J. Hypertens., 1992, 19, 121-124.
[31]
de Moura, R.S.; de Mello, R.F.; D’Aguinaga, S. Inhibitory effect of cromakalim in human detrusor muscle is mediated by glibenclamide-sensitive potassium channels. J. Urol., 1993, 149(5), 1174-1177.
[http://dx.doi.org/10.1016/S0022-5347(17)36341-3] [PMID: 8483242]
[32]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy