Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Systematic Review Article

Ameliorative Effects of Phytomedicines on Alzheimer’s Patients

Author(s): Rekha Khandia*, Neerja Viswanathan, Shailja Singhal, Taha Alqahtani, Mohannad A. Almikhlafi, Alexander Nikolaevich Simonov and Ghulam Md. Ashraf

Volume 19, Issue 6, 2022

Published on: 18 August, 2022

Page: [420 - 439] Pages: 20

DOI: 10.2174/1567205019666220610155608

Price: $65

Abstract

Introduction: Alzheimer’s disease (AD) is a progressive, neurodegenerative disease that severely affects individuals' cognitive abilities, memory, and quality of life. It affects the elderly population, and there is no permanent prevention or cures available to date, treatments mainly aiming to alleviate the symptoms as and when they appear. Alternate therapeutic approaches are being researched constantly, and there is a growing focus on phytomedicine, herbal medicine, organic compounds, and ayurvedic compounds for the treatment of AD.

Methods: The current study aims to provide an extensive review of these plants against AD from the currently existing literature. Most relevant keywords like Alzheimer’s Disease, phytomedicines, ethnic medicines, the role of phytomedicine in neuroprotection, common phytomedicines against AD, etc., were used to select the plants and their metabolites effective in treating AD. The study focuses on six plants: Panax ginseng, Ginkgo biloba, Bacopa monnieri, Withania somnifera, Curcuma longa, and Lavandula angustifolia. Their active components have been studied along with neuroprotective properties, and evidence of in-vitro, pre-clinical, and clinical studies conducted to prove their therapeutic potential against the disease have been presented.

Results: All plants envisaged in the study show potential for fighting against AD to varying degrees. Their compounds have shown therapeutic effects by reversing the neurological changes such as clearing Aβ plaque and neurofibrillary tangle formation, and ameliorative effects against neurodegeneration through processes including improving concentration, memory, cognition and learning, higher working and cue memory, improved spatial memory, inhibition of NF-κB expression, inhibiting the release of pro-inflammatory cytokines, inhibition of AChE and lipid peroxidase enzymes, and reduction of interleukin levels and tumor necrosis factor-alpha.

Conclusion: The present review is a comprehensive and up-to-date analysis supported by the evidentiary proofs from pre-clinical studies, meta-analyses, and review papers related to natural phytochemicals' impact on neurodegenerative disorders like AD.

Keywords: Alzheimer’s disease, phytomedicines, neuroprotection by phytomedicines, neuroprotective phytoconstituents, Panax ginseng, Ginkgo biloba, Bacopa monnieri, Withania somnifera, Curcuma longa, Lavandula angustifolia.

[1]
Upadhyaya P, Seth V, Ahmad M. Therapy of Alzheimer’s disease: An update. Afr J Pharm Pharmacol 2010; 4(6): 408-21.
[2]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(10): 59-70.
[3]
Konar A, Kumar A, Maloney B, Lahiri DK, Thakur MK. A serine protease KLK8 emerges as a regulator of regulators in memory: Microtubule protein dependent neuronal morphology and PKA-CREB signaling. Sci Rep 2018; 8(1): 9928.
[http://dx.doi.org/10.1038/s41598-018-27640-6] [PMID: 29967374]
[4]
Stefanescu R, Stanciu GD, Luca A, Paduraru L, Tamba B-I. Secondary metabolites from plants possessing inhibitory properties against beta-amyloid aggregation as revealed by Thioflavin-T assay and correlations with investigations on transgenic mouse models of Alzheimer’s Disease. Biomolecules 2020; 10(6): 870.
[http://dx.doi.org/10.3390/biom10060870] [PMID: 32517180]
[5]
Das R, Rauf A, Akhter S, et al. Role of Withaferin A and its derivatives in the management of Alzheimer’s Disease: Recent trends and future perspectives. Molecules 2021; 26(12): 3696.
[http://dx.doi.org/10.3390/molecules26123696] [PMID: 34204308]
[6]
Mucke L. Neuroscience: Alzheimer’s disease. Nature 2009; 461(7266): 895-7.
[http://dx.doi.org/10.1038/461895a] [PMID: 19829367]
[7]
Cho I-H. Effects of Panax ginseng in Neurodegenerative Diseases. J Ginseng Res 2012; 36(4): 342-53. http://koreascience.or.kr/journal/view.jsp?kj=GROSBR&py=2012&vnc=v36n4&sp=342
[http://dx.doi.org/10.5142/jgr.2012.36.4.342] [PMID: 23717136]
[8]
Luo Y. Ginkgo biloba neuroprotection: Therapeutic implications in Alzheimer’s disease. J Alzheimers Dis 2001; 3(4): 401-7.
[http://dx.doi.org/10.3233/JAD-2001-3407] [PMID: 12214044]
[9]
Wenk GL. Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 2003; 64 (Suppl. 9): 7-10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12934968
[10]
Stutzmann GE. The pathogenesis of Alzheimers disease is it a lifelong “calciumopathy”? Neuroscientist 2007; 13(5): 546-59.
[http://dx.doi.org/10.1177/1073858407299730] [PMID: 17901262]
[11]
Huang X, Li N, Pu Y, Zhang T, Wang B. Neuroprotective effects of Ginseng Phytochemicals: Recent perspectives. Molecules 2019; 24(16): 2939.
[http://dx.doi.org/10.3390/molecules24162939] [PMID: 31416121]
[12]
Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s and Dementia 2011; 532-9. https://onlinelibrary.wiley.com/doi/10.1016/j.jalz.2011.05.2410
[13]
Li J, Huang Q, Chen J, et al. Neuroprotective potentials of panax ginseng against Alzheimer’s disease: A review of preclinical and clinical evidences. Front Pharmacol 2021; 12: 688490.
[http://dx.doi.org/10.3389/fphar.2021.688490] [PMID: 34149431]
[14]
Sharman MJ, Verdile G, Kirubakaran S, et al. Targeting inflammatory pathways in Alzheimer’s Disease: A focus on natural products and phytomedicines. CNS Drugs 2019; 33(5): 457-80.
[http://dx.doi.org/10.1007/s40263-019-00619-1] [PMID: 30900203]
[15]
Obulesu M, Rao DM. Effect of plant extracts on Alzheimer’s disease: An insight into therapeutic avenues. J Neurosci Rural Practice 2011; 2: 56-61.
[16]
Howes MJR, Perry NSL, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother Res 2003; 17: 1-18.
[17]
Ray B, Chauhan NB, Lahiri DK. The “aged garlic extract:” (AGE) and one of its active ingredients S-allyl-L-cysteine (SAC) as potential preventive and therapeutic agents for Alzheimer’s disease (AD). Curr Med Chem 2011; 18(22): 3306-13.
[http://dx.doi.org/10.2174/092986711796504664] [PMID: 21728972]
[18]
Radad K, Gille G, Liu L, Rausch WD. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006; 100(3): 175-86.
[http://dx.doi.org/10.1254/jphs.CRJ05010X]
[19]
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161: 105263.
[http://dx.doi.org/10.1016/j.phrs.2020.105263]
[20]
Kim HJ, Jung SW, Kim SY, et al. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J Ginseng Res 2018; 42(4): 401-11.
[http://dx.doi.org/10.1016/j.jgr.2017.12.008] [PMID: 30337800]
[21]
Kiefer D, Pantuso T. Panax ginseng. Am Fam Physician 2003; 68(8): 1539-42.http://www.ncbi.nlm.nih.gov/pubmed/14596440
[PMID: 14596440]
[22]
Razgonova MP, Veselov VV, Zakharenko AM, et al. Panax ginseng components and the pathogenesis of Alzheimer’s disease. (Review). Mol Med Rep 2019; 19(4): 2975-98.
[http://dx.doi.org/10.3892/mmr.2019.9972] [PMID: 30816465]
[23]
Li H, Kang T, Qi B, et al. Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer’s disease. J Ethnopharmacol 2016; 179: 162-9.
[http://dx.doi.org/10.1016/j.jep.2015.12.020] [PMID: 26721223]
[24]
Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013; 37(1): 8-29. http://koreascience.or.kr/journal/view.jsp?kj=GROSBR&py=2013&vnc=v37n1&sp=8
[http://dx.doi.org/10.5142/jgr.2013.37.8] [PMID: 23717153]
[25]
Heo JH, Lee ST, Chu K, et al. Heat-processed ginseng enhances the cognitive function in patients with moderately severe Alzheimer’s disease. Nutr Neurosci 2012; 15(6): 278-82.
[http://dx.doi.org/10.1179/1476830512Y.0000000027] [PMID: 22780999]
[26]
Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008; 22(3): 222-6. https://journals.lww.com/00002093-200807000-00005
[http://dx.doi.org/10.1097/WAD.0b013e31816c92e6] [PMID: 18580589]
[27]
Heo JH, Lee ST, Oh MJ, et al. Improvement of cognitive deficit in Alzheimer’s disease patients by long term treatment with korean red ginseng. J Ginseng Res 2011; 35(4): 457-61.
[http://dx.doi.org/10.5142/jgr.2011.35.4.457] [PMID: 23717092]
[28]
Singh B, Kaur P. Gopichand, Singh RD, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008; 79(6): 401-18.
[http://dx.doi.org/10.1016/j.fitote.2008.05.007] [PMID: 18639617]
[29]
Dubey A-K, Shankar P-R, Upadhyaya D, Deshpande V-Y. Ginkgo biloba-an appraisal. Kathmandu Univ Med J 2004; 2(3): 225-9.https://europepmc.org/article/med/16400219
[PMID: 16400219]
[30]
Kreijkamp-Kaspers S, McGuire T, Bedford S, et al. Your questions about complementary medicines answered: St John’s wort. Aust Fam Physician 2015; 44(9): 650-1.
[PMID: 26488044]
[31]
Chan P-C, Xia Q, Fu PP. Ginkgo biloba leave extract: Biological, medicinal, and toxicological effects. J Environ Sci Heal Part C 2007; 25(3): 211-44.
[http://dx.doi.org/10.1080/10590500701569414]
[32]
Leistner E, Drewke C. Ginkgo biloba and ginkgotoxin. J Nat Prod 2010; 73(1): 86-92. https://pubs.acs.org/doi/abs/10.1021/np9005019
[http://dx.doi.org/10.1021/np9005019] [PMID: 20041670]
[33]
van Beek TA. Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A 2002; 967(1): 21-55.
[http://dx.doi.org/10.1016/S0021-9673(02)00172-3] [PMID: 12219929]
[34]
Smith JV, Luo Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 2004; 64(4): 465-72.
[http://dx.doi.org/10.1007/s00253-003-1527-9] [PMID: 14740187]
[35]
Brondino N, De Silvestri A, Re S, et al. A systematic review and meta-analysis of Ginkgo biloba in neuropsychiatric disorders: From ancient tradition to modern-day medicine. Evid-Based Complement Altern Med 2013; 2013: 1-11.
[36]
Gachowska M, Szlasa W, Saczko J, Kulbacka J. Neuroregulatory role of ginkgolides. IN: Molecular Biology Reports Springer. 2021; 48: pp. 5689-97. https://link.springer.com/10.1007/s11033-021-06535-2
[37]
Gertz H-J, Kiefer M. Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr Pharm Des 2004; 10(3): 261-4.
[http://dx.doi.org/10.2174/1381612043386437] [PMID: 14754386]
[38]
DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb 761) and CNS functions: Basic studies and clinical applications. Curr Drug Targets 2000; 1(1): 25-58.
[http://dx.doi.org/10.2174/1389450003349380] [PMID: 11475535]
[39]
Pérez CM. Can Ginkgo biloba combat diseases? P R Health Sci J 2009; 28(1): 66-74.http://www.ncbi.nlm.nih.gov/pubmed/19266743
[PMID: 19266743]
[40]
Shi C, Liu J, Wu F, Yew DT. Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci 2010; 11(1): 107-23.
[http://dx.doi.org/10.3390/ijms11010107] [PMID: 20162004]
[41]
Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 2019; 16: 666-74.
[42]
Watanabe CMH, Wolffram S, Ader P, et al. The in vivo neuromodulatory effects of the herbal medicine Ginkgo biloba. Proc Natl Acad Sci USA 2001; 98(12): 6577-80. http://www.ncbi.nlm.nih.gov/pubmed/11381109
[http://dx.doi.org/10.1073/pnas.111126298] [PMID: 11381109]
[43]
Verma S, Ranawat P, Nehru B. Studies on the neuromodulatory effects of Ginkgo biloba on alterations in lipid composition and membrane integrity of rat brain following aluminium neurotoxicity. Neurochem Res 2020; 45(9): 2143-60.
[http://dx.doi.org/10.1007/s11064-020-03075-2] [PMID: 32594293]
[44]
Stackman RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, Quinn JF. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp Neurol 2003; 184(1): 510-20.
[http://dx.doi.org/10.1016/S0014-4886(03)00399-6] [PMID: 14637120]
[45]
Elsabagh S, Hartley DE, Ali O, Williamson EM, File SE. Differential cognitive effects of Ginkgo biloba after acute and chronic treatment in healthy young volunteers. Psychopharmacology (Berl) 2005; 179(2): 437-46. http://link.springer.com/10.1007/s00213-005-2206-6
[http://dx.doi.org/10.1007/s00213-005-2206-6] [PMID: 15739076]
[46]
Kennedy DO, Jackson PA, Haskell CF, Scholey AB. Modulation of cognitive performance following single doses of 120 mg Ginkgo biloba extract administered to healthy young volunteers. Hum Psychopharmacol 2007; 22(8): 559-66.
[http://dx.doi.org/10.1002/hup.885] [PMID: 17902186]
[47]
Kennedy DO, Scholey AB, Wesnes KA. The dose-dependent cognitive effects of acute administration of Ginkgo biloba to healthy young volunteers. Psychopharmacology (Berl) 2000; 151(4): 416-23.
[http://dx.doi.org/10.1007/s002130000501] [PMID: 11026748]
[48]
Winther K, Randløv C, Rein E, Mehlsen J. Effects of Ginkgo biloba extract on cognitive function and blood pressure in elderly subjects. Curr Ther Res Clin Exp 1998; 59(12): 881-8. https://linkinghub.elsevier.com/retrieve/pii/S0011393X98850534
[http://dx.doi.org/10.1016/S0011-393X(98)85053-4]
[49]
Stough C, Silberstein RB, Pipingas A, Song J, Camfield DA, Nathan PJ. Examining brain-cognition effects of Ginkgo biloba extract: Brain activation in the left temporal and left prefrontal cortex in an object working memory task. Evidence-based Complement Altern Med 2011.
[50]
Canevelli M, Adali N, Kelaiditi E, Cantet C, Ousset PJ, Cesari M. Effects of Gingko biloba supplementation in Alzheimer’s disease patients receiving cholinesterase inhibitors: data from the ICTUS study. Phytomedicine 2014; 21(6): 888-92. https://linkinghub.elsevier.com/retrieve/pii/S0944711314000257
[http://dx.doi.org/10.1016/j.phymed.2014.01.003] [PMID: 24548724]
[51]
Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res 2013; 16(4): 313-26.
[http://dx.doi.org/10.1089/rej.2013.1431] [PMID: 23772955]
[52]
Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine 2005; 12(4): 305-17.
[http://dx.doi.org/10.1016/j.phymed.2003.12.008] [PMID: 15898709]
[53]
Bhandari P, Kumar N, Singh B, Kaul VK. Cucurbitacins from Bacopa monnieri. Phytochemistry 2007; 68(9): 1248-54.
[http://dx.doi.org/10.1016/j.phytochem.2007.03.013] [PMID: 17442350]
[54]
Banerjee S, Anand U, Ghosh S, et al. Bacosides from Bacopa monnieri extract: An overview of the effects on neurological disorders. Phytother Res 2021; 35(10): 5668-79.
[http://dx.doi.org/10.1002/ptr.7203] [PMID: 34254371]
[55]
Deepak M, Amit A. The need for establishing identities of ‘bacoside A and B’, the putative major bioactive saponins of Indian medicinal plant Bacopa monnieri. Phytomedicine 2004; 11(2-3): 264-8.
[http://dx.doi.org/10.1078/0944-7113-00351] [PMID: 15070183]
[56]
Sivaramakrishna C, Rao CV, Trimurtulu G, Vanisree M, Subbaraju GV. Triterpenoid glycosides from Bacopa monnieri. Phytochemistry 2005; 66(23): 2719-28.
[http://dx.doi.org/10.1016/j.phytochem.2005.09.016] [PMID: 16293276]
[57]
Dubey T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb against the Alzheimer’s disease. Arch Biochem Biophys 2019; 676: 108153.
[http://dx.doi.org/10.1016/j.abb.2019.108153] [PMID: 31622587]
[58]
Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann Neurosci 2017; 24(2): 111-22.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[59]
Kiani AK, Miggiano GAD, Aquilanti B, et al. Food supplements based on palmitoylethanolamide plus hydroxytyrosol from olive tree or Bacopa monnieri extracts for neurological diseases. Acta Biomed 2020; 91(13-S): e2020007.
[PMID: 33170159]
[60]
Shalini VT, Neelakanta SJ, Sriranjini JS. Neuroprotection with Bacopa monnieri-A review of experimental evidence. Mol Biol Rep 2021; 48(3): 2653-68.
[http://dx.doi.org/10.1007/s11033-021-06236-w] [PMID: 33675463]
[61]
Sukumaran NP, Amalraj A, Gopi S. Neuropharmacological and cognitive effects of Bacopa monnieri (L.) Wettst - A review on its mechanistic aspects. Complement Ther Med 2019; 44: 68-82.
[http://dx.doi.org/10.1016/j.ctim.2019.03.016] [PMID: 31126578]
[62]
Brimson JM, Brimson S, Prasanth MI, Thitilertdecha P, Malar DS, Tencomnao T. The effectiveness of Bacopa monnieri (Linn.) Wettst. as a nootropic, neuroprotective, or antidepressant supplement: analysis of the available clinical data. Sci Rep 2021; 11(1): 596.
[http://dx.doi.org/10.1038/s41598-020-80045-2] [PMID: 33436817]
[63]
Limpeanchob N, Jaipan S, Rattanakaruna S, Phrompittayarat W, Ingkaninan K. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol 2008; 120(1): 112-7.
[http://dx.doi.org/10.1016/j.jep.2008.07.039] [PMID: 18755259]
[64]
Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 2010; 127(1): 26-31.
[http://dx.doi.org/10.1016/j.jep.2009.09.056] [PMID: 19808086]
[65]
Ahirwar S, Tembhre M, Gour S, Namdeo A. Anticholinesterase efficacy of Bacopa monnieri against the brain regions of rat - a novel approach to therapy for Alzheimer ’ s disease. Asian J Exp Sci 2012; 26(1): 65-70.
[66]
Saini N, Singh D, Sandhir R. Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem Res 2012; 37(9): 1928-37.
[http://dx.doi.org/10.1007/s11064-012-0811-4] [PMID: 22700087]
[67]
Goswami S, Saoji A, Kumar N, Thawani V, Tiwari M, Thawani M. Effect of Bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int J Collab Res Intern Med Public Health 2011; 3(4): 285-93.
[68]
Sadhu A, Upadhyay P, Agrawal A, et al. Management of cognitive determinants in senile dementia of Alzheimer’s type: therapeutic potential of a novel polyherbal drug product. Clin Drug Investig 2014; 34(12): 857-69.
[http://dx.doi.org/10.1007/s40261-014-0235-9] [PMID: 25316430]
[69]
Singh G, Sharma PK, Dudhe R, Singh S. Biological activities of Withania somnifera. Ann Biol Res 2010; 1(3): 56-63.
[70]
Gupta G, Rana A. PHCOG MAG.: Plant review Withania somnifera (Ashwagandha): A review. Withania somnifera 2007; 1(1): 129-36.
[71]
Singh N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern Med 2011; 8(5) (Suppl.): 208-13. http://www.ajol.info/index.php/ajtcam/article/view/67963
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[72]
Mahrous RS, Ghareeb DA, Fathy HM, Abu EL, Khair RM. Abdallah. The protective effect of Egyptian Withania somnifera against Alzeheimer’s. Med Aromat Plants 2017; 06(02): 86746.
[http://dx.doi.org/10.4172/2167-0412.1000285]
[73]
Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cellular and Molecular Life Sciences Birkhauser Verlag AG 2015; 72: 4445-60. Available from: http://link.springer.com/10.1007/s00018-015-2012-1
[74]
Zahiruddin S, Basist P, Parveen A, et al. Ashwagandha in brain disorders: A review of recent developments. J Ethnopharmacol 2020; 2020: 112876.
[75]
Das TK, Hamid MRWA, Das TK, Shad KF. Potential of glycowithanolides from Withania somnifera (Ashwagandha) as therapeutic agents for the treatment of Alzheimer’s disease. World J Pharm Res 2015; 4(6): 16-38.
[76]
Konar A, Gupta R, Shukla RK, et al. M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Sci Rep 2019; 9(1): 13990.
[http://dx.doi.org/10.1038/s41598-019-48238-6] [PMID: 31570736]
[77]
Uddin MS, Al Mamun A, Kabir MT, et al. Nootropic and Anti-Alzheimer’s actions of medicinal plants: Molecular insight into therapeutic potential to alleviate Alzheimer’s Neuropathology. Mol Neurobiol 2019; 56(7): 4925-44.
[http://dx.doi.org/10.1007/s12035-018-1420-2] [PMID: 30414087]
[78]
Dar NJ, Ahmad M. Neurodegenerative diseases and Withania somnifera (L.): An update. J Ethnopharmacol 2020; 256: 112769.
[79]
Syed AA, Reza MI, Singh P, Thombre GK, Gayen JR. Withania somnifera in neurological disorders: Ethnopharmacological evidence, mechanism of action and its progress in delivery systems. Curr Drug Metab 2021; 22(7): 561-71.
[http://dx.doi.org/10.2174/1389200222666210203182716] [PMID: 33538666]
[80]
Kurapati KRV, Atluri VSR, Samikkannu T, Nair MPN. Ashwagandha (Withania somnifera) reverses β-amyloid1-42 induced toxicity in human neuronal cells: Implications in HIV-associated neurocognitive disorders (HAND). PLoS One 2013; 8(10): e77624.
[http://dx.doi.org/10.1371/journal.pone.0077624] [PMID: 24147038]
[81]
Kumar S, Seal CJ, Howes MJR, Kite GC, Okello EJ. In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells. Phytother Res 2010; 24(10): 1567-74.
[http://dx.doi.org/10.1002/ptr.3261] [PMID: 20680931]
[82]
Bhattacharya SK, Kumar A, Ghosal S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res 1995; 9(2): 110-3.
[http://dx.doi.org/10.1002/ptr.2650090206]
[83]
Sehgal N, Gupta A, Valli RK, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 2012; 109(9): 3510-5.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[84]
Tohda C, Nagasaka K, Fukuda H, Hashimoto M, Ebe Y. Scientific basis for the anti dementia drugs of constituents from Ashwagandha (Withania somnifera). Med Pharm Soc Wakan-Yaku 2007; 24: 87-9.
[85]
Shen L, Ji HF. The pharmacology of curcumin: Is it the degradation products? Trends Mol Med 2012; 18(3): 138-44.
[http://dx.doi.org/10.1016/j.molmed.2012.01.004] [PMID: 22386732]
[86]
Gupta SC, Kismali G, Aggarwal BB. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors 2013; 39(1): 2-13.
[http://dx.doi.org/10.1002/biof.1079] [PMID: 23339055]
[87]
Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 2003; 9(1): 161-8.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[88]
Darvesh AS, Carroll RT, Bishayee A, Novotny NA, Geldenhuys WJ, Van der Schyf CJ. Curcumin and neurodegenerative diseases: a perspective. Expert Opin Investig Drugs 2012; 21(8): 1123-40.
[http://dx.doi.org/10.1517/13543784.2012.693479] [PMID: 22668065]
[89]
Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann Indian Acad Neurol 2008; 11(1): 13-9.
[90]
Belkacemi A, Doggui S, Dao L, Ramassamy C. Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev Mol Med 2011; 13: e34.
[http://dx.doi.org/10.1017/S1462399411002055] [PMID: 22051121]
[91]
Ray B, Lahiri DK. Neuroinflammation in Alzheimer’s disease: Different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 2009; 9(4): 434-44.
[http://dx.doi.org/10.1016/j.coph.2009.06.012] [PMID: 19656726]
[92]
Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian spice curcumin against Amyloid-ß in Alzheimer’s disease. J Alzheimer's Dis 2018; 61: 843-66.
[93]
Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule? Pharmacol Res 2017; 124: 146-55.
[http://dx.doi.org/10.1016/j.phrs.2017.08.004] [PMID: 28811228]
[94]
Goozee KG, Shah TM, Sohrabi HR, et al. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br J Nutr 2016; 115(3): 449-65.
[http://dx.doi.org/10.1017/S0007114515004687] [PMID: 26652155]
[95]
Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer’s disease. J Alzheimers Dis 2011; 23(1): 61-77.
[http://dx.doi.org/10.3233/JAD-2010-101374] [PMID: 20930270]
[96]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[97]
Wang Y, Yin H, Wang L, et al. Curcumin as a potential treatment for Alzheimer’s disease: a study of the effects of curcumin on hippocampal expression of glial fibrillary acidic protein. Am J Chin Med 2013; 41(1): 59-70.
[http://dx.doi.org/10.1142/S0192415X13500055] [PMID: 23336507]
[98]
Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AHL, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 2013; 15(2): 324-36.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[99]
Ishrat T, Hoda MN, Khan MB, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 2009; 19(9): 636-47.
[http://dx.doi.org/10.1016/j.euroneuro.2009.02.002] [PMID: 19329286]
[100]
Lin L, Li C, Zhang D, Yuan M, Chen CH, Li M. Synergic effects of berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model. Neurochem Res 2020; 45(5): 1130-41.
[http://dx.doi.org/10.1007/s11064-020-02992-6] [PMID: 32080784]
[101]
Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280(7): 5892-901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[102]
Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 2008; 326(1): 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[103]
Soheili M, Salami M. Lavandula angustifolia biological characteristics: An in vitro study. J Cell Physiol 2019; 234(9): 16424-30.
[http://dx.doi.org/10.1002/jcp.28311] [PMID: 30784075]
[104]
Prusinowska R, Śmigielski KB. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L). A review. Herba Pol 2014; 60(2): 56-66.
[http://dx.doi.org/10.2478/hepo-2014-0010]
[105]
Smigielski K, Prusinowska R, Stobiecka A, Kunicka-Styczyñska A, Gruska R. Biological properties and chemical composition of essential oils from flowers and aerial parts of Lavender (Lavandula angustifolia). J Essent Oil-Bear Plants 2018; 21(5): 1303-14.
[http://dx.doi.org/10.1080/0972060X.2018.1503068]
[106]
Jianu C, Pop G, Gruia AT, Horhat FG. Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in Western Romania. Int J Agric Biol 2013; 15(4): 772-6.
[107]
Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front Aging Neurosci 2017; 9: 168.
[http://dx.doi.org/10.3389/fnagi.2017.00168] [PMID: 28611658]
[108]
Hajhashemi V, Ghannadi A, Sharif B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J Ethnopharmacol 2003; 89(1): 67-71.
[http://dx.doi.org/10.1016/S0378-8741(03)00234-4] [PMID: 14522434]
[109]
Zali H, Zamanian-Azodi M, Rezaei Tavirani M, Akbar-Zadeh Baghban A. Protein drug targets of Lavandula angustifolia on treatment of rat Alzheimer᾽s disease. Iran J Pharm Res 2015; 14(1): 291-302.
[PMID: 25561935]
[110]
Soheili M, Tavirani MR, Salami M. Clearance of Amyloid beta plaques from brain of Alzheimeric rats by Lavandula angustifolia. Neurosci Med 2012; 03(04): 362-7.
[http://dx.doi.org/10.4236/nm.2012.34044]
[111]
Soheili M, Salami M, Haghir A, Zali H, Tavirani MR. Aqueous extract of Lavandula angustifolia alter protein expression in Alzheimer rats. J Reports Pharm Sci 2014; 3(1): 1-9.
[112]
Oskouie AA, Yekta RF, Tavirani MR, Kashani MS, Goshadrou F. Lavandula angustifolia effects on rat models of Alzheimer’s disease through the investigation of serum metabolic features using NMR metabolomics. Avicenna J Med Biotechnol 2018; 10(2): 83-92.
[PMID: 29849984]
[113]
Soheili M, Tavirani MR, Salami M. Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease. Iran J Basic Med Sci 2015; 18(11): 1147-52.
[PMID: 26949505]
[114]
Kashani MS, Tavirani MR, Talaei SA, Salami M. Aqueous extract of lavender (Lavandula angustifolia) improves the spatial performance of a rat model of Alzheimer’s disease. Neurosci Bull 2011; 27(2): 99-106.
[http://dx.doi.org/10.1007/s12264-011-1149-7] [PMID: 21441971]
[115]
Soheili M, Karimian M, Hamidi G, Salami M. Alzheimer’s disease treatment: The share of herbal medicines. Iran J Basic Med Sci 2021; 24(2): 123-35.
[PMID: 33953850]
[116]
Benny A, Thomas J. Essential oils as treatment strategy for Alzheimer’s Disease: Current and future perspectives. Planta Med 2019; 85(3): 239-48.
[http://dx.doi.org/10.1055/a-0758-0188] [PMID: 30360002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy