Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration

Author(s): Noah Alexander Kinscherf and Mariana Pehar*

Volume 23, Issue 12, 2022

Published on: 21 July, 2022

Page: [1191 - 1209] Pages: 19

DOI: 10.2174/1389450123666220610171005

Price: $65

Abstract

Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.

Keywords: Advanced glycation end products receptor, Alzheimer’s disease, amyotrophic lateral sclerosis, astrocytes, microglia, neurons, parkinson’s disease.

« Previous
Graphical Abstract

[1]
Neeper M, Schmidt AM, Brett J, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992; 267(21): 14998-5004.
[http://dx.doi.org/10.1016/S0021-9258(18)42138-2] [PMID: 1378843]
[2]
Schmidt AM, Vianna M, Gerlach M, et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 1992; 267(21): 14987-97.
[http://dx.doi.org/10.1016/S0021-9258(18)42137-0] [PMID: 1321822]
[3]
Fritz G. RAGE: A single receptor fits multiple ligands. Trends Biochem Sci 2011; 36(12): 625-32.
[http://dx.doi.org/10.1016/j.tibs.2011.08.008] [PMID: 22019011]
[4]
Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 2003; 9(7): 907-13.
[http://dx.doi.org/10.1038/nm890] [PMID: 12808450]
[5]
Candela P, Gosselet F, Saint-Pol J, et al. Apical-to-basolateral transport of amyloid-β peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis 2010; 22(3): 849-59.
[http://dx.doi.org/10.3233/JAD-2010-100462] [PMID: 20858979]
[6]
Yamamoto Y, Higashida H. RAGE regulates oxytocin transport into the brain. Commun Biol 2020; 3(1): 70.
[http://dx.doi.org/10.1038/s42003-020-0799-2] [PMID: 32054984]
[7]
Sessa L, Gatti E, Zeni F, et al. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs). PLoS One 2014; 9(1): e86903.
[http://dx.doi.org/10.1371/journal.pone.0086903] [PMID: 24475194]
[8]
Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25(11): 2185-97.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.013] [PMID: 23838007]
[9]
Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 2005; 83(11): 876-86.
[http://dx.doi.org/10.1007/s00109-005-0688-7] [PMID: 16133426]
[10]
Englert JM, Hanford LE, Kaminski N, et al. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol 2008; 172(3): 583-91.
[http://dx.doi.org/10.2353/ajpath.2008.070569] [PMID: 18245812]
[11]
Sorci G, Riuzzi F, Giambanco I, Donato R. RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta 2013; 1833(1): 101-9.
[http://dx.doi.org/10.1016/j.bbamcr.2012.10.021] [PMID: 23103427]
[12]
Litwinoff E, Hurtado Del Pozo C, Ramasamy R, Schmidt AM. Emerging targets for therapeutic development in diabetes and its complications: the RAGE signaling pathway. Clin Pharmacol Ther 2015; 98(2): 135-44.
[http://dx.doi.org/10.1002/cpt.148] [PMID: 25974754]
[13]
Malik P, Chaudhry N, Mittal R, Mukherjee TK. Role of receptor for advanced glycation end products in the complication and progression of various types of cancers. Biochim Biophys Acta 2015; 1850(9): 1898-904.
[http://dx.doi.org/10.1016/j.bbagen.2015.05.020] [PMID: 26028296]
[14]
Derk J, MacLean M, Juranek J, Schmidt AM. The receptor for advanced glycation endproducts (RAGE) and mediation of inflammatory neurodegeneration. J Alzheimers Dis Parkinsonism 2018; 8(1): 8.
[http://dx.doi.org/10.4172/2161-0460.1000421] [PMID: 30560011]
[15]
Rong LL, Trojaborg W, Qu W, et al. Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J 2004; 18(15): 1812-7.
[http://dx.doi.org/10.1096/fj.04-1899com] [PMID: 15576484]
[16]
Juranek JK, Geddis MS, Song F, et al. RAGE deficiency improves postinjury sciatic nerve regeneration in type 1 diabetic mice. Diabetes 2013; 62(3): 931-43.
[http://dx.doi.org/10.2337/db12-0632] [PMID: 23172920]
[17]
Malherbe P, Richards JG, Gaillard H, et al. cDNA cloning of a novel secreted isoform of the human receptor for advanced glycation end products and characterization of cells co-expressing cell-surface scavenger receptors and Swedish mutant amyloid precursor protein. Brain Res Mol Brain Res 1999; 71(2): 159-70.
[http://dx.doi.org/10.1016/S0169-328X(99)00174-6] [PMID: 10521570]
[18]
Schlueter C, Hauke S, Flohr AM, Rogalla P, Bullerdiek J. Tissue-specific expression patterns of the RAGE receptor and its soluble forms--a result of regulated alternative splicing? Biochim Biophys Acta 2003; 1630(1): 1-6.
[http://dx.doi.org/10.1016/j.bbaexp.2003.08.008] [PMID: 14580673]
[19]
Yonekura H, Yamamoto Y, Sakurai S, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 2003; 370(Pt 3): 1097-109.
[http://dx.doi.org/10.1042/bj20021371] [PMID: 12495433]
[20]
Park IH, Yeon SI, Youn JH, et al. Expression of a novel secreted splice variant of the receptor for advanced glycation end products (RAGE) in human brain astrocytes and peripheral blood mononuclear cells. Mol Immunol 2004; 40(16): 1203-11.
[http://dx.doi.org/10.1016/j.molimm.2003.11.027] [PMID: 15104125]
[21]
Ding Q, Keller JN. Splice variants of the receptor for advanced glycosylation end products (RAGE) in human brain. Neurosci Lett 2005; 373(1): 67-72.
[http://dx.doi.org/10.1016/j.neulet.2004.09.059] [PMID: 15555779]
[22]
Harashima A, Yamamoto Y, Cheng C, et al. Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products: Structure, function and expression. Biochem J 2006; 396(1): 109-15.
[http://dx.doi.org/10.1042/BJ20051573] [PMID: 16503878]
[23]
Hudson BI, Carter AM, Harja E, et al. Identification, classification, and expression of RAGE gene splice variants. FASEB J 2008; 22(5): 1572-80.
[http://dx.doi.org/10.1096/fj.07-9909com] [PMID: 18089847]
[24]
Sterenczak KA, Willenbrock S, Barann M, et al. Cloning, characterisation, and comparative quantitative expression analyses of receptor for advanced glycation end products (RAGE) transcript forms. Gene 2009; 434(1-2): 35-42.
[http://dx.doi.org/10.1016/j.gene.2008.10.027] [PMID: 19061941]
[25]
Kalea AZ, Reiniger N, Yang H, Arriero M, Schmidt AM, Hudson BI. Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene. FASEB J 2009; 23(6): 1766-74.
[http://dx.doi.org/10.1096/fj.08-117739] [PMID: 19164451]
[26]
Jules J, Maiguel D, Hudson BI. Alternative splicing of the RAGE cytoplasmic domain regulates cell signaling and function. PLoS One 2013; 8(11): e78267.
[http://dx.doi.org/10.1371/journal.pone.0078267] [PMID: 24260107]
[27]
Peng Y, Horwitz N, Lakatta EG, Lin L. Mouse RAGE variant 4 Is a dominant membrane receptor that does not shed to generate soluble RAGE. PLoS One 2016; 11(9): e0153657.
[http://dx.doi.org/10.1371/journal.pone.0153657] [PMID: 27655067]
[28]
Kalea AZ, See F, Harja E, Arriero M, Schmidt AM, Hudson BI. Alternatively spliced RAGEv1 inhibits tumorigenesis through suppression of JNK signaling. Cancer Res 2010; 70(13): 5628-38.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0595] [PMID: 20570900]
[29]
Hanford LE, Enghild JJ, Valnickova Z, et al. Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 2004; 279(48): 50019-24.
[http://dx.doi.org/10.1074/jbc.M409782200] [PMID: 15381690]
[30]
Zhang L, Bukulin M, Kojro E, et al. Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 2008; 283(51): 35507-16.
[http://dx.doi.org/10.1074/jbc.M806948200] [PMID: 18952609]
[31]
Raucci A, Cugusi S, Antonelli A, et al. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 2008; 22(10): 3716-27.
[http://dx.doi.org/10.1096/fj.08-109033] [PMID: 18603587]
[32]
Galichet A, Weibel M, Heizmann CW. Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 2008; 370(1): 1-5.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.163] [PMID: 18355449]
[33]
Braley A, Kwak T, Jules J, Harja E, Landgraf R, Hudson BI. Regulation of receptor for advanced glycation end products (RAGE) ectodomain shedding and its role in cell function. J Biol Chem 2016; 291(23): 12057-73.
[http://dx.doi.org/10.1074/jbc.M115.702399] [PMID: 27022018]
[34]
Metz VV, Kojro E, Rat D, Postina R. Induction of RAGE shedding by activation of G protein-coupled receptors. PLoS One 2012; 7(7): e41823.
[http://dx.doi.org/10.1371/journal.pone.0041823] [PMID: 22860017]
[35]
Di Maggio S, Gatti E, Liu J, et al. The mouse-specific splice variant mrage_v4 encodes a membrane-bound RAGE that is resistant to shedding and does not contribute to the production of soluble RAGE. PLoS One 2016; 11(9): e0153832.
[http://dx.doi.org/10.1371/journal.pone.0153832] [PMID: 27655137]
[36]
Srikrishna G, Nayak J, Weigle B, et al. Carboxylated N-glycans on RAGE promote S100A12 binding and signaling. J Cell Biochem 2010; 110(3): 645-59.
[http://dx.doi.org/10.1002/jcb.22575] [PMID: 20512925]
[37]
Park SJ, Kleffmann T, Hessian PA. The G82S polymorphism promotes glycosylation of the receptor for advanced glycation end products (RAGE) at asparagine 81: Comparison of wild-type rage with the G82S polymorphic variant. J Biol Chem 2011; 286(24): 21384-92.
[http://dx.doi.org/10.1074/jbc.M111.241281] [PMID: 21511948]
[38]
Wilton R, Yousef MA, Saxena P, Szpunar M, Stevens FJ. Expression and purification of recombinant human receptor for advanced glycation endproducts in Escherichia coli. Protein Expr Purif 2006; 47(1): 25-35.
[http://dx.doi.org/10.1016/j.pep.2006.01.008] [PMID: 16510295]
[39]
Srikrishna G, Huttunen HJ, Johansson L, et al. N -Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J Neurochem 2002; 80(6): 998-1008.
[http://dx.doi.org/10.1046/j.0022-3042.2002.00796.x] [PMID: 11953450]
[40]
Turovskaya O, Foell D, Sinha P, et al. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 2008; 29(10): 2035-43.
[http://dx.doi.org/10.1093/carcin/bgn188] [PMID: 18689872]
[41]
Osawa M, Yamamoto Y, Munesue S, et al. De-N-glycosylation or G82S mutation of RAGE sensitizes its interaction with advanced glycation endproducts. Biochim Biophys Acta 2007; 1770(10): 1468-74.
[http://dx.doi.org/10.1016/j.bbagen.2007.07.003] [PMID: 17714874]
[42]
Leclerc E, Fritz G, Vetter SW, Heizmann CW. Binding of S100 proteins to RAGE: An update. Biochim Biophys Acta 2009; 1793(6): 993-1007.
[http://dx.doi.org/10.1016/j.bbamcr.2008.11.016] [PMID: 19121341]
[43]
Cathrine RC, Lukose B, Rani P. G82S RAGE polymorphism influences amyloid-RAGE interactions relevant in Alzheimer’s disease pathology. PLoS One 2020; 15(10): e0225487.
[http://dx.doi.org/10.1371/journal.pone.0225487] [PMID: 33119615]
[44]
Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T. The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett 2003; 550(1-3): 107-13.
[http://dx.doi.org/10.1016/S0014-5793(03)00846-9] [PMID: 12935895]
[45]
Hudson BI, Kalea AZ, Del Mar Arriero M, et al. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 2008; 283(49): 34457-68.
[http://dx.doi.org/10.1074/jbc.M801465200] [PMID: 18922799]
[46]
Rai V, Maldonado AY, Burz DS, et al. Signal transduction in receptor for advanced glycation end products (RAGE): Solution structure of C-terminal rage (ctRAGE) and its binding to mDia1. J Biol Chem 2012; 287(7): 5133-44.
[http://dx.doi.org/10.1074/jbc.M111.277731] [PMID: 22194616]
[47]
Kim Y, Kim C, Son SM, et al. The novel RAGE interactor PRAK is associated with autophagy signaling in Alzheimer’s disease pathogenesis. Mol Neurodegener 2016; 11: 4.
[http://dx.doi.org/10.1186/s13024-016-0068-5] [PMID: 26758977]
[48]
Sakaguchi M, Murata H, Yamamoto K, et al. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One 2011; 6(8): e23132.
[http://dx.doi.org/10.1371/journal.pone.0023132] [PMID: 21829704]
[49]
Yan Z, Luo H, Xie B, et al. Targeting adaptor protein SLP76 of RAGE as a therapeutic approach for lethal sepsis. Nat Commun 2021; 12(1): 308.
[http://dx.doi.org/10.1038/s41467-020-20577-3] [PMID: 33436632]
[50]
Kim MJ, Vargas MR, Harlan BA, et al. Nitration and glycation turn mature NGF into a Toxic factor for motor neurons: a role for p75NTR and RAGE signaling in ALS. Antioxid Redox Signal 2018; 28(18): 1587-602.
[http://dx.doi.org/10.1089/ars.2016.6966] [PMID: 28537420]
[51]
Pehar M, Vargas MR, Robinson KM, et al. Peroxynitrite transforms nerve growth factor into an apoptotic factor for motor neurons. Free Radic Biol Med 2006; 41(11): 1632-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.08.010] [PMID: 17145551]
[52]
Chavakis T, Bierhaus A, Al-Fakhri N, et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: A novel pathway for inflammatory cell recruitment. J Exp Med 2003; 198(10): 1507-15.
[http://dx.doi.org/10.1084/jem.20030800] [PMID: 14623906]
[53]
Orlova VV, Choi EY, Xie C, et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 2007; 26(4): 1129-39.
[http://dx.doi.org/10.1038/sj.emboj.7601552] [PMID: 17268551]
[54]
Son M, Porat A, He M, et al. C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 2016; 128(18): 2218-28.
[http://dx.doi.org/10.1182/blood-2016-05-719757] [PMID: 27683415]
[55]
Liu T, Xiang A, Peng T, et al. HMGB1-C1q complexes regulate macrophage function by switching between leukotriene and specialized proresolving mediator biosynthesis. Proc Natl Acad Sci USA 2019; 116(46): 23254-63.
[http://dx.doi.org/10.1073/pnas.1907490116] [PMID: 31570601]
[56]
Slowik A, Merres J, Elfgen A, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener 2012; 7: 55.
[http://dx.doi.org/10.1186/1750-1326-7-55] [PMID: 23164356]
[57]
Ichiki T, Koga T, Okuno T, et al. Modulation of leukotriene B4 receptor 1 signaling by receptor for advanced glycation end products (RAGE). FASEB J 2016; 30(5): 1811-22.
[http://dx.doi.org/10.1096/fj.201500117] [PMID: 26813973]
[58]
Pickering RJ, Tikellis C, Rosado CJ, et al. Transactivation of RAGE mediates angiotensin-induced inflammation and atherogenesis. J Clin Invest 2019; 129(1): 406-21.
[http://dx.doi.org/10.1172/JCI99987] [PMID: 30530993]
[59]
Yokoyama S, Kawai T, Yamamoto K, et al. RAGE ligands stimulate angiotensin II type I receptor (AT1) via RAGE/AT1 complex on the cell membrane. Sci Rep 2021; 11(1): 5759.
[http://dx.doi.org/10.1038/s41598-021-85312-4] [PMID: 33707701]
[60]
Bucciarelli LG, Wendt T, Rong L, et al. RAGE is a multiligand receptor of the immunoglobulin superfamily: Implications for homeostasis and chronic disease. Cell Mol Life Sci 2002; 59(7): 1117-28.
[http://dx.doi.org/10.1007/s00018-002-8491-x] [PMID: 12222959]
[61]
May O, Yatime L, Merle NS, et al. The receptor for advanced glycation end products is a sensor for cell-free heme. FEBS J 2021; 288(11): 3448-64.
[http://dx.doi.org/10.1111/febs.15667] [PMID: 33314778]
[62]
Ma W, Rai V, Hudson BI, Song F, Schmidt AM, Barile GR. RAGE binds C1q and enhances C1q-mediated phagocytosis. Cell Immunol 2012; 274(1-2): 72-82.
[http://dx.doi.org/10.1016/j.cellimm.2012.02.001] [PMID: 22386596]
[63]
Dattilo BM, Fritz G, Leclerc E, Kooi CW, Heizmann CW, Chazin WJ. The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 2007; 46(23): 6957-70.
[http://dx.doi.org/10.1021/bi7003735] [PMID: 17508727]
[64]
Leclerc E, Fritz G, Weibel M, Heizmann CW, Galichet A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. J Biol Chem 2007; 282(43): 31317-31.
[http://dx.doi.org/10.1074/jbc.M703951200] [PMID: 17726019]
[65]
Rani SG, Sepuru KM, Yu C. Interaction of S100A13 with C2 domain of receptor for advanced glycation end products (RAGE). Biochim Biophys Acta 2014; 1844(9): 1718-28.
[http://dx.doi.org/10.1016/j.bbapap.2014.06.017] [PMID: 24982031]
[66]
Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 2008; 283(40): 27255-69.
[http://dx.doi.org/10.1074/jbc.M801622200] [PMID: 18667420]
[67]
Koch M, Chitayat S, Dattilo BM, et al. Structural basis for ligand recognition and activation of RAGE. Structure 2010; 18(10): 1342-52.
[http://dx.doi.org/10.1016/j.str.2010.05.017] [PMID: 20947022]
[68]
Yatime L, Andersen GR. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. FEBS J 2013; 280(24): 6556-68.
[http://dx.doi.org/10.1111/febs.12556] [PMID: 24119142]
[69]
Wei W, Lampe L, Park S, et al. Disulfide bonds within the C2 domain of RAGE play key roles in its dimerization and biogenesis. PLoS One 2012; 7(12): e50736.
[http://dx.doi.org/10.1371/journal.pone.0050736] [PMID: 23284645]
[70]
Donato R. S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 2001; 33(7): 637-68.
[http://dx.doi.org/10.1016/S1357-2725(01)00046-2] [PMID: 11390274]
[71]
Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 2000; 275(51): 40096-105.
[http://dx.doi.org/10.1074/jbc.M006993200] [PMID: 11007787]
[72]
Kögel D, Peters M, König HG, et al. S100B potently activates p65/c-Rel transcriptional complexes in hippocampal neurons: Clinical implications for the role of S100B in excitotoxic brain injury. Neuroscience 2004; 127(4): 913-20.
[http://dx.doi.org/10.1016/j.neuroscience.2004.06.013] [PMID: 15312903]
[73]
Businaro R, Leone S, Fabrizi C, et al. S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J Neurosci Res 2006; 83(5): 897-906.
[http://dx.doi.org/10.1002/jnr.20785] [PMID: 16477616]
[74]
Vincent AM, Perrone L, Sullivan KA, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 2007; 148(2): 548-58.
[http://dx.doi.org/10.1210/en.2006-0073] [PMID: 17095586]
[75]
Villarreal A, Aviles Reyes RX, Angelo MF, Reines AG, Ramos AJ. S100B alters neuronal survival and dendrite extension via RAGE-mediated NF-κB signaling. J Neurochem 2011; 117(2): 321-32.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07207.x] [PMID: 21291473]
[76]
Schmidt A, Kuhla B, Bigl K, Münch G, Arendt T. Cell cycle related signaling in Neuro2a cells proceeds via the receptor for advanced glycation end products. J Neural Transm (Vienna) 2007; 114(11): 1413-24.
[http://dx.doi.org/10.1007/s00702-007-0770-0] [PMID: 17564756]
[77]
Deane RJ. Is RAGE still a therapeutic target for Alzheimer’s disease? Future Med Chem 2012; 4(7): 915-25.
[http://dx.doi.org/10.4155/fmc.12.51] [PMID: 22571615]
[78]
Toth C, Schmidt AM, Tuor UI, et al. Diabetes, leukoencephalopathy and rage. Neurobiol Dis 2006; 23(2): 445-61.
[http://dx.doi.org/10.1016/j.nbd.2006.03.015] [PMID: 16815028]
[79]
Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382(6593): 685-91.
[http://dx.doi.org/10.1038/382685a0] [PMID: 8751438]
[80]
Lue LF, Walker DG, Brachova L, et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: Identification of a cellular activation mechanism. Exp Neurol 2001; 171(1): 29-45.
[http://dx.doi.org/10.1006/exnr.2001.7732] [PMID: 11520119]
[81]
Sasaki N, Toki S, Chowei H, et al. Immunohistochemical distribution of the receptor for advanced glycation end products in neurons and astrocytes in Alzheimer’s disease. Brain Res 2001; 888(2): 256-62.
[http://dx.doi.org/10.1016/S0006-8993(00)03075-4] [PMID: 11150482]
[82]
Miller MC, Tavares R, Johanson CE, et al. Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res 2008; 1230: 273-80.
[http://dx.doi.org/10.1016/j.brainres.2008.06.124] [PMID: 18657529]
[83]
Choi BR, Cho WH, Kim J, et al. Increased expression of the receptor for advanced glycation end products in neurons and astrocytes in a triple transgenic mouse model of Alzheimer’s disease. Exp Mol Med 2014; 46: e75.
[http://dx.doi.org/10.1038/emm.2013.147] [PMID: 24503708]
[84]
Origlia N, Righi M, Capsoni S, et al. Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. J Neurosci 2008; 28(13): 3521-30.
[http://dx.doi.org/10.1523/JNEUROSCI.0204-08.2008] [PMID: 18367618]
[85]
Origlia N, Capsoni S, Cattaneo A, et al. Abeta-dependent Inhibition of LTP in different intracortical circuits of the visual cortex: The role of RAGE. J Alzheimers Dis 2009; 17(1): 59-68.
[http://dx.doi.org/10.3233/JAD-2009-1045] [PMID: 19221410]
[86]
Sturchler E, Galichet A, Weibel M, Leclerc E, Heizmann CW. Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. J Neurosci 2008; 28(20): 5149-58.
[http://dx.doi.org/10.1523/JNEUROSCI.4878-07.2008] [PMID: 18480271]
[87]
Arancio O, Zhang HP, Chen X, et al. RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J 2004; 23(20): 4096-105.
[http://dx.doi.org/10.1038/sj.emboj.7600415] [PMID: 15457210]
[88]
Cho HJ, Son SM, Jin SM, et al. RAGE regulates BACE1 and Abeta generation via NFAT1 activation in Alzheimer’s disease animal model. FASEB J 2009; 23(8): 2639-49.
[http://dx.doi.org/10.1096/fj.08-126383] [PMID: 19332646]
[89]
Fang F, Yu Q, Arancio O, et al. RAGE mediates Aβ accumulation in a mouse model of Alzheimer’s disease via modulation of β- and γ-secretase activity. Hum Mol Genet 2018; 27(6): 1002-14.
[http://dx.doi.org/10.1093/hmg/ddy017] [PMID: 29329433]
[90]
Vodopivec I, Galichet A, Knobloch M, Bierhaus A, Heizmann CW, Nitsch RM. RAGE does not affect amyloid pathology in transgenic ArcAbeta mice. Neurodegener Dis 2009; 6(5-6): 270-80.
[http://dx.doi.org/10.1159/000261723] [PMID: 20145420]
[91]
Meneghini V, Bortolotto V, Francese MT, et al. High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-κB axis: Relevance for Alzheimer’s disease. J Neurosci 2013; 33(14): 6047-59.
[http://dx.doi.org/10.1523/JNEUROSCI.2052-12.2013] [PMID: 23554486]
[92]
Fang F, Lue LF, Yan S, et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 2010; 24(4): 1043-55.
[http://dx.doi.org/10.1096/fj.09-139634] [PMID: 19906677]
[93]
Mackic JB, Stins M, McComb JG, et al. Human blood-brain barrier receptors for Alzheimer’s amyloid-beta 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 1998; 102(4): 734-43.
[http://dx.doi.org/10.1172/JCI2029] [PMID: 9710442]
[94]
Giri R, Shen Y, Stins M, et al. beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol 2000; 279(6): C1772-81.
[http://dx.doi.org/10.1152/ajpcell.2000.279.6.C1772] [PMID: 11078691]
[95]
Li K, Dai D, Zhao B, et al. Association between the RAGE G82S polymorphism and Alzheimer’s disease. J Neural Transm (Vienna) 2010; 117(1): 97-104.
[http://dx.doi.org/10.1007/s00702-009-0334-6] [PMID: 19902324]
[96]
Daborg J, von Otter M, Sjölander A, et al. Association of the RAGE G82S polymorphism with Alzheimer’s disease. J Neural Transm (Vienna) 2010; 117(7): 861-7.
[http://dx.doi.org/10.1007/s00702-010-0437-0] [PMID: 20567859]
[97]
Emanuele E, D’Angelo A, Tomaino C, et al. Circulating levels of soluble receptor for advanced glycation end products in Alzheimer disease and vascular dementia. Arch Neurol 2005; 62(11): 1734-6.
[http://dx.doi.org/10.1001/archneur.62.11.1734] [PMID: 16286548]
[98]
Liang F, Jia J, Wang S, Qin W, Liu G. Decreased plasma levels of soluble low density lipoprotein receptor-related protein-1 (sLRP) and the soluble form of the receptor for advanced glycation end products (sRAGE) in the clinical diagnosis of Alzheimer’s disease. J Clin Neurosci 2013; 20(3): 357-61.
[http://dx.doi.org/10.1016/j.jocn.2012.06.005] [PMID: 23228658]
[99]
Xu XY, Deng CQ, Wang J, et al. Plasma levels of soluble receptor for advanced glycation end products in Alzheimer’s disease. Int J Neurosci 2017; 127(5): 454-8.
[http://dx.doi.org/10.1080/00207454.2016.1193861] [PMID: 27323891]
[100]
Chen J, Mooldijk SS, Licher S, et al. Assessment of advanced glycation end Products and receptors and the risk of dementia. JAMA Netw Open 2021; 4(1): e2033012.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.33012] [PMID: 33416887]
[101]
Son M, Oh S, Park H, et al. Protection against RAGE-mediated neuronal cell death by sRAGE-secreting human mesenchymal stem cells in 5xFAD transgenic mouse model. Brain Behav Immun 2017; 66: 347-58.
[http://dx.doi.org/10.1016/j.bbi.2017.07.158] [PMID: 28760504]
[102]
Shibata N, Hirano A, Hedley-Whyte ET, et al. Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol 2002; 104(2): 171-8.
[http://dx.doi.org/10.1007/s00401-002-0537-5] [PMID: 12111360]
[103]
Casula M, Iyer AM, Spliet WG, et al. Toll-like receptor signaling in amyotrophic lateral sclerosis spinal cord tissue. Neuroscience 2011; 179: 233-43.
[http://dx.doi.org/10.1016/j.neuroscience.2011.02.001] [PMID: 21303685]
[104]
Juranek JK, Daffu GK, Wojtkiewicz J, Lacomis D, Kofler J, Schmidt AM. Receptor for advanced glycation end products and its inflammatory ligands are upregulated in amyotrophic lateral sclerosis. Front Cell Neurosci 2015; 9: 485.
[http://dx.doi.org/10.3389/fncel.2015.00485] [PMID: 26733811]
[105]
Kikuchi S, Shinpo K, Ogata A, et al. Detection of N epsilon-(carboxymethyl)lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotroph Lateral Scler Other Motor Neuron Disord 2002; 3(2): 63-8.
[http://dx.doi.org/10.1080/146608202760196020] [PMID: 12215227]
[106]
Lee JY, Lee JD, Phipps S, Noakes PG, Woodruff TM. Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2015; 12: 90.
[http://dx.doi.org/10.1186/s12974-015-0310-z] [PMID: 25962427]
[107]
Lee JD, McDonald TS, Fung JNT, Woodruff TM. Absence of Receptor for Advanced Glycation End Product (RAGE) reduces inflammation and extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Mol Neurobiol 2020; 57(10): 4143-55.
[http://dx.doi.org/10.1007/s12035-020-02019-9] [PMID: 32676989]
[108]
MacLean M, Juranek J, Cuddapah S, et al. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. J Neuroinflammation 2021; 18(1): 139.
[http://dx.doi.org/10.1186/s12974-021-02191-2] [PMID: 34130712]
[109]
Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L. Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem 2006; 97(3): 687-96.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03742.x] [PMID: 16524372]
[110]
Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007; 10(5): 615-22.
[http://dx.doi.org/10.1038/nn1876] [PMID: 17435755]
[111]
Serrano A, Donno C, Giannetti S, et al. The astrocytic S100B protein with its receptor RAGE is aberrantly expressed in SOD1G93A models, and its inhibition decreases the expression of proinflammatory genes. Mediators Inflamm 2017; 2017: 1626204.
[http://dx.doi.org/10.1155/2017/1626204] [PMID: 28713206]
[112]
Villarreal A, Seoane R, González Torres A, et al. S100B protein activates a RAGE-dependent autocrine loop in astrocytes: Implications for its role in the propagation of reactive gliosis. J Neurochem 2014; 131(2): 190-205.
[http://dx.doi.org/10.1111/jnc.12790] [PMID: 24923428]
[113]
Brambilla L, Martorana F, Guidotti G, Rossi D. Dysregulation of astrocytic HMGB1 signaling in amyotrophic lateral sclerosis. Front Neurosci 2018; 12: 622.
[http://dx.doi.org/10.3389/fnins.2018.00622] [PMID: 30210286]
[114]
Liu L, Killoy KM, Vargas MR, Yamamoto Y, Pehar M. Effects of RAGE inhibition on the progression of the disease in hSOD1G93A ALS mice. Pharmacol Res Perspect 2020; 8(4): e00636.
[http://dx.doi.org/10.1002/prp2.636] [PMID: 32776498]
[115]
Song JS, Kang CM, Park CK, et al. Inhibitory effect of receptor for advanced glycation end products (RAGE) on the TGF-β-induced alveolar epithelial to mesenchymal transition. Exp Mol Med 2011; 43(9): 517-24.
[http://dx.doi.org/10.3858/emm.2011.43.9.059] [PMID: 21743278]
[116]
Kumar V, Fleming T, Terjung S, et al. Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair. Nucleic Acids Res 2017; 45(18): 10595-613.
[http://dx.doi.org/10.1093/nar/gkx705] [PMID: 28977635]
[117]
Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc Natl Acad Sci USA 1996; 93(12): 5709-14.
[http://dx.doi.org/10.1073/pnas.93.12.5709] [PMID: 8650157]
[118]
He C, Ryan AJ, Murthy S, Carter AB. Accelerated development of pulmonary fibrosis via Cu,Zn-superoxide dismutase-induced alternative activation of macrophages. J Biol Chem 2013; 288(28): 20745-57.
[http://dx.doi.org/10.1074/jbc.M112.410720] [PMID: 23720777]
[119]
Bartling B, Zunkel K, Al-Robaiy S, Dehghani F, Simm A. Gene doubling increases glyoxalase 1 expression in RAGE knockout mice. Biochim Biophys Acta, Gen Subj 2020; 1864(1): 129438.
[http://dx.doi.org/10.1016/j.bbagen.2019.129438] [PMID: 31526867]
[120]
Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun 2015; 458(2): 221-6.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.140] [PMID: 25666945]
[121]
Deane R, Singh I, Sagare AP, et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 2012; 122(4): 1377-92.
[http://dx.doi.org/10.1172/JCI58642] [PMID: 22406537]
[122]
Iłzecka J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 2009; 120(2): 119-22.
[http://dx.doi.org/10.1111/j.1600-0404.2008.01133.x] [PMID: 19053950]
[123]
Juranek JK, Daffu GK, Geddis MS, et al. Soluble RAGE treatment delays progression of amyotrophic lateral sclerosis in SOD1 mice. Front Cell Neurosci 2016; 10: 117.
[http://dx.doi.org/10.3389/fncel.2016.00117] [PMID: 27242430]
[124]
Santoro M, Maetzler W, Stathakos P, et al. In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson’s disease which can be attenuated by glycyrrhizin. Neurobiol Dis 2016; 91: 59-68.
[http://dx.doi.org/10.1016/j.nbd.2016.02.018] [PMID: 26921471]
[125]
Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 2005; 64(9): 816-30.
[http://dx.doi.org/10.1097/01.jnen.0000179050.54522.5a] [PMID: 16141792]
[126]
Münch G, Lüth HJ, Wong A, et al. Crosslinking of alpha-synuclein by advanced glycation endproducts-an early pathophysiological step in Lewy body formation? J Chem Neuroanat 2000; 20(3-4): 253-7.
[http://dx.doi.org/10.1016/S0891-0618(00)00096-X] [PMID: 11207423]
[127]
Teismann P, Sathe K, Bierhaus A, et al. Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 2012; 33(10): 2478-90.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.12.006] [PMID: 22227007]
[128]
Gasparotto J, Ribeiro CT, Bortolin RC, et al. Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA-induced dopaminergic denervation. Sci Rep 2017; 7(1): 8795.
[http://dx.doi.org/10.1038/s41598-017-09257-3] [PMID: 28821831]
[129]
Sathe K, Maetzler W, Lang JD, et al. S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. Brain 2012; 135(Pt 11): 3336-47.
[http://dx.doi.org/10.1093/brain/aws250] [PMID: 23169921]
[130]
Viana SD, Valero J, Rodrigues-Santos P, et al. Regulation of striatal astrocytic receptor for advanced glycation end-products variants in an early stage of experimental Parkinson’s disease. J Neurochem 2016; 138(4): 598-609.
[http://dx.doi.org/10.1111/jnc.13682] [PMID: 27221633]
[131]
Ma L, Nicholson LF. Expression of the receptor for advanced glycation end products in Huntington’s disease caudate nucleus. Brain Res 2004; 1018(1): 10-7.
[http://dx.doi.org/10.1016/j.brainres.2004.05.052] [PMID: 15262199]
[132]
Kim J, Waldvogel HJ, Faull RL, Curtis MA, Nicholson LF. The RAGE receptor and its ligands are highly expressed in astrocytes in a grade-dependant manner in the striatum and subependymal layer in Huntington’s disease. J Neurochem 2015; 134(5): 927-42.
[http://dx.doi.org/10.1111/jnc.13178] [PMID: 26011179]
[133]
Yan SS, Wu ZY, Zhang HP, et al. Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat Med 2003; 9(3): 287-93.
[http://dx.doi.org/10.1038/nm831] [PMID: 12598893]
[134]
Andersson A, Covacu R, Sunnemark D, et al. Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 2008; 84(5): 1248-55.
[http://dx.doi.org/10.1189/jlb.1207844] [PMID: 18644848]
[135]
Sternberg Z, Weinstock-Guttman B, Hojnacki D, et al. Soluble receptor for advanced glycation end products in multiple sclerosis: A potential marker of disease severity. Mult Scler 2008; 14(6): 759-63.
[http://dx.doi.org/10.1177/1352458507088105] [PMID: 18505774]
[136]
Li K, Zhao B, Dai D, et al. A functional p.82G>S polymorphism in the RAGE gene is associated with multiple sclerosis in the Chinese population. Mult Scler 2011; 17(8): 914-21.
[http://dx.doi.org/10.1177/1352458511403529] [PMID: 21511691]
[137]
Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol 2013; 94(1): 55-68.
[http://dx.doi.org/10.1189/jlb.1012519] [PMID: 23543766]
[138]
Yamamoto Y, Harashima A, Saito H, et al. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. J Immunol 2011; 186(5): 3248-57.
[http://dx.doi.org/10.4049/jimmunol.1002253] [PMID: 21270403]
[139]
Gąsiorowski K, Brokos B, Echeverria V, Barreto GE, Leszek J. RAGE-TLR crosstalk sustains chronic inflammation in neurodegeneration. Mol Neurobiol 2018; 55(2): 1463-76.
[http://dx.doi.org/10.1007/s12035-017-0419-4] [PMID: 28168427]
[140]
Rong LL, Yan SF, Wendt T, et al. RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. FASEB J 2004; 18(15): 1818-25.
[http://dx.doi.org/10.1096/fj.04-1900com] [PMID: 15576485]
[141]
Geroldi D, Falcone C, Minoretti P, Emanuele E, Arra M, D’Angelo A. High levels of soluble receptor for advanced glycation end products may be a marker of extreme longevity in humans. J Am Geriatr Soc 2006; 54(7): 1149-50.
[http://dx.doi.org/10.1111/j.1532-5415.2006.00776.x] [PMID: 16866696]
[142]
Scavello F, Zeni F, Tedesco CC, et al. Modulation of soluble receptor for advanced glycation end-products (RAGE) isoforms and their ligands in healthy aging. Aging (Albany NY) 2019; 11(6): 1648-63.
[http://dx.doi.org/10.18632/aging.101860] [PMID: 30903794]
[143]
Scavello F, Tedesco CC, Castiglione S, et al. Modulation of soluble receptor for advanced glycation end products isoforms and advanced glycation end products in long-living individuals. Biomarkers Med 2021; 15(11): 785-96.
[http://dx.doi.org/10.2217/bmm-2020-0856] [PMID: 34236256]
[144]
Tae HJ, Kim JM, Park S, et al. The N-glycoform of sRAGE is the key determinant for its therapeutic efficacy to attenuate injury-elicited arterial inflammation and neointimal growth. J Mol Med (Berl) 2013; 91(12): 1369-81.
[http://dx.doi.org/10.1007/s00109-013-1091-4] [PMID: 24132651]
[145]
Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev 2012; 28: 147-75.
[http://dx.doi.org/10.5661/bger-28-147] [PMID: 22616486]
[146]
Ghaderi D, Taylor RE, Padler-Karavani V, Diaz S, Varki A. Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nat Biotechnol 2010; 28(8): 863-7.
[http://dx.doi.org/10.1038/nbt.1651] [PMID: 20657583]
[147]
Wautier JL, Zoukourian C, Chappey O, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 1996; 97(1): 238-43.
[http://dx.doi.org/10.1172/JCI118397] [PMID: 8550841]
[148]
Flyvbjerg A, Denner L, Schrijvers BF, et al. Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 2004; 53(1): 166-72.
[http://dx.doi.org/10.2337/diabetes.53.1.166] [PMID: 14693711]
[149]
Jensen LJ, Denner L, Schrijvers BF, Tilton RG, Rasch R, Flyvbjerg A. Renal effects of a neutralising RAGE-antibody in long-term streptozotocin-diabetic mice. J Endocrinol 2006; 188(3): 493-501.
[http://dx.doi.org/10.1677/joe.1.06524] [PMID: 16522729]
[150]
Lutterloh EC, Opal SM, Pittman DD, et al. Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit Care 2007; 11(6): R122.
[http://dx.doi.org/10.1186/cc6184] [PMID: 18042296]
[151]
Christaki E, Opal SM, Keith JC Jr, et al. A monoclonal antibody against RAGE alters gene expression and is protective in experimental models of sepsis and pneumococcal pneumonia. Shock 2011; 35(5): 492-8.
[http://dx.doi.org/10.1097/SHK.0b013e31820b2e1c] [PMID: 21263385]
[152]
Finlay WJ, Cunningham O, Lambert MA, et al. Affinity maturation of a humanized rat antibody for anti-RAGE therapy: Comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. J Mol Biol 2009; 388(3): 541-58.
[http://dx.doi.org/10.1016/j.jmb.2009.03.019] [PMID: 19285987]
[153]
Ruiz-López E, Schuhmacher AJ. Transportation of Single-Domain Antibodies through the Blood-Brain Barrier. Biomolecules 2021; 11(8): 11.
[http://dx.doi.org/10.3390/biom11081131] [PMID: 34439797]
[154]
Mohammed A, Zeng W, Mengist HM, et al. Generation, biochemical characterizations and validation of potent nanobodies derived from alpaca specific for human receptor of advanced glycation end product. Biochem Biophys Res Commun 2021; 581: 38-45.
[http://dx.doi.org/10.1016/j.bbrc.2021.10.005] [PMID: 34653677]
[155]
Lipi F, Chen S, Chakravarthy M, Rakesh S, Veedu RN. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies. RNA Biol 2016; 13(12): 1232-45.
[http://dx.doi.org/10.1080/15476286.2016.1236173] [PMID: 27715478]
[156]
Zhou J, Rossi J. Aptamers as targeted therapeutics: Current potential and challenges. Nat Rev Drug Discov 2017; 16(3): 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[157]
Matsui T, Higashimoto Y, Nishino Y, Nakamura N, Fukami K, Yamagishi SI. RAGE-aptamer blocks the development and progression of experimental diabetic nephropathy. Diabetes 2017; 66(6): 1683-95.
[http://dx.doi.org/10.2337/db16-1281] [PMID: 28385802]
[158]
Nakamura N, Matsui T, Ishibashi Y, et al. RAGE-aptamer attenuates the growth and liver metastasis of malignant melanoma in nude mice. Mol Med 2017; 23: 295-306.
[http://dx.doi.org/10.2119/molmed.2017.00099] [PMID: 29387865]
[159]
Koga Y, Sotokawauchi A, Higashimoto Y, et al. DNA-aptamer raised against receptor for advanced glycation end products improves survival rate in septic mice. Oxid Med Cell Longev 2021; 2021: 9932311.
[http://dx.doi.org/10.1155/2021/9932311] [PMID: 34413930]
[160]
Sabbagh MN, Agro A, Bell J, Aisen PS, Schweizer E, Galasko D. PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord 2011; 25(3): 206-12.
[http://dx.doi.org/10.1097/WAD.0b013e318204b550] [PMID: 21192237]
[161]
Burstein AH, Grimes I, Galasko DR, Aisen PS, Sabbagh M, Mjalli AM. Effect of TTP488 in patients with mild to moderate Alzheimer’s disease. BMC Neurol 2014; 14: 12.
[http://dx.doi.org/10.1186/1471-2377-14-12] [PMID: 24423155]
[162]
Galasko D, Bell J, Mancuso JY, et al. Alzheimer’s disease cooperative s. clinical trial of an inhibitor of RAGE- abeta interactions in alzheimer disease. Neurology 2014; 82: 1536-42.
[http://dx.doi.org/10.1212/WNL.0000000000000364] [PMID: 24696507]
[163]
Walker D, Lue LF, Paul G, Patel A, Sabbagh MN. Receptor for advanced glycation endproduct modulators: A new therapeutic target in Alzheimer’s disease. Expert Opin Investig Drugs 2015; 24(3): 393-9.
[http://dx.doi.org/10.1517/13543784.2015.1001490] [PMID: 25586103]
[164]
Burstein AH, Sabbagh M, Andrews R, Valcarce C, Dunn I, Altstiel L. Development of azeliragon, an oral small molecule antagonist of the receptor for advanced glycation endproducts, for the potential slowing of loss of cognition in mild alzheimer’s disease. J Prev Alzheimers Dis 2018; 5(2): 149-54.
[PMID: 29616709]
[165]
Evaluation of the Efficacy and Safety of Azeliragon (TTP488) in Patients With Mild Alzheimer’s Disease (STEADFAST). ClinicalTrialsgov Identifier (NCT number): NCT02080364 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT02080364
[166]
Valcarce C, Dunn I, Burstein AH. Linking diabetes and alzheimer's disease through rage: a retrospective analysis of azeliragon phase 2 and phase 3 studies. Alzheimer's Association International Conference 2019; 15.
[http://dx.doi.org/10.1016/j.jalz.2019.06.4803]
[167]
Study of Azeliragon in Patients With Mild Alzheimer’s Disease and Impaired Glucose Tolerance (Elevage) ClinicalTrialsgov Identifier (NCT number): NCT03980730 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03980730
[168]
Han YT, Choi GI, Son D, et al. Ligand-based design, synthesis, and biological evaluation of 2-aminopyrimidines, a novel series of receptor for advanced glycation end products (RAGE) inhibitors. J Med Chem 2012; 55(21): 9120-35.
[http://dx.doi.org/10.1021/jm300172z] [PMID: 22742537]
[169]
Kim SH, Han YT. Design, synthesis, and biological evaluation of pyrimidine-2-carboxamide analogs: Investigation for novel RAGE inhibitors with reduced hydrophobicity and toxicity. Arch Pharm Res 2015; 38(11): 1952-62.
[http://dx.doi.org/10.1007/s12272-015-0596-5] [PMID: 25842360]
[170]
Han YT, Kim K, Choi GI, et al. Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE). Eur J Med Chem 2014; 79: 128-42.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.072] [PMID: 24727489]
[171]
Arumugam T, Ramachandran V, Gomez SB, Schmidt AM, Logsdon CD. S100P-derived RAGE antagonistic peptide reduces tumor growth and metastasis. Clin Cancer Res 2012; 18(16): 4356-64.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0221] [PMID: 22718861]
[172]
Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 2002; 62(16): 4805-11.
[PMID: 12183440]
[173]
Manigrasso MB, Pan J, Rai V, et al. Small molecule inhibition of ligand-stimulated RAGE-DIAPH1 signal transduction. Sci Rep 2016; 6: 22450.
[http://dx.doi.org/10.1038/srep22450] [PMID: 26936329]
[174]
Putranto EW, Murata H, Yamamoto K, et al. Inhibition of RAGE signaling through the intracellular delivery of inhibitor peptides by PEI cationization. Int J Mol Med 2013; 32(4): 938-44.
[http://dx.doi.org/10.3892/ijmm.2013.1467] [PMID: 23934084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy