Abstract
Background: Cytochrome P450 (P450) is the largest family of enzymatic proteins in the human liver, and its features have been studied in physiology, medicine, biotechnology, and phytoremediation.
Objective: The aim of this study was to assess the catalytic activities of 28 human CYP3A4 alleles by using dronedarone as a probe drug in vitro, including 7 novel alleles recently found in the Han Chinese population.
Methods: We expressed 28 CYP3A4 alleles in insect microsomes and incubated them with 1-100 μM of dronedarone at 37 °C for 40 minutes to obtain the metabolites of N-debutyl-dronedarone.
Results: Compared with the wild type of CYP3A4, the 27 defective alleles can be classified into four categories. Three alleles had no detectable enzyme activity leading to a lack of kinetic parameters of N-debutyl-dronedarone; the other three alleles slightly despaired when it comes to intrinsic clearance values compared with the features of the wild type. Sixteen alleles exhibited 35.91%~79.70% relative values (in comparison to the wild-type) and could be defined as the “moderate decrease group”. The rest of the alleles showed a considerable decrease in intrinsic clearance values, ranging from 11.88%~23.34%. Therefore they were classified as a “significantly decreased group”. More specifically, 18 CYP3A4 alleles exhibited a substrate inhibition trend toward dronedarone when the concentration rises to 20 μM.
Conclusion: The outcomes of this novel study on the metabolism of dronedarone by CYP3A4 alleles can be used as experimental data support for the individualized use of this modern drug.
Keywords: CYP3A4, genetic polymorphism, dronedarone, drug-metabolizing enzyme, intrinsic clearance, atrial fibrillation.
Graphical Abstract
[http://dx.doi.org/10.1007/s00709-015-0884-4] [PMID: 26364028]
[http://dx.doi.org/10.1016/j.pharep.2017.01.007]
[http://dx.doi.org/10.3389/fgene.2013.00017]
[http://dx.doi.org/10.1038/clpt.2013.210] [PMID: 24126681]
[http://dx.doi.org/10.1124/dmd.111.042259] [PMID: 21994437]
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[http://dx.doi.org/10.1097/00008571-200107000-00008] [PMID: 11470997]
[http://dx.doi.org/10.1016/j.ccep.2016.02.008] [PMID: 27261834]
[http://dx.doi.org/10.1002/prp2.44]
[http://dx.doi.org/10.1056/NEJMp0902248] [PMID: 19403901]
[http://dx.doi.org/10.1517/14740338.2012.722994] [PMID: 22971242]
[http://dx.doi.org/10.1016/j.jpba.2015.06.026] [PMID: 26133102]
[http://dx.doi.org/10.1592/phco.30.9.904] [PMID: 20795846]
[http://dx.doi.org/10.7326/0003-4819-139-12-200312160-00012] [PMID: 14678922]
[http://dx.doi.org/10.1056/NEJMoa054686] [PMID: 17804843]
[http://dx.doi.org/10.2147/VHRM.S6185]
[http://dx.doi.org/10.2217/pgs-2016-0179] [PMID: 28244811]
[http://dx.doi.org/10.1124/mol.115.100891] [PMID: 26490246]
[http://dx.doi.org/10.1124/dmd.110.034140] [PMID: 20847137]
[http://dx.doi.org/10.1080/00498250802617746] [PMID: 19255940]
[http://dx.doi.org/10.1016/j.clpt.2005.11.015] [PMID: 16580902]
[http://dx.doi.org/10.2133/dmpk.17.150] [PMID: 15618664]
[http://dx.doi.org/10.1089/dna.1988.7.79] [PMID: 3267210]
[http://dx.doi.org/10.1067/mcp.2000.104391] [PMID: 10668853]
[http://dx.doi.org/10.1124/dmd.108.021816] [PMID: 18669585]
[http://dx.doi.org/10.2147/DDDT.S152366]
[http://dx.doi.org/10.1111/bcpt.12934] [PMID: 29117640]
[http://dx.doi.org/10.1124/dmd.120.000261] [PMID: 33384383]
[PMID: 11714865]
[PMID: 11181494]
[http://dx.doi.org/10.1080/00498254.2017.1414971] [PMID: 29394111]
[http://dx.doi.org/10.1016/j.clpt.2006.04.012] [PMID: 16890579]
[http://dx.doi.org/10.1124/jpet.104.078758] [PMID: 15634941]
[http://dx.doi.org/10.1038/clpt.2008.215] [PMID: 19020497]
[http://dx.doi.org/10.1038/nprot.2009.86] [PMID: 19561590]
[http://dx.doi.org/10.1038/nmeth0410-248]
[http://dx.doi.org/10.1097/00008571-200007000-00001] [PMID: 10898107]