Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Current Understanding of Cardiac Troponins Metabolism: A Narrative Review

Author(s): Aleksey Michailovich Chaulin*

Volume 29, Issue 41, 2022

Published on: 20 August, 2022

Page: [6247 - 6275] Pages: 29

DOI: 10.2174/0929867329666220610200409

Price: $65

Abstract

Background and Aims: Current methods (highly sensitive and ultra-sensitive) of cardiospecific troponins detection have enabled early diagnosis of myocardial infarction (MI) and selection of optimal treatment tactics for patients early from admission. The use of these methods in real clinical practice helps to choose the most optimal treatment tactics for patients in the early stages after admission, and this significantly improved the further prognosis of patients suffering from MI. However, there are a number of problems that arise when using highly sensitive or ultra-sensitive methods for determining cardiospecific troponins: frequent and unexplained increases in serum levels of cardiospecific troponins in a number of pathological conditions unrelated to MI; insufficient knowledge and understanding of the mechanisms of release and increase in the levels of cardiospecific troponins; poorly understood features and mechanisms of circulation and elimination of cardiospecific troponins; the presence of conflicting information about the influence of several factors (gender, age and circadian characteristics) on the levels of cardiospecific troponins in blood serum; undisclosed diagnostic potential of cardiospecific troponins in non-invasive human biological fluids. These problems cause great difficulties and increase the risk of errors in the differential diagnosis of MI, and also do not allow to fully unlock the diagnostic potential of cardiospecific troponins. In general, these problems are associated with a lack of understanding of the fundamental mechanisms of the metabolism of cardiospecific troponins. The main purpose of this narrative review is to summarize and provide detailed information about the metabolism of cardiospecific troponins and to discuss the potential impact of metabolic features on the diagnostic value of cardiospecific troponins and their diagnostic capabilities.

Materials and Methods: This narrative review is based on the analysis of publications in the Medline, PubMed, and Embase databases. The terms “cardiac troponins”, “troponin T”, and “troponin I” in combination with “mechanisms of increase”, “mechanisms of release”, “circulation”, “proteolytic cleavage”, “elimination”, “circadian rhythms”, “saliva”, and “urine” were used to search publications.

Results: It has been reported that the metabolic features (mechanisms of release, circulation, and elimination) of cardiospecific troponins may have an important influence on the diagnostic value of cardiospecific troponins in a number of physiological and pathological conditions that cause cardiomyocyte damage. The main mechanisms of cardiac troponin release are: cardiomyocyte apoptosis; myocardial cell regeneration and renewal; increased cell membrane permeability; release of troponins by vesicular transport; increased proteolytic degradation of cardiospecific troponin molecules within the cell which may facilitate their release from intact myocardial cells or in the initial phase of those pathological conditions that increase the activity of enzymes that degrade cardiospecific troponins. Besides, the formation of small fragments (troponin molecules) may facilitate their penetration into other body fluids such as urine and/or oral fluid which may provide researchers and practitioners with a new diagnostic opportunity. It should be noted that in addition to release mechanisms, cardiospecific troponin elimination mechanisms may play an important diagnostic role. The contribution of release and elimination mechanisms to different pathologies may differ significantly. Circadian rhythms of cardiospecific troponins may be associated with fluctuations in the activity of those organ systems which influence the mechanisms of cardiospecific troponin release or elimination. Such major systems include: neuroendocrine, urinary, and hemostasis.

Conclusion: Cardiospecific troponins metabolism has an important influence on diagnostic value and diagnostic capabilities. Further study of the features of cardiac troponin metabolism (mechanisms of release, circulation and elimination) is required to improve diagnosis and differential diagnosis of diseases causing cardiomyocyte damage. The data on the influence of circadian rhythms of cardiospecific troponins on the diagnostic value and the possibility of determining cardiospecific troponins in body fluids that can be obtained by noninvasive methods are very interesting. However, so far this information and valuable capabilities have not been applied in clinical practice because of the paucity of studies conducted.

Keywords: Troponin T, troponin I, metabolism, circulation, elimination, circadian rhythms, diagnosis.

[1]
Ohtsuki, I.; Morimoto, S. Troponin: Regulatory function and disorders. Biochem. Biophys. Res. Commun., 2008, 369(1), 62-73.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.187] [PMID: 18154728]
[2]
Chaulin, A.M.; Duplyakov, D.V. Cardiac troponins in hypertension: Mechanisms of increase and diagnostic value. Arterial Hypertens., 2021, 27(4), 390-401.
[http://dx.doi.org/10.18705/1607-419X-2021-27-4-390-401]
[3]
Chaulin, A.M.; Grigorieva, Yu.V.; Pavlova, T.V.; Duplyakov, D.V. Diagnostic significance of complete blood count in cardiovascular patients; Samara State Medical University. Russian J. Cardiol., 2020, 25(12), 3923.
[http://dx.doi.org/10.15829/1560-4071-2020-3923]
[4]
Chaulin, A.M.; Duplyakov, D.V. Increased natriuretic peptides not associated with heart failure. Russian J. Cardiol., 2020, 25(4S), 4140.
[http://dx.doi.org/10.15829/1560-4071-2020-4140]
[5]
Chaulin, A.M.; Duplyakov, D.V. Biomarkers of acute myocardial infarction: Diagnostic and prognostic value. Part 1 (literature review). J. Clin. Practice, 2020, 11(3), 75-84.
[http://dx.doi.org/10.17816/clinpract34284]
[6]
Cheng, Y.; Regnier, M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch. Biochem. Biophys., 2016, 601, 11-21.
[http://dx.doi.org/10.1016/j.abb.2016.02.004] [PMID: 26851561]
[7]
Willott, R.H.; Gomes, A.V.; Chang, A.N.; Parvatiyar, M.S.; Pinto, J.R.; Potter, J.D. Mutations in Troponin that cause HCM, DCM AND RCM: What can we learn about thin filament function? J. Mol. Cell. Cardiol., 2010, 48(5), 882-892.
[http://dx.doi.org/10.1016/j.yjmcc.2009.10.031] [PMID: 19914256]
[8]
Fahed, A.C.; Nemer, G.; Bitar, F.F.; Arnaout, S.; Abchee, A.B.; Batrawi, M.; Khalil, A.; Abou Hassan, O.K.; DePalma, S.R.; McDonough, B.; Arabi, M.T.; Ware, J.S.; Seidman, J.G.; Seidman, C.E. Founder mutation in N terminus of Cardiac Troponin I causes malignant hypertrophic cardiomyopathy. Circ. Genom. Precis. Med., 2020, 13(5), 444-452.
[http://dx.doi.org/10.1161/CIRCGEN.120.002991] [PMID: 32885985]
[9]
Chaulin, A.M. Cardiac troponins: Current information on the main analytical characteristics of determination methods and new diagnostic possibilities. Medwave, 2021, 21(11), e8498.
[http://dx.doi.org/10.5867/medwave.2021.11.002132] [PMID: 34890387]
[10]
Chaulin, A.M. Main analytical characteristics of laboratory methods for the determination of cardiac troponins: A review from the historical and modern points of view. Orv. Hetil., 2022, 163(1), 12-20.
[http://dx.doi.org/10.1556/650.2022.32296] [PMID: 34974429]
[11]
Cummins, B.; Auckland, M.L.; Cummins, P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am. Heart J., 1987, 113(6), 1333-1344.
[http://dx.doi.org/10.1016/0002-8703(87)90645-4] [PMID: 3591601]
[12]
Katus, H.A.; Looser, S.; Hallermayer, K.; Remppis, A.; Scheffold, T.; Borgya, A.; Essig, U.; Geuss, U. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin. Chem., 1992, 38(3), 386-393.
[http://dx.doi.org/10.1093/clinchem/38.3.386] [PMID: 1547556]
[13]
Venge, P.; Lindahl, B. Cardiac troponin assay classification by both clinical and analytical performance characteristics: A study on outcome prediction. Clin. Chem., 2013, 59(6), 976-981.
[http://dx.doi.org/10.1373/clinchem.2012.194928] [PMID: 23481696]
[14]
Chaulin, A. Current characteristics of methods for determining cardiac troponins and their diagnostic value: A mini-review. Rev. Fac. Cien. Med. Univ. Nac. Cordoba, 2021, 78(4), 415-422.
[http://dx.doi.org/10.31053/1853.0605.v78.n4.32988]
[15]
van der Linden, N.; Wildi, K.; Twerenbold, R.; Pickering, J.W.; Than, M.; Cullen, L.; Greenslade, J.; Parsonage, W.; Nestelberger, T.; Boeddinghaus, J.; Badertscher, P.; Rubini Giménez, M.; Klinkenberg, L.J.J.; Bekers, O.; Schöni, A.; Keller, D.I.; Sabti, Z.; Puelacher, C.; Cupa, J.; Schumacher, L.; Kozhuharov, N.; Grimm, K.; Shrestha, S.; Flores, D.; Freese, M.; Stelzig, C.; Strebel, I.; Miró, Ò.; Rentsch, K.; Morawiec, B.; Kawecki, D.; Kloos, W.; Lohrmann, J.; Richards, A.M.; Troughton, R.; Pemberton, C.; Osswald, S.; van Dieijen-Visser, M.P.; Mingels, A.M.; Reichlin, T.; Meex, S.J.R.; Mueller, C. Combining high-sensitivity cardiac troponin I and cardiac troponin T in the early diagnosis of acute myocardial infarction. Circulation, 2018, 138(10), 989-999.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032003] [PMID: 29691270]
[16]
Garg, P.; Morris, P.; Fazlanie, A.L.; Vijayan, S.; Dancso, B.; Dastidar, A.G.; Plein, S.; Mueller, C.; Haaf, P. Cardiac biomarkers of acute coronary syndrome: From history to high-sensitivity cardiac troponin. Intern. Emerg. Med., 2017, 12(2), 147-155.
[http://dx.doi.org/10.1007/s11739-017-1612-1] [PMID: 28188579]
[17]
Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. High- sensitivity cardiac troponins: Detection and central analytical characteristics. Cardiovasc. Ther. Prevent., 2021, 20(2), 2590.
[http://dx.doi.org/10.15829/1728-8800-2021-2590]
[18]
Lippi, G.; Sanchis-Gomar, F. “Ultra-sensitive” cardiac troponins: Requirements for effective implementation in clinical practice. Biochem. Med. (Zagreb), 2018, 28(3), 030501.
[http://dx.doi.org/10.11613/BM.2018.030501] [PMID: 30429666]
[19]
Kaess, B.M.; de Las Heras Gala, T.; Zierer, A.; Meisinger, C.; Wahl, S.; Peters, A.; Todd, J.; Herder, C.; Huth, C.; Thorand, B.; Koenig, W. Ultra-sensitive troponin I is an independent predictor of incident coronary heart disease in the general population. Eur. J. Epidemiol., 2017, 32(7), 583-591.
[http://dx.doi.org/10.1007/s10654-017-0266-7] [PMID: 28585121]
[20]
Neumann, J.T.; Sörensen, N.A.; Rübsamen, N.; Ojeda, F.; Schock, A.; Seddighizadeh, P.; Zeller, T.; Westermann, D.; Blankenberg, S. Evaluation of a new ultra-sensitivity troponin I assay in patients with suspected myocardial infarction. Int. J. Cardiol., 2019, 283, 35-40.
[http://dx.doi.org/10.1016/j.ijcard.2018.12.001] [PMID: 30528623]
[21]
Krintus, M.; Kozinski, M.; Boudry, P.; Lackner, K.; Lefèvre, G.; Lennartz, L.; Lotz, J.; Manysiak, S.; Shih, J.; Skadberg, Ø.; Chargui, A.T.; Sypniewska, G. Defining normality in a European multinational cohort: Critical factors influencing the 99th percentile upper reference limit for high sensitivity cardiac troponin I. Int. J. Cardiol., 2015, 187, 256-263.
[http://dx.doi.org/10.1016/j.ijcard.2015.03.282] [PMID: 25838227]
[22]
Chauin, A. The main causes and mechanisms of increase in Cardiac Troponin concentrations other than acute myocardial infarction (Part 1): Physical exertion, inflammatory heart disease, pulmonary embolism, renal failure, sepsis. Vasc. Health Risk Manag., 2021, 17, 601-617.
[http://dx.doi.org/10.2147/VHRM.S327661] [PMID: 34584417]
[23]
Ji, M.; Moon, H.W.; Hur, M.; Yun, Y.M. Determination of high-sensitivity cardiac troponin I 99th percentile upper reference limits in a healthy Korean population. Clin. Biochem., 2016, 49(10-11), 756-761.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.01.027] [PMID: 27067595]
[24]
Koerbin, G.; Tate, J.; Potter, J.M.; Cavanaugh, J.; Glasgow, N.; Hickman, P.E. Characterisation of a highly sensitive troponin I assay and its application to a cardio-healthy population. Clin. Chem. Lab. Med., 2012, 50(5), 871-878.
[http://dx.doi.org/10.1515/cclm-2011-0540] [PMID: 22628331]
[25]
Chaulin, A.M. Updated information about methods of identification and diagnostic opportunities of cardiac troponins. Riv. Ital. Med. Lab., 2021, 17(3), 154-164.
[http://dx.doi.org/10.23736/S1825-859X.21.00116-X]
[26]
Chen, J.Y.; Lee, S.Y.; Li, Y.H.; Lin, C.Y.; Shieh, M.D.; Ciou, D.S. Urine high-sensitivity Troponin I predict incident cardiovascular events in patients with Diabetes Mellitus. J. Clin. Med., 2020, 9(12), 3917.
[http://dx.doi.org/10.3390/jcm9123917] [PMID: 33276667]
[27]
Pervan, P.; Svagusa, T.; Prkacin, I.; Savuk, A.; Bakos, M.; Perkov, S. Urine high-sensitive troponin I measuring in patients with hypertension. Signa Vitae, 2017, 13(Suppl. 3), 62-64.
[http://dx.doi.org/10.22514/SV133.062017.13]
[28]
Chaulin, AM; Duplyakova, PD; Bikbaeva, GR Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: A pilot study. Russian J. Cardiol., 2020, 25(12), 3814.
[http://dx.doi.org/10.15829/1560-4071-2020-3814]
[29]
Chaulin, AM; Karslyan, LS; Bazyuk, EV; Nurbaltaeva, DA; Duplyakov, DV Clinical and diagnostic value of cardiac markers in human biological fluids. Kardiologiia, 2019, 59(11), 66-75.
[http://dx.doi.org/10.18087/cardio.2019.11.n414]
[30]
Clerico, A.; Zaninotto, M.; Passino, C.; Padoan, A.; Migliardi, M.; Plebani, M. High-sensitivity methods for cardiac troponins: The mission is not over yet. Adv. Clin. Chem., 2021, 103, 215-252.
[http://dx.doi.org/10.1016/bs.acc.2020.08.009] [PMID: 34229851]
[31]
Chaulin, A. Cardiac Troponins: Contemporary biological data and new methods of determination. Vasc. Health Risk Manag., 2021, 17, 299-316.
[http://dx.doi.org/10.2147/VHRM.S300002] [PMID: 34113117]
[32]
Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; Gale, C.P.; Gilard, M.; Jobs, A.; Jüni, P.; Lambrinou, E.; Lewis, B.S.; Mehilli, J.; Meliga, E.; Merkely, B.; Mueller, C.; Roffi, M.; Rutten, F.H.; Sibbing, D.; Siontis, G.C.M.; Kastrati, A.; Mamas, M.A.; Aboyans, V.; Angiolillo, D.J.; Bueno, H.; Bugiardini, R.; Byrne, R.A.; Castelletti, S.; Chieffo, A.; Cornelissen, V.; Crea, F.; Delgado, V.; Drexel, H.; Gierlotka, M.; Halvorsen, S.; Haugaa, K.H.; Jankowska, E.A.; Katus, H.A.; Kinnaird, T.; Kluin, J.; Kunadian, V.; Landmesser, U.; Leclercq, C.; Lettino, M.; Meinila, L.; Mylotte, D.; Ndrepepa, G.; Omerovic, E.; Pedretti, R.F.E.; Petersen, S.E.; Petronio, A.S.; Pontone, G.; Popescu, B.A.; Potpara, T.; Ray, K.K.; Luciano, F.; Richter, D.J.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Storey, R.F.; Touyz, R.M.; Valgimigli, M.; Vranckx, P.; Yeh, R.W.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; Gale, C.P.; Gilard, M.; Jobs, A.; Jüni, P.; Lambrinou, E.; Lewis, B.S.; Mehilli, J.; Meliga, E.; Merkely, B.; Mueller, C.; Roffi, M.; Rutten, F.H.; Sibbing, D.; Siontis, G.C.M. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J., 2021, 42(14), 1289-1367.
[http://dx.doi.org/10.1093/eurheartj/ehaa575] [PMID: 32860058]
[33]
Sheyin, O.; Davies, O.; Duan, W.; Perez, X. The prognostic significance of troponin elevation in patients with sepsis: A meta-analysis. Heart Lung, 2015, 44(1), 75-81.
[http://dx.doi.org/10.1016/j.hrtlng.2014.10.002] [PMID: 25453390]
[34]
Matsunaga, N.; Yoshioka, Y.; Fukuta, Y. Extremely high troponin levels induced by septic shock: A case report. J. Med. Case Reports, 2021, 15(1), 466.
[http://dx.doi.org/10.1186/s13256-021-03027-6] [PMID: 34507615]
[35]
Pettit, M.A.; Koyfman, A.; Foran, M. Myocarditis. Pediatr. Emerg. Care, 2014, 30(11), 832-835.
[http://dx.doi.org/10.1097/PEC.0000000000000272] [PMID: 25373572]
[36]
Imazio, M.; Klingel, K.; Kindermann, I.; Brucato, A.; De Rosa, F.G.; Adler, Y.; De Ferrari, G.M. COVID-19 pandemic and troponin: Indirect myocardial injury, myocardial inflammation or myocarditis? Heart, 2020, 106(15), 1127-1131.
[http://dx.doi.org/10.1136/heartjnl-2020-317186] [PMID: 32499236]
[37]
Acosta, G.; Amro, A.; Aguilar, R.; Abusnina, W.; Bhardwaj, N.; Koromia, G.A.; Studeny, M.; Irfan, A. Clinical determinants of myocardial injury, detectable and serial troponin levels among patients with hypertensive crisis. Cureus, 2020, 12(1), e6787.
[http://dx.doi.org/10.7759/cureus.6787] [PMID: 32140347]
[38]
Pattanshetty, D.J.; Bhat, P.K.; Aneja, A.; Pillai, D.P. Elevated troponin predicts long-term adverse cardiovascular outcomes in hypertensive crisis: A retrospective study. J. Hypertens., 2012, 30(12), 2410-2415.
[http://dx.doi.org/10.1097/HJH.0b013e3283599b4f] [PMID: 22990357]
[39]
Chaulin, A. Clinical and diagnostic value of highly sensitive cardiac Troponins in arterial hypertension. Vasc. Health Risk Manag., 2021, 17, 431-443.
[http://dx.doi.org/10.2147/VHRM.S315376] [PMID: 34366667]
[40]
Costabel, J.P.; Urdapilleta, M.; Lambardi, F.; Campos, R.; Vergara, J.M.; Ariznavarreta, P.; Trivi, M. High-sensitivity cardiac Troponin levels in supraventricular tachyarrhythmias. Pacing Clin. Electrophysiol., 2016, 39(6), 588-591.
[http://dx.doi.org/10.1111/pace.12851] [PMID: 27000950]
[41]
Ghersin, I.; Zahran, M.; Azzam, Z.S.; Suleiman, M.; Bahouth, F. Prognostic value of cardiac troponin levels in patients presenting with supraventricular tachycardias. J. Electrocardiol., 2020, 62, 200-203.
[http://dx.doi.org/10.1016/j.jelectrocard.2020.09.001] [PMID: 32980810]
[42]
Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russian Open Med. J., 2020, 9, e0305.
[http://dx.doi.org/10.15275/rusomj.2020.0305]
[43]
Chaulin, A.M.; Duplyakov, D.V. Arrhythmogenic effects of doxorubicin. Complex Issues Cardiovasc. Dis., 2020, 9(3), 69-80.
[http://dx.doi.org/10.17802/2306-1278-2020-9-3-69-80]
[44]
Chaulin, A.M. Elevation mechanisms and diagnostic consideration of cardiac troponins under conditions not associated with myocardial infarction. Part 2. Life (Basel), 2021, 11(11), 1175.
[http://dx.doi.org/10.3390/life11111175] [PMID: 34833051]
[45]
Lazzarino, A.I.; Hamer, M.; Gaze, D.; Collinson, P.; Steptoe, A. The association between cortisol response to mental stress and high-sensitivity cardiac troponin T plasma concentration in healthy adults. J. Am. Coll. Cardiol., 2013, 62(18), 1694-1701.
[http://dx.doi.org/10.1016/j.jacc.2013.05.070] [PMID: 23810896]
[46]
Eggers, K.M. Mental stress and cardiac troponin: Keep calm and carry on? J. Am. Coll. Cardiol., 2013, 62(18), 1702-1703.
[http://dx.doi.org/10.1016/j.jacc.2013.06.010] [PMID: 23810870]
[47]
Stavroulakis, G.A.; George, K.P. Exercise-induced release of troponin. Clin. Cardiol., 2020, 43(8), 872-881.
[http://dx.doi.org/10.1002/clc.23337] [PMID: 31975465]
[48]
Gresslien, T.; Agewall, S. Troponin and exercise. Int. J. Cardiol., 2016, 221, 609-621.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.243] [PMID: 27420587]
[49]
Chaulin, A.M.; Duplyakov, D.V. High-sensitivity cardiac troponins: Circadian rhythms. Cardiovasc. Ther. Prevent., 2021, 20(1), 2639.
[http://dx.doi.org/10.15829/1728-8800-2021-2639]
[50]
Saad, Y.M.; McEwan, J.; Shugman, I.M.; Mussap, C.; Juergens, C.P.; Ferguson, I.; French, J.K. Use of a high-sensitivity troponin T assay in the assessment and disposition of patients attending a tertiary Australian emergency department: A cross-sectional pilot study. Emerg. Med. Australas., 2015, 27(5), 405-411.
[http://dx.doi.org/10.1111/1742-6723.12430] [PMID: 26114735]
[51]
Harvell, B.; Henrie, N.; Ernst, A.A.; Weiss, S.J.; Oglesbee, S.; Sarangarm, D.; Hernandez, L. The meaning of elevated troponin I levels: Not always acute coronary syndromes. Am. J. Emerg. Med., 2016, 34(2), 145-148.
[http://dx.doi.org/10.1016/j.ajem.2015.09.037] [PMID: 26508391]
[52]
Chaulin, A.M. Elevation mechanisms and diagnostic consideration of cardiac Troponins under conditions not associated with myocardial infarction. Part 1. Life (Basel), 2021, 11(9), 914.
[http://dx.doi.org/10.3390/life11090914] [PMID: 34575063]
[53]
Lindner, G.; Pfortmueller, C.A.; Braun, C.T.; Exadaktylos, A.K. Non-acute myocardial infarction-related causes of elevated high-sensitive troponin T in the emergency room: A cross-sectional analysis. Intern. Emerg. Med., 2014, 9(3), 335-339.
[http://dx.doi.org/10.1007/s11739-013-1030-y] [PMID: 24326466]
[54]
Mirzaii-Dizgah, I.; Riahi, E. Salivary troponin I as an indicator of myocardial infarction. Indian J. Med. Res., 2013, 138(6), 861-865.
[PMID: 24521627]
[55]
Mirzaii-Dizgah, I.; Riahi, E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis., 2013, 19(2), 180-184.
[http://dx.doi.org/10.1111/j.1601-0825.2012.01968.x] [PMID: 22834943]
[56]
Miller, C.S.; Foley, J.D., III; Floriano, P.N.; Christodoulides, N.; Ebersole, J.L.; Campbell, C.L.; Bailey, A.L.; Rose, B.G.; Kinane, D.F.; Novak, M.J.; McDevitt, J.T.; Ding, X.; Kryscio, R.J. Utility of salivary biomarkers for demonstrating acute myocardial infarction. J. Dent. Res., 2014, 93(7), 72S-79S.
[http://dx.doi.org/10.1177/0022034514537522] [PMID: 24879575]
[57]
Floriano, P.N.; Christodoulides, N.; Miller, C.S.; Ebersole, J.L.; Spertus, J.; Rose, B.G.; Kinane, D.F.; Novak, M.J.; Steinhubl, S.; Acosta, S.; Mohanty, S.; Dharshan, P.; Yeh, C.K.; Redding, S.; Furmaga, W.; McDevitt, J.T. Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: A feasibility study. Clin. Chem., 2009, 55(8), 1530-1538.
[http://dx.doi.org/10.1373/clinchem.2008.117713] [PMID: 19556448]
[58]
Chaulin, A.M. Diagnostic value of highly sensitive cardiac troponins and mechanisms of their increase in serum and urine in arterial hypertension. Riv. Ital. Med. Lab., 2021, 17(2), 99-107.
[http://dx.doi.org/10.23736/S1825-859X.21.00107-9]
[59]
Potkonjak, A.M.; Sabolović Rudman, S.; Nikolac Gabaj, N.; Kuna, K.; Košec, V.; Stanec, Z.; Zovak, M.; Tučkar, N.; Djaković, I.; Prkačin, I.; Svaguša, T.; Bakoš, M. Urinary troponin concentration as a marker of cardiac damage in pregnancies complicated with preeclampsia. Med. Hypotheses, 2020, 144, 110252.
[http://dx.doi.org/10.1016/j.mehy.2020.110252] [PMID: 33254557]
[60]
Kavsak, P.A.; Worster, A.; Shortt, C.; Ma, J.; Clayton, N.; Sherbino, J.; Hill, S.A.; McQueen, M.; Griffith, L.E.; Mehta, S.R.; McRae, A.D.; Devereaux, P.J. Performance of high-sensitivity cardiac troponin in the emergency department for myocardial infarction and a composite cardiac outcome across different estimated glomerular filtration rates. Clin. Chim. Acta, 2018, 479, 166-170.
[http://dx.doi.org/10.1016/j.cca.2018.01.034] [PMID: 29366835]
[61]
Ellis, K.; Dreisbach, A.W.; Lertora, J.L. Plasma elimination of cardiac troponin I in end-stage renal disease. South. Med. J., 2001, 94(10), 993-996.
[http://dx.doi.org/10.1097/00007611-200194100-00011] [PMID: 11702827]
[62]
Ziebig, R.; Lun, A.; Hocher, B.; Priem, F.; Altermann, C.; Asmus, G.; Kern, H.; Krause, R.; Lorenz, B.; Möbes, R.; Sinha, P. Renal elimination of troponin T and troponin I. Clin. Chem., 2003, 49(7), 1191-1193.
[http://dx.doi.org/10.1373/49.7.1191] [PMID: 12816921]
[63]
Katus, H.A.; Remppis, A.; Looser, S.; Hallermeier, K.; Scheffold, T.; Kübler, W. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J. Mol. Cell. Cardiol., 1989, 21(12), 1349-1353.
[http://dx.doi.org/10.1016/0022-2828(89)90680-9] [PMID: 2632816]
[64]
Mair, J. Tissue release of cardiac markers: From physiology to clinical applications. Clin. Chem. Lab. Med., 1999, 37(11-12), 1077-1084.
[http://dx.doi.org/10.1515/CCLM.1999.157] [PMID: 10726815]
[65]
Jaffe, A.S. Troponin-past, present, and future. Curr. Probl. Cardiol., 2012, 37(6), 209-228.
[http://dx.doi.org/10.1016/j.cpcardiol.2012.02.002] [PMID: 22548763]
[66]
Clark, M.; Payne, J. Elevated cardiac troponins: Their significance in acute coronary syndrome and noncardiac conditions. J. Okla. State Med. Assoc., 2006, 99(6), 363-367.
[PMID: 16821493]
[67]
Agewall, S.; Giannitsis, E.; Jernberg, T.; Katus, H. Troponin elevation in coronary vs. non-coronary disease. Eur. Heart J., 2011, 32(4), 404-411.
[http://dx.doi.org/10.1093/eurheartj/ehq456] [PMID: 21169615]
[68]
Garcia-Osuna, A.; Gaze, D.; Grau-Agramunt, M.; Morris, T.; Telha, C.; Bartolome, A.; Bishop, J.J.; Monsalve, L.; Livingston, R.; Estis, J.; Nolan, N.; Sandlund, J.; Ordonez-Llanos, J. Ultrasensitive quantification of cardiac troponin I by a single molecule counting method: Analytical validation and biological features. Clin. Chim. Acta, 2018, 486, 224-231.
[http://dx.doi.org/10.1016/j.cca.2018.08.015] [PMID: 30110608]
[69]
Raiko, K.; Lyytikäinen, A.; Ekman, M.; Nokelainen, A.; Lahtinen, S.; Soukka, T. Supersensitive photon upconversion based immunoassay for detection of cardiac troponin I in human plasma. Clin. Chim. Acta, 2021, 523, 380-385.
[http://dx.doi.org/10.1016/j.cca.2021.10.023] [PMID: 34688634]
[70]
Bhatia, P.M.; Daniels, L.B. Highly sensitive cardiac Troponins: The evidence behind sex-specific cutoffs. J. Am. Heart Assoc., 2020, 9(10), e015272.
[http://dx.doi.org/10.1161/JAHA.119.015272] [PMID: 32390494]
[71]
Mingels, A.M.A.; Kimenai, D.M. Sex-related aspects of biomarkers in cardiac disease. Adv. Exp. Med. Biol., 2018, 1065, 545-564.
[http://dx.doi.org/10.1007/978-3-319-77932-4_33] [PMID: 30051406]
[72]
Hickman, P.E.; Abhayaratna, W.P.; Potter, J.M.; Koerbin, G. Age-related differences in hs-cTnI concentration in healthy adults. Clin. Biochem., 2019, 69, 26-29.
[http://dx.doi.org/10.1016/j.clinbiochem.2019.04.014] [PMID: 31028731]
[73]
Chaulin, A.M.; Svechkov, N.A.; Volkova, S.L.; Grigoreva, Y.V. Diagnostic value of cardiac troponins in elderly patients without myocardial infarction. Modern Problems Sci. Edu., 2020, 6, 30302.
[http://dx.doi.org/10.17513/spno.30302]
[74]
Sedighi, S.M.; Prud’Homme, P.; Ghachem, A.; Lepage, S.; Nguyen, M.; Fulop, T.; Khalil, A. Increased level of high-sensitivity cardiac Troponin T in a geriatric population is determined by comorbidities compared to age. Int. J. Cardiol. Heart Vasc., 2019, 22, 187-191.
[http://dx.doi.org/10.1016/j.ijcha.2019.02.015] [PMID: 30963093]
[75]
Røsjø, H.; Varpula, M.; Hagve, T.A.; Karlsson, S.; Ruokonen, E.; Pettilä, V.; Omland, T. Circulating high sensitivity troponin T in severe sepsis and septic shock: Distribution, associated factors, and relation to outcome. Intensive Care Med., 2011, 37(1), 77-85.
[http://dx.doi.org/10.1007/s00134-010-2051-x] [PMID: 20938765]
[76]
Bessière, F.; Khenifer, S.; Dubourg, J.; Durieu, I.; Lega, J.C. Prognostic value of troponins in sepsis: A meta-analysis. Intensive Care Med., 2013, 39(7), 1181-1189.
[http://dx.doi.org/10.1007/s00134-013-2902-3] [PMID: 23595497]
[77]
Ukena, C.; Kindermann, M.; Mahfoud, F.; Geisel, J.; Lepper, P.M.; Kandolf, R.; Böhm, M.; Kindermann, I. Diagnostic and prognostic validity of different biomarkers in patients with suspected myocarditis. Clin. Res. Cardiol., 2014, 103(9), 743-751.
[http://dx.doi.org/10.1007/s00392-014-0709-z] [PMID: 24781421]
[78]
Mingels, A.; Jacobs, L.; Michielsen, E.; Swaanenburg, J.; Wodzig, W.; van Dieijen-Visser, M. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin. Chem., 2009, 55(1), 101-108.
[http://dx.doi.org/10.1373/clinchem.2008.106427] [PMID: 18988757]
[79]
Giannitsis, E.; Katus, H.A. Highly sensitive troponins knocking at the door of primary prevention. Eur. Heart J., 2014, 35(5), 268-270.
[http://dx.doi.org/10.1093/eurheartj/eht479] [PMID: 24357506]
[80]
McEvoy, J.W.; Lazo, M.; Chen, Y.; Shen, L.; Nambi, V.; Hoogeveen, R.C.; Ballantyne, C.M.; Blumenthal, R.S.; Coresh, J.; Selvin, E. Patterns and determinants of temporal change in high-sensitivity cardiac troponin-T: The atherosclerosis risk in communities cohort study. Int. J. Cardiol., 2015, 187, 651-657.
[http://dx.doi.org/10.1016/j.ijcard.2015.03.436] [PMID: 25880403]
[81]
Uçar, H.; Gür, M.; Kivrak, A.; Koyunsever, N.Y.; Seker, T.; Akilli, R.E.; Türkoğlu, C.; Kaypakli, O.; Sahin, D.Y.; Elbasan, Z.; Tanboğa, H.İ.; Cayli, M. High-sensitivity cardiac troponin T levels in newly diagnosed hypertensive patients with different left ventricle geometry. Blood Press., 2014, 23(4), 240-247.
[http://dx.doi.org/10.3109/08037051.2013.840429] [PMID: 24059745]
[82]
McEvoy, J.W.; Chen, Y.; Nambi, V.; Ballantyne, C.M.; Sharrett, A.R.; Appel, L.J.; Post, W.S.; Blumenthal, R.S.; Matsushita, K.; Selvin, E. High-sensitivity cardiac Troponin T and risk of hypertension. Circulation, 2015, 132(9), 825-833.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.014364] [PMID: 26152706]
[83]
Panteghini, M.; Bunk, D.M.; Christenson, R.H.; Katrukha, A.; Porter, R.A.; Schimmel, H.; Wang, L.; Tate, J.R. Standardization of troponin I measurements: An update. Clin. Chem. Lab. Med., 2008, 46(11), 1501-1506.
[http://dx.doi.org/10.1515/CCLM.2008.291] [PMID: 18778218]
[84]
Tate, J.R.; Bunk, D.M.; Christenson, R.H.; Katrukha, A.; Noble, J.E.; Porter, R.A.; Schimmel, H.; Wang, L.; Panteghini, M. Standardisation of cardiac troponin I measurement: Past and present. Pathology, 2010, 42(5), 402-408.
[http://dx.doi.org/10.3109/00313025.2010.495246] [PMID: 20632814]
[85]
Apple, F.S.; Collinson, P.O. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin. Chem., 2012, 58(1), 54-61.
[http://dx.doi.org/10.1373/clinchem.2011.165795] [PMID: 21965555]
[86]
Jarolim, P. High sensitivity cardiac troponin assays in the clinical laboratories. Clin. Chem. Lab. Med., 2015, 53(5), 635-652.
[http://dx.doi.org/10.1515/cclm-2014-0565] [PMID: 25252753]
[87]
Chaulin, A.M.; Duplyakov, D.V. Cardiac troponins: Current data on the diagnostic value and analytical characteristics of new determination methods. Cor Vasa, 2021, 63(4), 486-493.
[http://dx.doi.org/10.33678/cor.2021.041]
[88]
Olah, G.A.; Trewhella, J. A model structure of the muscle protein complex 4Ca2+.troponin C.troponin I derived from small-angle scattering data: Implications for regulation. Biochemistry, 1994, 33(43), 12800-12806.
[http://dx.doi.org/10.1021/bi00209a011] [PMID: 7947685]
[89]
Katrukha, A.G.; Bereznikova, A.V.; Filatov, V.L.; Esakova, T.V.; Kolosova, O.V.; Pettersson, K.; Lövgren, T.; Bulargina, T.V.; Trifonov, I.R.; Gratsiansky, N.A.; Pulkki, K.; Voipio-Pulkki, L.M.; Gusev, N.B. Degradation of cardiac troponin I: Implication for reliable immunodetection. Clin. Chem., 1998, 44(12), 2433-2440.
[http://dx.doi.org/10.1093/clinchem/44.12.2433] [PMID: 9836709]
[90]
Olah, G.A.; Trewhella, J. The structure of the muscle protein complex 4Ca2+.troponin C.troponin I. Monte Carlo modeling analysis of small-angle X-ray data. Basic Life Sci., 1996, 64, 137-147.
[PMID: 9031509]
[91]
Katrukha, A.G.; Bereznikova, A.V.; Esakova, T.V.; Pettersson, K.; Lövgren, T.; Severina, M.E.; Pulkki, K.; Vuopio-Pulkki, L.M.; Gusev, N.B. Troponin I is released in bloodstream of patients with acute myocardial infarction not in free form but as complex. Clin. Chem., 1997, 43(8 Pt 1), 1379-1385.
[http://dx.doi.org/10.1093/clinchem/43.8.1379] [PMID: 9267317]
[92]
Labugger, R.; Organ, L.; Collier, C.; Atar, D.; Van Eyk, J.E. Extensive troponin I and T modification detected in serum from patients with acute myocardial infarction. Circulation, 2000, 102(11), 1221-1226.
[http://dx.doi.org/10.1161/01.CIR.102.11.1221] [PMID: 10982534]
[93]
Gaze, D.C.; Collinson, P.O. Multiple molecular forms of circulating cardiac troponin: Analytical and clinical significance. Ann. Clin. Biochem., 2008, 45(Pt 4), 349-355.
[http://dx.doi.org/10.1258/acb.2007.007229] [PMID: 18583618]
[94]
Breitbart, R.E.; Nguyen, H.T.; Medford, R.M.; Destree, A.T.; Mahdavi, V.; Nadal-Ginard, B. Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell, 1985, 41(1), 67-82.
[http://dx.doi.org/10.1016/0092-8674(85)90062-5] [PMID: 2986851]
[95]
Anderson, P.A.; Greig, A.; Mark, T.M.; Malouf, N.N.; Oakeley, A.E.; Ungerleider, R.M.; Allen, P.D.; Kay, B.K. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ. Res., 1995, 76(4), 681-686.
[http://dx.doi.org/10.1161/01.RES.76.4.681] [PMID: 7534662]
[96]
Streng, A.S.; de Boer, D.; van Doorn, W.P.; Kocken, J.M.; Bekers, O.; Wodzig, W.K. Cardiac troponin T degradation in serum is catalysed by human thrombin. Biochem. Biophys. Res. Commun., 2016, 481(1-2), 165-168.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.149] [PMID: 27816455]
[97]
Katrukha, I.A.; Kogan, A.E.; Vylegzhanina, A.V.; Serebryakova, M.V.; Koshkina, E.V.; Bereznikova, A.V.; Katrukha, A.G. Thrombin-mediated degradation of human cardiac Troponin T. Clin. Chem., 2017, 63(6), 1094-1100.
[http://dx.doi.org/10.1373/clinchem.2016.266635] [PMID: 28428352]
[98]
Bates, K.J.; Hall, E.M.; Fahie-Wilson, M.N.; Kindler, H.; Bailey, C.; Lythall, D.; Lamb, E.J. Circulating immunoreactive cardiac troponin forms determined by gel filtration chromatography after acute myocardial infarction. Clin. Chem., 2010, 56(6), 952-958.
[http://dx.doi.org/10.1373/clinchem.2009.133546] [PMID: 20378771]
[99]
Chaulin, A.M. Phosphorylation and fragmentation of the cardiac Troponin T: Mechanisms, role in pathophysiology and laboratory diagnosis. Int. J. Biom., 2021, 11(3), 250-259.
[http://dx.doi.org/10.21103/Article11(3)_RA2]
[100]
Parvatiyar, M.S.; Pinto, J.R.; Dweck, D.; Potter, J.D. Cardiac troponin mutations and restrictive cardiomyopathy. J. Biomed. Biotechnol., 2010, 2010, 350706.
[http://dx.doi.org/10.1155/2010/350706] [PMID: 20617149]
[101]
Tobacman, L.S.; Cammarato, A. Cardiomyopathic troponin mutations predominantly occur at its interface with actin and tropomyosin. J. Gen. Physiol., 2021, 153(3), e202012815.
[http://dx.doi.org/10.1085/jgp.202012815] [PMID: 33492345]
[102]
Morimoto, S. Molecular pathogenic mechanisms of cardiomyopathies caused by mutations in cardiac troponin T. Adv. Exp. Med. Biol., 2007, 592, 227-239.
[http://dx.doi.org/10.1007/978-4-431-38453-3_19] [PMID: 17278368]
[103]
Belin, R.J.; Sumandea, M.P.; Sievert, G.A.; Harvey, L.A.; Geenen, D.L.; Solaro, R.J.; de Tombe, P.P. Interventricular differences in myofilament function in experimental congestive heart failure. Pflugers Arch., 2011, 462(6), 795-809.
[http://dx.doi.org/10.1007/s00424-011-1024-4] [PMID: 21927813]
[104]
Dubois, E.; Richard, V.; Mulder, P.; Lamblin, N.; Drobecq, H.; Henry, J.P.; Amouyel, P.; Thuillez, C.; Bauters, C.; Pinet, F. Decreased serine207 phosphorylation of troponin T as a biomarker for left ventricular remodelling after myocardial infarction. Eur. Heart J., 2011, 32(1), 115-123.
[http://dx.doi.org/10.1093/eurheartj/ehq108] [PMID: 20418543]
[105]
Di Lisa, F; De Tullio, R; Salamino, F; Barbato, R; Melloni, E; Siliprandi, N; Schiaffino, S; Pontremoli, S Specific degradation of troponin T and I by mu-calpain and its modulation by substrate phosphorylation. Biochem. J., 1995, 308(Pt 1), 57-61.
[http://dx.doi.org/10.1042/bj3080057]
[106]
Jaffe, A.S.; Wu, A.H.B. Troponin release-reversible or irreversible injury? Should we care? Clin. Chem., 2012, 58(1), 148-150.
[http://dx.doi.org/10.1373/clinchem.2011.173070] [PMID: 22039010]
[107]
Tjora, S.; Hall, T.S.; Larstorp, A.C.; Hallen, J.; Atar, D. Increases in circulating cardiac troponin are not always associated with myocardial cell death. Clin. Lab., 2018, 64(11)
[http://dx.doi.org/10.7754/Clin.Lab.2018.180615] [PMID: 30549980]
[108]
White, H.D. Pathobiology of troponin elevations: Do elevations occur with myocardial ischemia as well as necrosis? J. Am. Coll. Cardiol., 2011, 57(24), 2406-2408.
[http://dx.doi.org/10.1016/j.jacc.2011.01.029] [PMID: 21658560]
[109]
Hickman, P.E.; Potter, J.M.; Aroney, C.; Koerbin, G.; Southcott, E.; Wu, A.H.B.; Roberts, M.S. Cardiac troponin may be released by ischemia alone, without necrosis. Clin. Chim. Acta, 2010, 411(5-6), 318-323.
[http://dx.doi.org/10.1016/j.cca.2009.12.009] [PMID: 20036224]
[110]
Narula, J.; Haider, N.; Virmani, R.; DiSalvo, T.G.; Kolodgie, F.D.; Hajjar, R.J.; Schmidt, U.; Semigran, M.J.; Dec, G.W.; Khaw, B.A. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med., 1996, 335(16), 1182-1189.
[http://dx.doi.org/10.1056/NEJM199610173351603] [PMID: 8815940]
[111]
Gao, W.D.; Atar, D.; Liu, Y.; Perez, N.G.; Murphy, A.M.; Marban, E. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ. Res., 1997, 80(3), 393-399.
[http://dx.doi.org/10.1161/01.res.0000435855.49359.47] [PMID: 9048660]
[112]
McDonough, J.L.; Arrell, D.K.; Van Eyk, J.E. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury. Circ. Res., 1999, 84(1), 9-20.
[http://dx.doi.org/10.1161/01.RES.84.1.9] [PMID: 9915770]
[113]
Schwartz, P.; Piper, H.M.; Spahr, R.; Spieckermann, P.G. Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am. J. Pathol., 1984, 115(3), 349-361.
[PMID: 6731585]
[114]
Feng, J.; Schaus, B.J.; Fallavollita, J.A.; Lee, T.C.; Canty, J.M., Jr Preload induces troponin I degradation independently of myocardial ischemia. Circulation, 2001, 103(16), 2035-2037.
[http://dx.doi.org/10.1161/01.CIR.103.16.2035] [PMID: 11319190]
[115]
Lee, Y.; Gustafsson, A.B. Role of apoptosis in cardiovascular disease. Apoptosis, 2009, 14(4), 536-548.
[http://dx.doi.org/10.1007/s10495-008-0302-x] [PMID: 19142731]
[116]
Takemura, G.; Kanoh, M.; Minatoguchi, S.; Fujiwara, H. Cardiomyocyte apoptosis in the failing heart-a critical review from definition and classification of cell death. Int. J. Cardiol., 2013, 167(6), 2373-2386.
[http://dx.doi.org/10.1016/j.ijcard.2013.01.163] [PMID: 23498286]
[117]
Zhang, W.W.; Geng, X.; Zhang, W.Q. Downregulation of lncRNA MEG3 attenuates high glucose-induced cardiomyocytes injury by inhibiting mitochondria-mediated apoptosis pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(17), 7599-7604.
[http://dx.doi.org/10.26355/eurrev_201909_18881] [PMID: 31539151]
[118]
Kyrylkova, K.; Kyryachenko, S.; Leid, M.; Kioussi, C. Detection of apoptosis by TUNEL assay. Methods Mol. Biol., 2012, 887, 41-47.
[http://dx.doi.org/10.1007/978-1-61779-860-3_5] [PMID: 22566045]
[119]
Sato, H.; Shiraishi, I.; Takamatsu, T.; Hamaoka, K. Detection of TUNEL-positive cardiomyocytes and c-kit-positive progenitor cells in children with congenital heart disease. J. Mol. Cell. Cardiol., 2007, 43(3), 254-261.
[http://dx.doi.org/10.1016/j.yjmcc.2007.05.011] [PMID: 17631310]
[120]
Weil, B.R.; Young, R.F.; Shen, X.; Suzuki, G.; Qu, J.; Malhotra, S.; Canty, J.M., Jr Brief myocardial ischemia produces cardiac troponin I release and focal myocyte apoptosis in the absence of pathological infarction in swine. JACC Basic Transl. Sci., 2017, 2(2), 105-114.
[http://dx.doi.org/10.1016/j.jacbts.2017.01.006] [PMID: 28979949]
[121]
Cheng, W.; Li, B.; Kajstura, J.; Li, P.; Wolin, M.S.; Sonnenblick, E.H.; Hintze, T.H.; Olivetti, G.; Anversa, P. Stretch-induced programmed myocyte cell death. J. Clin. Invest., 1995, 96(5), 2247-2259.
[http://dx.doi.org/10.1172/JCI118280] [PMID: 7593611]
[122]
Anversa, P.; Cheng, W.; Liu, Y.; Leri, A.; Redaelli, G.; Kajstura, J. Apoptosis and myocardial infarction. Basic Res. Cardiol., 1998, 93(Suppl. 3), 8-12.
[http://dx.doi.org/10.1007/s003950050195] [PMID: 9879436]
[123]
Singh, K.; Xiao, L.; Remondino, A.; Sawyer, D.B.; Colucci, W.S. Adrenergic regulation of cardiac myocyte apoptosis. J. Cell. Physiol., 2001, 189(3), 257-265.
[http://dx.doi.org/10.1002/jcp.10024] [PMID: 11748583]
[124]
Singh, K.; Communal, C.; Sawyer, D.B.; Colucci, W.S. Adrenergic regulation of myocardial apoptosis. Cardiovasc. Res., 2000, 45(3), 713-719.
[http://dx.doi.org/10.1016/S0008-6363(99)00370-3] [PMID: 10728393]
[125]
Xiao, R.P.; Tomhave, E.D.; Wang, D.J.; Ji, X.; Boluyt, M.O.; Cheng, H.; Lakatta, E.G.; Koch, W.J. Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J. Clin. Invest., 1998, 101(6), 1273-1282.
[http://dx.doi.org/10.1172/JCI1335] [PMID: 9502768]
[126]
Dalal, S.; Connelly, B.; Singh, M.; Singh, K. NF2 signaling pathway plays a pro-apoptotic role in β-adrenergic receptor stimulated cardiac myocyte apoptosis. PLoS One, 2018, 13(4), e0196626.
[http://dx.doi.org/10.1371/journal.pone.0196626] [PMID: 29709009]
[127]
Communal, C.; Colucci, W.S. The control of cardiomyocyte apoptosis via the beta-adrenergic signaling pathways. Arch. Mal. Coeur Vaiss., 2005, 98(3), 236-241.
[PMID: 15816327]
[128]
Menon, B.; Singh, M.; Ross, R.S.; Johnson, J.N.; Singh, K. beta-Adrenergic receptor-stimulated apoptosis in adult cardiac myocytes involves MMP-2-mediated disruption of beta1 integrin signaling and mitochondrial pathway. Am. J. Physiol. Cell Physiol., 2006, 290(1), C254-C261.
[http://dx.doi.org/10.1152/ajpcell.00235.2005] [PMID: 16148033]
[129]
Singh, M.; Roginskaya, M.; Dalal, S.; Menon, B.; Kaverina, E.; Boluyt, M.O.; Singh, K. Extracellular ubiquitin inhibits beta-AR-stimulated apoptosis in cardiac myocytes: Role of GSK-3beta and mitochondrial pathways. Cardiovasc. Res., 2010, 86(1), 20-28.
[http://dx.doi.org/10.1093/cvr/cvp402] [PMID: 20015977]
[130]
Weil, B.R.; Suzuki, G.; Young, R.F.; Iyer, V.; Canty, J.M., Jr Troponin release and reversible left ventricular dysfunction after transient pressure overload. J. Am. Coll. Cardiol., 2018, 71(25), 2906-2916.
[http://dx.doi.org/10.1016/j.jacc.2018.04.029] [PMID: 29929614]
[131]
Giannitsis, E.; Müller-Bardorff, M.; Kurowski, V.; Weidtmann, B.; Wiegand, U.; Kampmann, M.; Katus, H.A. Independent prognostic value of cardiac troponin T in patients with confirmed pulmonary embolism. Circulation, 2000, 102(2), 211-217.
[http://dx.doi.org/10.1161/01.CIR.102.2.211] [PMID: 10889133]
[132]
Müller-Bardorff, M.; Weidtmann, B.; Giannitsis, E.; Kurowski, V.; Katus, H.A. Release kinetics of cardiac troponin T in survivors of confirmed severe pulmonary embolism. Clin. Chem., 2002, 48(4), 673-675.
[http://dx.doi.org/10.1093/clinchem/48.4.673] [PMID: 11901075]
[133]
Korff, S.; Katus, H.A.; Giannitsis, E. Differential diagnosis of elevated troponins. Heart, 2006, 92(7), 987-993.
[http://dx.doi.org/10.1136/hrt.2005.071282] [PMID: 16775113]
[134]
Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabé-Heider, F.; Walsh, S.; Zupicich, J.; Alkass, K.; Buchholz, B.A.; Druid, H.; Jovinge, S.; Frisén, J. Evidence for cardiomyocyte renewal in humans. Science, 2009, 324(5923), 98-102.
[http://dx.doi.org/10.1126/science.1164680] [PMID: 19342590]
[135]
Bergmann, O.; Zdunek, S.; Frisén, J.; Bernard, S.; Druid, H.; Jovinge, S. Cardiomyocyte renewal in humans. Circ. Res., 2012, 110(1), e17-e18.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.259598] [PMID: 22223215]
[136]
Eschenhagen, T.; Bolli, R.; Braun, T.; Field, L.J.; Fleischmann, B.K.; Frisén, J.; Giacca, M.; Hare, J.M.; Houser, S.; Lee, R.T.; Marbán, E.; Martin, J.F.; Molkentin, J.D.; Murry, C.E.; Riley, P.R.; Ruiz-Lozano, P.; Sadek, H.A.; Sussman, M.A.; Hill, J.A. Cardiomyocyte Regeneration: A Consensus Statement. Circulation, 2017, 136(7), 680-686.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029343] [PMID: 28684531]
[137]
Docshin, P.M.; Karpov, A.A.; Eyvazova, Sh.D.; Puzanov, M.V.; Kostareva, A.A.; Galagudza, M.M.; Malashicheva, A.B. Activation of cardiac stem cells in myocardial infarction. Tsitologiya, 2018, 60(2), 81-88.
[http://dx.doi.org/10.1134/S1990519X18030045]
[138]
Waring, C.D.; Vicinanza, C.; Papalamprou, A.; Smith, A.J.; Purushothaman, S.; Goldspink, D.F.; Nadal-Ginard, B.; Torella, D.; Ellison, G.M. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. Eur. Heart J., 2014, 35(39), 2722-2731.
[http://dx.doi.org/10.1093/eurheartj/ehs338] [PMID: 23100284]
[139]
Rovira, M.; Borràs, D.M.; Marques, I.J.; Puig, C.; Planas, J.V. Physiological responses to swimming-induced exercise in the adult zebrafish regenerating heart. Front. Physiol., 2018, 9, 1362.
[http://dx.doi.org/10.3389/fphys.2018.01362] [PMID: 30327615]
[140]
Giacca, M. Cardiac regeneration after myocardial infarction: An approachable goal. Curr. Cardiol. Rep., 2020, 22(10), 122.
[http://dx.doi.org/10.1007/s11886-020-01361-7] [PMID: 32778947]
[141]
Talman, V.; Ruskoaho, H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res., 2016, 365(3), 563-581.
[http://dx.doi.org/10.1007/s00441-016-2431-9] [PMID: 27324127]
[142]
Rurali, E.; Vinci, M.C.; Bassetti, B.; Barbagallo, V.; Pompilio, G.; Gambini, E. New strategies to enhance myocardial regeneration: expectations and challenges from preclinical evidence. Curr. Stem Cell Res. Ther., 2020, 15(8), 696-710.
[http://dx.doi.org/10.2174/1574888X15666200225124451] [PMID: 32096748]
[143]
Isomi, M.; Sadahiro, T.; Ieda, M. Progress and challenge of cardiac regeneration to treat heart failure. J. Cardiol., 2019, 73(2), 97-101.
[http://dx.doi.org/10.1016/j.jjcc.2018.10.002] [PMID: 30420106]
[144]
Streng, A.S.; Jacobs, L.H.; Schwenk, R.W.; Cardinaels, E.P.; Meex, S.J.; Glatz, J.F.; Wodzig, W.K.; van Dieijen-Visser, M.P. Cardiac troponin in ischemic cardiomyocytes: Intracellular decrease before onset of cell death. Exp. Mol. Pathol., 2014, 96(3), 339-345.
[http://dx.doi.org/10.1016/j.yexmp.2014.02.012] [PMID: 24607416]
[145]
Li, L.; Hessel, M.; van der Valk, L.; Bax, M.; van der Linden, I.; van der Laarse, A. Partial and delayed release of troponin-I compared with the release of lactate dehydrogenase from necrotic cardiomyocytes. Pflugers Arch., 2004, 448(2), 146-152.
[http://dx.doi.org/10.1007/s00424-003-1236-3] [PMID: 14767771]
[146]
Hessel, M.H.M.; Atsma, D.E.; van der Valk, E.J.M.; Bax, W.H.; Schalij, M.J.; van der Laarse, A. Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch., 2008, 455(6), 979-986.
[http://dx.doi.org/10.1007/s00424-007-0354-8] [PMID: 17909848]
[147]
Walter, S.; Carlsson, J.; Schröder, R.; Neuhaus, K.L.; Sorges, E.; Tebbe, U. Enzymatic markers of reperfusion in acute myocardial infarct. With data from the ISAM study. Herz, 1999, 24(6), 430-9.
[http://dx.doi.org/10.1007/BF03044429]
[148]
Christenson, R.H.; Newby, L.K.; Ohman, E.M. Cardiac markers in the assessment of acute coronary syndromes. Md. Med. J., 1997, Suppl., 18-24.
[PMID: 9470339]
[149]
Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; Eyassu, F.; Shirley, R.; Hu, C.H.; Dare, A.J.; James, A.M.; Rogatti, S.; Hartley, R.C.; Eaton, S.; Costa, A.S.H.; Brookes, P.S.; Davidson, S.M.; Duchen, M.R.; Saeb-Parsy, K.; Shattock, M.J.; Robinson, A.J.; Work, L.M.; Frezza, C.; Krieg, T.; Murphy, M.P. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 2014, 515(7527), 431-435.
[http://dx.doi.org/10.1038/nature13909] [PMID: 25383517]
[150]
Czibik, G.; Steeples, V.; Yavari, A.; Ashrafian, H. Citric acid cycle intermediates in cardioprotection. Circ. Cardiovasc. Genet., 2014, 7(5), 711-719.
[http://dx.doi.org/10.1161/CIRCGENETICS.114.000220] [PMID: 25518044]
[151]
Wu, F.; Minteer, S.D. Tricarboxylic acid metabolon. Methods Enzymol., 2019, 617, 29-43.
[http://dx.doi.org/10.1016/bs.mie.2018.12.002] [PMID: 30784407]
[152]
Frangogiannis, N.G. Pathophysiology of myocardial infarction. Compr. Physiol., 2015, 5(4), 1841-1875.
[http://dx.doi.org/10.1002/cphy.c150006] [PMID: 26426469]
[153]
Rosano, G.M.; Fini, M.; Caminiti, G.; Barbaro, G. Cardiac metabolism in myocardial ischemia. Curr. Pharm. Des., 2008, 14(25), 2551-2562.
[http://dx.doi.org/10.2174/138161208786071317] [PMID: 18991672]
[154]
O’Hanlon, R.; Wilson, M.; Wage, R.; Smith, G.; Alpendurada, F.D.; Wong, J.; Dahl, A.; Oxborough, D.; Godfrey, R.; Sharma, S.; Roughton, M.; George, K.; Pennell, D.J.; Whyte, G.; Prasad, S.K. Troponin release following endurance exercise: Is inflammation the cause? a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson., 2010, 12(1), 38.
[http://dx.doi.org/10.1186/1532-429X-12-38] [PMID: 20598139]
[155]
Scherr, J.; Braun, S.; Schuster, T.; Hartmann, C.; Moehlenkamp, S.; Wolfarth, B.; Pressler, A.; Halle, M. 72-h kinetics of high-sensitive troponin T and inflammatory markers after marathon. Med. Sci. Sports Exerc., 2011, 43(10), 1819-1827.
[http://dx.doi.org/10.1249/MSS.0b013e31821b12eb] [PMID: 21448080]
[156]
Brotman, D.J.; Golden, S.H.; Wittstein, I.S. The cardiovascular toll of stress. Lancet, 2007, 370(9592), 1089-1100.
[http://dx.doi.org/10.1016/S0140-6736(07)61305-1] [PMID: 17822755]
[157]
Steptoe, A.; Kivimäki, M. Stress and cardiovascular disease. Nat. Rev. Cardiol., 2012, 9(6), 360-370.
[http://dx.doi.org/10.1038/nrcardio.2012.45] [PMID: 22473079]
[158]
Manjunath, L.; Yeluru, A.; Rodriguez, F. 27-year-old man with a positive Troponin: A case report. Cardiol. Ther., 2018, 7(2), 197-204.
[http://dx.doi.org/10.1007/s40119-018-0120-3] [PMID: 30367446]
[159]
Ricchiuti, V.; Apple, F.S. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin. Chem., 1999, 45(12), 2129-2135.
[http://dx.doi.org/10.1093/clinchem/45.12.2129] [PMID: 10585344]
[160]
Messner, B.; Baum, H.; Fischer, P.; Quasthoff, S.; Neumeier, D. Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Am. J. Clin. Pathol., 2000, 114(4), 544-549.
[http://dx.doi.org/10.1309/8KCL-UQRF-6EEL-36XK] [PMID: 11026100]
[161]
Jaffe, A.S.; Vasile, V.C.; Milone, M.; Saenger, A.K.; Olson, K.N.; Apple, F.S. Diseased skeletal muscle: A noncardiac source of increased circulating concentrations of cardiac troponin T. J. Am. Coll. Cardiol., 2011, 58(17), 1819-1824.
[http://dx.doi.org/10.1016/j.jacc.2011.08.026] [PMID: 21962825]
[162]
Schmid, J.; Liesinger, L.; Birner-Gruenberger, R.; Stojakovic, T.; Scharnagl, H.; Dieplinger, B.; Asslaber, M.; Radl, R.; Beer, M.; Polacin, M.; Mair, J.; Szolar, D.; Berghold, A.; Quasthoff, S.; Binder, J.S.; Rainer, P.P. Elevated Cardiac Troponin T in patients with skeletal myopathies. J. Am. Coll. Cardiol., 2018, 71(14), 1540-1549.
[http://dx.doi.org/10.1016/j.jacc.2018.01.070] [PMID: 29622161]
[163]
Patke, A.; Young, M.W.; Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol., 2020, 21(2), 67-84.
[http://dx.doi.org/10.1038/s41580-019-0179-2] [PMID: 31768006]
[164]
Thosar, S.S.; Butler, M.P.; Shea, S.A. Role of the circadian system in cardiovascular disease. J. Clin. Invest., 2018, 128(6), 2157-2167.
[http://dx.doi.org/10.1172/JCI80590] [PMID: 29856365]
[165]
Cribbet, M.R.; Logan, R.W.; Edwards, M.D.; Hanlon, E.; Bien Peek, C.; Stubblefield, J.J.; Vasudevan, S.; Ritchey, F.; Frank, E. Circadian rhythms and metabolism: From the brain to the gut and back again. Ann. N. Y. Acad. Sci., 2016, 1385(1), 21-40.
[http://dx.doi.org/10.1111/nyas.13188] [PMID: 27589593]
[166]
Ota, S.M.; Kong, X.; Hut, R.; Suchecki, D.; Meerlo, P. The impact of stress and stress hormones on endogenous clocks and circadian rhythms. Front. Neuroendocrinol., 2021, 63, 100931.
[http://dx.doi.org/10.1016/j.yfrne.2021.100931] [PMID: 34192588]
[167]
Aakre, K.M.; Røraas, T.; Petersen, P.H.; Svarstad, E.; Sellevoll, H.; Skadberg, Ø.; Sæle, K.; Sandberg, S. Weekly and 90-minute biological variations in cardiac troponin T and cardiac troponin I in hemodialysis patients and healthy controls. Clin. Chem., 2014, 60(6), 838-847.
[http://dx.doi.org/10.1373/clinchem.2013.216978] [PMID: 24619542]
[168]
Klinkenberg, L.J.J.; Wildi, K.; van der Linden, N.; Kouw, I.W.K.; Niens, M.; Twerenbold, R.; Rubini Gimenez, M.; Puelacher, C.; Daniel Neuhaus, J.; Hillinger, P.; Nestelberger, T.; Boeddinghaus, J.; Grimm, K.; Sabti, Z.; Bons, J.A.; van Suijlen, J.D.; Tan, F.E.; Ten Kate, J.; Bekers, O.; van Loon, L.J.; van Dieijen-Visser, M.P.; Mueller, C.; Meex, S.J. Diurnal rhythm of cardiac troponin: Consequences for the diagnosis of acute myocardial infarction. Clin. Chem., 2016, 62(12), 1602-1611.
[http://dx.doi.org/10.1373/clinchem.2016.257485] [PMID: 27707754]
[169]
van der Linden, N.; Cornelis, T.; Klinkenberg, L.J.J.; Kimenai, D.M.; Hilderink, J.M.; Litjens, E.J.R.; Kooman, J.P.; Bekers, O.; van Dieijen-Visser, M.P.; Meex, S.J. Strong diurnal rhythm of troponin T, but not troponin I, in a patient with renal dysfunction. Int. J. Cardiol., 2016, 221, 287-288.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.268] [PMID: 27404692]
[170]
Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth universal definition of myocardial infarction. Glob. Heart, 2018, 13(4), 305-338.
[http://dx.doi.org/10.1016/j.gheart.2018.08.004] [PMID: 30154043]
[171]
Chaulin, A.M.; Duplyakov, D.V. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae, 2021.
[http://dx.doi.org/10.22514/sv.2021.050]
[172]
Arı, H.; Sonmez, O.; Koc, F.; Alıhanoglu, Y.; Ozdemır, K.; Vatankulu, M.A. Circadian rhythm of infarct size and left ventricular function evaluated with tissue doppler echocardiography in ST elevation myocardial infarction. Heart Lung Circ., 2016, 25(3), 250-256.
[http://dx.doi.org/10.1016/j.hlc.2015.06.833] [PMID: 26475647]
[173]
Chaulin, A.M.; Duplyakov, D.V. Environmental factors and cardiovascular diseases. Hygiene Sanit., 2021, 100(3), 223-228.
[http://dx.doi.org/10.47470/0016-9900-2021-100-3-223-228]
[174]
Kapiotis, S.; Jilma, B.; Quehenberger, P.; Ruzicka, K.; Handler, S.; Speiser, W. Morning hypercoagulability and hypofibrinolysis. Diurnal variations in circulating activated factor VII, prothrombin fragment F1+2, and plasmin-plasmin inhibitor complex. Circulation, 1997, 96(1), 19-21.
[http://dx.doi.org/10.1161/01.CIR.96.1.19] [PMID: 9236409]
[175]
Chaulin, A.M.; Duplyakova, P.D.; Duplyakov, D.V. Circadian rhythms of cardiac troponins: Mechanisms and clinical significance. Russian J. Cardiol., 2020, 25(3S), 4061.
[http://dx.doi.org/10.15829/1560-4071-2020-4061]
[176]
Maekawa, A.; Lee, J.K.; Nagaya, T.; Kamiya, K.; Yasui, K.; Horiba, M.; Miwa, K.; Uzzaman, M.; Maki, M.; Ueda, Y.; Kodama, I. Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. J. Mol. Cell. Cardiol., 2003, 35(10), 1277-1284.
[http://dx.doi.org/10.1016/S0022-2828(03)00238-4] [PMID: 14519437]
[177]
Zahran, S.; Figueiredo, V.P.; Graham, M.M.; Schulz, R.; Hwang, P.M. Proteolytic digestion of serum Cardiac Troponin I as marker of ischemic severity. J. Appl. Lab. Med., 2018, 3(3), 450-455.
[http://dx.doi.org/10.1373/jalm.2017.025254] [PMID: 33636927]
[178]
Streng, A.S.; de Boer, D.; van Doorn, W.P.; Bouwman, F.G.; Mariman, E.C.; Bekers, O.; van Dieijen-Visser, M.P.; Wodzig, W.K. Identification and characterization of Cardiac Troponin T fragments in serum of patients suffering from acute myocardial infarction. Clin. Chem., 2017, 63(2), 563-572.
[http://dx.doi.org/10.1373/clinchem.2016.261511] [PMID: 27940450]
[179]
Katrukha, I.A.; Kogan, A.E.; Vylegzhanina, A.V.; Kharitonov, A.V.; Tamm, N.N.; Filatov, V.L.; Bereznikova, A.V.; Koshkina, E.V.; Katrukha, A.G. Full-size cardiac troponin I and its proteolytic fragments in blood of patients with acute myocardial infarction: Antibody selection for assay development. Clin. Chem., 2018, 64(7), 1104-1112.
[http://dx.doi.org/10.1373/clinchem.2017.286211] [PMID: 29632125]
[180]
Bodor, G.S.; Oakeley, A.E.; Allen, P.D.; Crimmins, D.L.; Ladenson, J.H.; Anderson, P.A. Troponin I phosphorylation in the normal and failing adult human heart. Circulation, 1997, 96(5), 1495-1500.
[http://dx.doi.org/10.1161/01.CIR.96.5.1495] [PMID: 9315537]
[181]
Hafner, G.; Thome-Kromer, B.; Schaube, J.; Kupferwasser, I.; Ehrenthal, W.; Cummins, P.; Prellwitz, W.; Michel, G. Cardiac troponins in serum in chronic renal failure. Clin. Chem., 1994, 40(9), 1790-1791.
[http://dx.doi.org/10.1093/clinchem/40.9.1790] [PMID: 8070099]
[182]
Li, D.; Keffer, J.; Corry, K.; Vazquez, M.; Jialal, I. Nonspecific elevation of troponin T levels in patients with chronic renal failure. Clin. Biochem., 1995, 28(4), 474-477.
[http://dx.doi.org/10.1016/0009-9120(95)00027-7] [PMID: 8521605]
[183]
Dubin, R.F.; Li, Y.; He, J.; Jaar, B.G.; Kallem, R.; Lash, J.P.; Makos, G.; Rosas, S.E.; Soliman, E.Z.; Townsend, R.R.; Yang, W.; Go, A.S.; Keane, M.; Defilippi, C.; Mishra, R.; Wolf, M.; Shlipak, M.G. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: A cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol., 2013, 14(1), 229.
[http://dx.doi.org/10.1186/1471-2369-14-229] [PMID: 24148285]
[184]
Escalon, J.C.; Wong, S.S. False-positive cardiac troponin T levels in chronic hemodialysis patients. Cardiology, 1996, 87(3), 268-269.
[http://dx.doi.org/10.1159/000177101] [PMID: 8725327]
[185]
Ahmadi, F.; Dolatkhani, F.; Lessan-Pezeshki, M.; Mahdavi-Mazdeh, M.; Abbasi, M.R.; Mohebi-Nejad, A. Cardiac troponins in patients with chronic kidney disease and kidney transplant recipients without acute cardiac symptoms. Iran. J. Kidney Dis., 2014, 8(1), 31-36.
[PMID: 24413718]
[186]
Han, X.; Zhang, S.; Chen, Z.; Adhikari, B.K.; Zhang, Y.; Zhang, J.; Sun, J.; Wang, Y. Cardiac biomarkers of heart failure in chronic kidney disease. Clin. Chim. Acta, 2020, 510, 298-310.
[http://dx.doi.org/10.1016/j.cca.2020.07.040] [PMID: 32710942]
[187]
Belmin, J.; Medjahed, S.; Bruhat, A. False-negative qualitative troponin T. JAMA, 1998, 279(16), 1262-1263.
[http://dx.doi.org/10.1001/jama.279.16.1262-a] [PMID: 9565003]
[188]
Mahalingam, M.; Ottlinger, M.E. False-negative qualitative cardiac troponin T in a 79-year-old man with myocardial infarction. JAMA, 1997, 278(24), 2143-2144.
[http://dx.doi.org/10.1001/jama.278.24.2143b] [PMID: 9417005]
[189]
Bohner, J.; von Pape, K.W.; Hannes, W.; Stegmann, T. False-negative immunoassay results for cardiac troponin I probably due to circulating troponin I autoantibodies. Clin. Chem., 1996, 42(12), 2046.
[http://dx.doi.org/10.1093/clinchem/42.12.2046] [PMID: 8969651]
[190]
Eriksson, S.; Halenius, H.; Pulkki, K.; Hellman, J.; Pettersson, K. Negative interference in cardiac troponin I immunoassays by circulating troponin autoantibodies. Clin. Chem., 2005, 51(5), 839-847.
[http://dx.doi.org/10.1373/clinchem.2004.040063] [PMID: 15718489]
[191]
Mishra, V.; Patil, R.; Khanna, V.; Tripathi, A.; Singh, V.; Pandey, S.; Chaurasia, A. Evaluation of salivary cardiac troponin I as potential marker for detection of acute myocardial infarction. J. Clin. Diagn. Res., 2018, 12(7), 44-47.
[http://dx.doi.org/10.7860/JCDR/2018/32109.11791]
[192]
Chen, J.H.; Inamori-Kawamoto, O.; Michiue, T.; Ikeda, S.; Ishikawa, T.; Maeda, H. Cardiac biomarkers in blood, and pericardial and cerebrospinal fluids of forensic autopsy cases: A reassessment with special regard to postmortem interval. Leg. Med. (Tokyo), 2015, 17(5), 343-350.
[http://dx.doi.org/10.1016/j.legalmed.2015.03.007] [PMID: 26052007]
[193]
Wang, Q.; Michiue, T.; Ishikawa, T.; Zhu, B.L.; Maeda, H. Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases. Leg. Med. (Tokyo), 2011, 13(5), 226-232.
[http://dx.doi.org/10.1016/j.legalmed.2011.05.002] [PMID: 21683643]
[194]
Adamczyk, M.; Brashear, R.J.; Mattingly, P.G. Circulating cardiac troponin-I autoantibodies in human plasma and serum. Ann. N. Y. Acad. Sci., 2009, 1173(1), 67-74.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04617.x] [PMID: 19758134]
[195]
Adamczyk, M.; Brashear, R.J.; Mattingly, P.G. Prevalence of autoantibodies to cardiac troponin T in healthy blood donors. Clin. Chem., 2009, 55(8), 1592-1593.
[http://dx.doi.org/10.1373/clinchem.2009.125781] [PMID: 19498047]
[196]
Eriksson, S.; Hellman, J.; Pettersson, K. Autoantibodies against cardiac troponins. N. Engl. J. Med., 2005, 352(1), 98-100.
[http://dx.doi.org/10.1056/NEJM200501063520123] [PMID: 15635126]
[197]
Tang, G.; Wu, Y.; Zhao, W.; Shen, Q. Multiple immunoassay systems are negatively interfered by circulating cardiac troponin I autoantibodies. Clin. Exp. Med., 2012, 12(1), 47-53.
[http://dx.doi.org/10.1007/s10238-011-0141-x] [PMID: 21655961]
[198]
Savukoski, T.; Engström, E.; Engblom, J.; Ristiniemi, N.; Wittfooth, S.; Lindahl, B.; Eggers, K.M.; Venge, P.; Pettersson, K. Troponin-specific autoantibody interference in different cardiac troponin I assay configurations. Clin. Chem., 2012, 58(6), 1040-1048.
[http://dx.doi.org/10.1373/clinchem.2011.179226] [PMID: 22490617]
[199]
Hayashi, T.; Notkins, A.L. Clearance of LDH-5 from the circulation of inbred mice correlates with binding to macrophages. Int. J. Exp. Pathol., 1994, 75(3), 165-168.
[PMID: 8086313]
[200]
Prabhudas, M.; Bowdish, D.; Drickamer, K.; Febbraio, M.; Herz, J.; Kobzik, L.; Krieger, M.; Loike, J.; Means, T.K.; Moestrup, S.K.; Post, S.; Sawamura, T.; Silverstein, S.; Wang, X.Y.; El Khoury, J. Standardizing scavenger receptor nomenclature. J. Immunol., 2014, 192(5), 1997-2006.
[http://dx.doi.org/10.4049/jimmunol.1490003] [PMID: 24563502]
[201]
Muslimovic, A.; Fridén, V.; Tenstad, O.; Starnberg, K.; Nyström, S.; Wesén, E.; Esbjörner, E.K.; Granholm, K.; Lindahl, B.; Hammarsten, O. The Liver and Kidneys mediate clearance of cardiac troponin in the rat. Sci. Rep., 2020, 10(1), 6791.
[http://dx.doi.org/10.1038/s41598-020-63744-8] [PMID: 32322013]
[202]
Fridén, V.; Starnberg, K.; Muslimovic, A.; Ricksten, S.E.; Bjurman, C.; Forsgard, N.; Wickman, A.; Hammarsten, O. Clearance of cardiac troponin T with and without kidney function. Clin. Biochem., 2017, 50(9), 468-474.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.02.007] [PMID: 28193484]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy