Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Chemical and Physical Approaches for Improved Biopharmaceutical Activity of Amphotericin B: Current and Future Prospective

Author(s): Ajay Mahor, Devesh M. Sawant and Amit Kumar Goyal*

Volume 22, Issue 19, 2022

Published on: 21 July, 2022

Page: [1571 - 1592] Pages: 22

DOI: 10.2174/1568026622666220610141243

Abstract

Over the last 50 years, the number of patients with mycotic infections has gradually increased. Amphotericin-B is a gold-standard drug used in serious systemic fungal infections. However, limited solubility and permeability are challenging issues associated with Amphotericin-B. Chemical modification is one of the ways to get its broader applicability and improved physicochemical properties. The review article provides a comprehensive overview of the chemical modification approach for investigating the mechanism of action, biological activity, bioavailability, and toxicity of Amphotericin B. Further, several drug delivery approaches have also been utilized to provide better therapeutic outcomes. This gives an overview of chemical approaches for exploring various factors associated with Amphotericin B and information on its drug delivery approaches for improved biopharmaceutical outcomes.

Keywords: Amphotericin-B, Fungal infections, Chemical modification, Drug delivery, BCS class IV, Bioavailability.

Graphical Abstract

[1]
Sampaio, J.P.; Gadanho, M.; Bauer, R. et al. Taxonomic studies in the Microbotryomycetidae: Leucosporidium golubevii sp. nov., Leucosporidiella gen. nov. and the new orders Leucosporidiales and Sporidiobolales. Mycol. Prog., 2, 53-68. (2003).
[http://dx.doi.org/10.1007/s11557-006-0044-5]
[2]
Sant, D.G.; Tupe, S.G.; Ramana, C.V.; Deshpande, M.V. Fungal cell membrane-promising drug target for antifungal therapy. J. Appl. Microbiol., 2016, 121(6), 1498-1510.
[http://dx.doi.org/10.1111/jam.13301] [PMID: 27667746]
[3]
Solovieva, S.E.; Olsufyeva, E.N.; Preobrazhenskaya, M.N. Chemical modification of antifungal polyene macrolide antibiotics. Russ. Chem. Rev., 2011, 80(2), 103-126.
[http://dx.doi.org/10.1070/RC2011v080n02ABEH004145]
[4]
Hamill, R.J.; Amphotericin, B. Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, 2013, 73(9), 919-934.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[5]
Czerwiński, A.; Grzybowska, J.; Borowski, E. N-dimethyl-] aminoacyl derivatives of polyene macrolide antibiotics. J. Antibiot. (Tokyo), 1986, 39(7), 1025-1027.
[http://dx.doi.org/10.7164/antibiotics.39.1025] [PMID: 3759647]
[6]
Omelchuk, O.A.; Tevyashova, A.N.; Shchekotikhin, A.E. Recent advances in antifungal drug discovery based on polyene macrolide antibiotics. Russ. Chem. Rev., 2018, 87(12), 1206-1225.
[http://dx.doi.org/10.1070/RCR4841]
[7]
Halperin, A.; Shadkchan, Y.; Pisarevsky, E.; Szpilman, A.M.; Sandovsky, H.; Osherov, N.; Benhar, I. Novel water-soluble amphotericin B-PEG conjugates with low toxicity and potent in vivo efficacy. J. Med. Chem., 2016, 59(3), 1197-1206.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01862] [PMID: 26816333]
[8]
Nicolaou, K.C.; Chakraborty, T.K.; Daines, R.A.; Simpkins, N.S. Retrosynthetic and synthetic chemistry on amphotericin B. Synthesis of C(1)-C(20) and C(21)-C(38) fragments and construction of the 38-membered macrocycle. J. Chem. Soc. Chem. Commun., 1986, (5), 413-416.
[http://dx.doi.org/10.1039/C39860000413]
[9]
Yamaji, N.; Matsumori, N.; Matsuoka, S.; Oishi, T.; Murata, M.; Amphotericin, B. Amphotericin B dimers with bisamide linkage bearing powerful membrane-permeabilizing activity. Org. Lett., 2002, 4(12), 2087-2089.
[http://dx.doi.org/10.1021/ol025982m] [PMID: 12049524]
[10]
Mohan, A.G. Processes for preparing amphotericin B polyene macrolide schiff bases and their alkyl esters US5981721A.,
[11]
Matsumori, N.; Umegawa, Y.; Oishi, T.; Murata, M. Bioactive fluorinated derivative of amphotericin B. Bioorg. Med. Chem. Lett., 2005, 15(15), 3565-3567.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.058] [PMID: 15963721]
[12]
Matsumori, N.; Sawada, Y.; Murata, M. Large molecular assembly of amphotericin B formed in ergosterol-containing membrane evidenced by solid-state NMR of intramolecular bridged derivative. J. Am. Chem. Soc., 2006, 128(36), 11977-11984.
[http://dx.doi.org/10.1021/ja063433w] [PMID: 16953639]
[13]
Matsumori, N.; Sawada, Y.; Murata, M. Mycosamine orientation of amphotericin B controlling interaction with ergosterol: Sterol-dependent activity of conformation-restricted derivatives with an amino-carbonyl bridge. J. Am. Chem. Soc., 2005, 127(30), 10667-10675.
[http://dx.doi.org/10.1021/ja051597r] [PMID: 16045354]
[14]
Burke, M. Amphotericin B derivative with reduced toxicity WO 2014/165676 Al,, 2014.
[15]
Belakhov, V.V.; Shenin, Y.D. Synthesis and antifungal activity of N-benzyl derivatives of amphotericin B. Pharm. Chem. J., 2007, 41(7), 362-366.
[http://dx.doi.org/10.1007/s11094-007-0082-6]
[16]
Paquet, V.; Volmer, A.A.; Carreira, E.M. Synthesis and in vitro biological properties of novel cationic derivatives of amphotericin B. Chemistry, 2008, 14(8), 2465-2481.
[http://dx.doi.org/10.1002/chem.200701237] [PMID: 18196508]
[17]
Matsushita, N.; Matsuo, Y.; Tsuchikawa, H.; Matsumori, N.; Murata, M.; Oishi, T. Synthesis of 25- 13c-Amphotericin B methyl ester: A molecular probe for solid-state NMR measurements. Chem. Lett., 2009, 38(2), 114-115.
[http://dx.doi.org/10.1246/cl.2009.114]
[18]
Croatt, M.P.; Carreira, E.M. Probing the role of the mycosamine C2′-OH on the activity of amphotericin B. Org. Lett., 2011, 13(6), 1390-1393.
[http://dx.doi.org/10.1021/ol2000765] [PMID: 21322610]
[19]
Belakhov, V.V.; Kolodyaznaya, V.A.; Garabadzhiu, A.V. Chemical modification of heptaene macrolide antibiotic amphotericin b under conditions of the atherton-todd reaction. Russ. J. Gen. Chem., 2014, 84(10), 1953-1961.
[http://dx.doi.org/10.1134/S107036321410017X]
[20]
Antillón, A.; de Vries, A.H.; Espinosa-Caballero, M.; Falcón-González, J.M.; Flores Romero, D.; González-Damián, J.; Jiménez-Montejo, F.E.; León-Buitimea, A.; López-Ortiz, M.; Magaña, R.; Marrink, S.J.; Morales-Nava, R.; Periole, X.; Reyes-Esparza, J.; Rodríguez Lozada, J.; Santiago-Angelino, T.M.; Vargas González, M.C.; Regla, I.; Carrillo-Tripp, M.; Fernández-Zertuche, M.; Rodríguez-Fragoso, L.; Ortega-Blake, I. An amphotericin B derivative equally potent to amphotericin B and with increased safety. PLoS One, 2016, 11(9), e0162171.
[http://dx.doi.org/10.1371/journal.pone.0162171] [PMID: 27683101]
[21]
Sedlák, M.; Amphotericin, B.; Amphotericin, B. From derivatives to covalent targeted conjugates. Mini Rev. Med. Chem., 2009, 9(11), 1306-1316.
[http://dx.doi.org/10.2174/138955709789878178] [PMID: 19929807]
[22]
Murata, M.; Kasai, Y.; Umegawa, Y.; Matsushita, N.; Tsuchikawa, H.; Matsumori, N.; Oishi, T. Ion channel complex of antibiotics as viewed by NMR. Pure Appl. Chem., 2009, 81(6), 1123-1129.
[http://dx.doi.org/10.1351/PAC-CON-08-08-37]
[23]
Palacios, D.S.; Dailey, I.; Siebert, D.M.; Wilcock, B.C.; Burke, M.D. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc. Natl. Acad. Sci. USA, 2011, 108(17), 6733-6738.
[http://dx.doi.org/10.1073/pnas.1015023108] [PMID: 21368185]
[24]
Szpilman, A.M.; Manthorpe, J.M.; Carreira, E.M. Synthesis and biological studies of 35-deoxy amphotericin B methyl ester. Angew. Chem. Int. Ed. Engl., 2008, 47(23), 4339-4342.
[http://dx.doi.org/10.1002/anie.200800590] [PMID: 18442156]
[25]
Zumbuehl, A.; Jeannerat, D.; Martin, S.E.; Sohrmann, M.; Stano, P.; Vigassy, T.; Clark, D.D.; Hussey, S.L.; Peter, M.; Peterson, B.R.; Pretsch, E.; Walde, P.; Carreira, E.M. An amphotericin B-fluorescein conjugate as a powerful probe for biochemical studies of the membrane. Angew. Chem. Int. Ed., 2004, 43(39), 5181-5185.
[http://dx.doi.org/10.1002/anie.200460489] [PMID: 15455425]
[26]
Gray, K.C.; Palacios, D.S.; Dailey, I.; Endo, M.M.; Uno, B.E.; Wilcock, B.C.; Burke, M.D. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2234-2239.
[http://dx.doi.org/10.1073/pnas.1117280109] [PMID: 22308411]
[27]
Matsumori, N.; Yamaji, N.; Matsuoka, S.; Oishi, T.; Murata, M.; Amphotericin, B. Amphotericin B covalent dimers forming sterol-dependent ion-permeable membrane channels. J. Am. Chem. Soc., 2002, 124(16), 4180-4181.
[http://dx.doi.org/10.1021/ja012026b] [PMID: 11960425]
[28]
Umegawa, Y.; Nakagawa, Y.; Tahara, K.; Tsuchikawa, H.; Matsumori, N.; Oishi, T.; Murata, M. Head-to-tail interaction between amphotericin B and ergosterol occurs in hydrated phospholipid membrane. Biochemistry, 2012, 51(1), 83-89.
[http://dx.doi.org/10.1021/bi2012542] [PMID: 22129239]
[29]
Cuddihy, G.; Wasan, E.K.; Di, Y.; Wasan, K.M. The development of oral amphotericin B to treat systemic fungal and parasitic infections: Has the myth been finally realized? Pharmaceutics, 2019, 11(3), E99.
[http://dx.doi.org/10.3390/pharmaceutics11030099] [PMID: 30813569]
[30]
Tevyashova, A.N.; Olsufyeva, E.N.; Solovieva, S.E.; Printsevskaya, S.S.; Reznikova, M.I.; Trenin, A.S.; Galatenko, O.A.; Treshalin, I.D.; Pereverzeva, E.R.; Mirchink, E.P.; Isakova, E.B.; Zotchev, S.B.; Preobrazhenskaya, M.N. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob. Agents Chemother., 2013, 57(8), 3815-3822.
[http://dx.doi.org/10.1128/AAC.00270-13] [PMID: 23716057]
[31]
Serrano, D.; Ballesteros, M.; Schätzlein, A.; Torrado, J.; Uchegbu, I.; Amphotericin, B. Formulations – The possibility of generic competition. Pharm. Nanotechnol., 2013, 1(4), 250-258.
[http://dx.doi.org/10.2174/2211738501999131118125018]
[32]
Chang, C. Water-soluble amide derivatives of plyene macrolides and preparation and uses thereof WO/2001/091758,
[33]
Adediran, S.A.; Day, T.P.; Sil, D.; Kimbrell, M.R.; Warshakoon, H.J.; Malladi, S.S.; David, S.A. Synthesis of a highly water-soluble derivative of amphotericin B with attenuated proinflammatory activity. Mol. Pharm., 2009, 6(5), 1582-1590.
[http://dx.doi.org/10.1021/mp9001602] [PMID: 19663403]
[34]
Szpilman, A.M.; Cereghetti, D.M.; Manthorpe, J.M.; Wurtz, N.R.; Carreira, E.M. Synthesis and biophysical studies on 35-deoxy amphotericin B methyl ester. Chemistry, 2009, 15(29), 7117-7128.
[http://dx.doi.org/10.1002/chem.200900231] [PMID: 19544513]
[35]
Antillón Díaz, A.; Carrillo Tripp, M.; Fernández-Zertuche, M.; Flores Moreno, J.D.; Jiménez Montejo, F.E.; León Buitimea, A.; Morales Nava, R.; Ocampo Martínez, L.; Ortega Blake, I.; Reyes Esparza, J.A. New amphotericin analogous compounds and pharmaceutical compositions containing them WO 2012/085784 A2,
[36]
Wilcock, B.C.; Uno, B.E.; Bromann, G.L.; Clark, M.J.; Anderson, T.M.; Burke, M.D. Electronic tuning of site-selectivity. Nat. Chem., 2012, 4(12), 996-1003.
[http://dx.doi.org/10.1038/nchem.1495] [PMID: 23174979]
[37]
Tsuchikawa, H.; Matsushita, N.; Matsumori, N.; Murata, M.; Oishi, T. Synthesis of 28-19F-amphotericin B methyl ester. Tetrahedron Lett., 2006, 47(35), 6187-6191.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.159]
[38]
Kasai, Y.; Matsumori, N.; Umegawa, Y.; Matsuoka, S.; Ueno, H.; Ikeuchi, H.; Oishi, T.; Murata, M. Self-assembled amphotericin B is probably surrounded by ergosterol: Bimolecular interactions as evidenced by solid-state NMR and CD spectra. Chemistry, 2008, 14(4), 1178-1185.
[http://dx.doi.org/10.1002/chem.200701256] [PMID: 17999396]
[39]
Tevyashova, A.N.; Korolev, A.M.; Trenin, A.S.; Dezhenkova, L.G.; Shtil, A.A.; Polshakov, V.I.; Savelyev, O.Y.; Olsufyeva, E.N. New conjugates of polyene macrolide amphotericin B with benzoxaboroles: Synthesis and properties. J. Antibiot. (Tokyo), 2016, 69(7), 549-560.
[http://dx.doi.org/10.1038/ja.2016.34] [PMID: 27005557]
[40]
Skwarecki, A.S.; Skarbek, K.; Martynow, D.; Serocki, M.; Bylińska, I.; Milewska, M.J.; Milewski, S. Molecular umbrellas modulate the selective toxicity of polyene macrolide antifungals. Bioconjug. Chem., 2018, 29(4), 1454-1465.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00136] [PMID: 29485855]
[41]
Day, T.P.; Sil, D.; Shukla, N.M.; Anbanandam, A.; Day, V.W.; David, S.A. Imbuing aqueous solubility to amphotericin B and nystatin with a vitamin. Mol. Pharm., 2011, 8(1), 297-301.
[http://dx.doi.org/10.1021/mp100363f] [PMID: 21141891]
[42]
Palacios, D.S.; Anderson, T.M.; Burke, M.D. A post-PKS oxidation of the amphotericin B skeleton predicted to be critical for channel formation is not required for potent antifungal activity. J. Am. Chem. Soc., 2007, 129(45), 13804-13805.
[http://dx.doi.org/10.1021/ja075739o] [PMID: 17956100]
[43]
Burke, M. Electronic tuning of site selectivity WO 2014059436 Al,
[44]
Davis, S.A.; Della Ripa, L.A.; Hu, L.; Cioffi, A.G.; Pogorelov, T.V.; Rienstra, C.M.; Burke, M.D. C3-OH of Amphotericin B plays an important role in ion conductance. J. Am. Chem. Soc., 2015, 137(48), 15102-15104.
[http://dx.doi.org/10.1021/jacs.5b05766] [PMID: 26580003]
[45]
Davis, S.A. Less toxic yet still resistance evasive amphotericins and atomistic probing of the amphotericin B ion channel; University of Illinois, 2015.
[46]
Yamamoto, T.; Umegawa, Y.; Yamagami, M.; Suzuki, T.; Tsuchikawa, H.; Hanashima, S.; Matsumori, N.; Murata, M. The perpendicular orientation of amphotericin B methyl ester in hydrated lipid bilayers supports the barrel-stave model. Biochemistry, 2019, 58(17), 2282-2291.
[http://dx.doi.org/10.1021/acs.biochem.9b00180] [PMID: 30973009]
[47]
Schaffner Carl, P.; Witold, M. Derivatives of polyene macrolide antibiotics. United States Patent 3,945,993, 1976.
[48]
Paquet, V.; Carreira, E.M. Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine. Org. Lett., 2006, 8(9), 1807-1809.
[http://dx.doi.org/10.1021/ol060353o] [PMID: 16623556]
[49]
Zumbuehl, A.; Stano, P.; Sohrmann, M.; Peter, M.; Walde, P.; Carreira, E.M. A novel strategy for bioconjugation: Synthesis and preliminary evaluation with amphotericin B. Org. Biomol. Chem., 2007, 5(9), 1339-1342.
[http://dx.doi.org/10.1039/b701953j] [PMID: 17464400]
[50]
Judice, J. Compositions and methods for the treatment of presbyopia WO 2015164289 A1 (2015),
[51]
Burke, M.D.; Thottumkara, A. Derivatives of amphotericin B WO 2016168568 Al (2016).,
[52]
Burke, M.D. Antifungal polyene macrolide derivatives with reduced mammalian toxicity WO 2016014779 Al (2016),
[53]
Chugunova, E.A.; Mukhamatdinova, R.E.; Sazykina, M.A.; Sazykin, I.S.; Khammami, M.I.; Akylbekov, N.I.; Burilov, A.R.; Kulik, N.V.; Zobov, V.V. Synthesis and biological activity of new hybrids compounds derived from benzofuroxanes and polyene antibiotics. Russ. J. Gen. Chem., 2016, 86(5), 1037-1040.
[http://dx.doi.org/10.1134/S1070363216050091]
[54]
Flores-Romero, J.D.; Rodríguez-Lozada, J.; López-Ortiz, M.; Magaña, R.; Ortega-Blake, I.; Regla, I.; Fernández-Zertuche, M. Multigram scale synthesis of a21, a new antibiotic equally effective and less toxic than amphotericin B. Org. Process Res. Dev., 2016, 20(8), 1529-1532.
[http://dx.doi.org/10.1021/acs.oprd.6b00211]
[55]
Pinchman, J.R.; Bunker, K.D.; Huang, P.Q.; Slee, D.H.; Hopkins, C.D. Antifungal compounds and methods. WO2017/100171Al, 2017.
[56]
Bunker, K.D.; Pinchman, J.R. Antifungal compounds & methods WO 2018106571 Al (2018).,
[57]
Nicolaou, K.C.; Chakraborty, T.K.; Ogawa, Y.; Daines, R.A.; Simpkins, N.S.; Furst, G.T. Chemistry of amphotericin b. degradation studies and preparation of amphoteronolide B. J. Am. Chem. Soc., 1988, 110(14), 4660-4672.
[http://dx.doi.org/10.1021/ja00222a027]
[58]
Elgart, A.; Farber, S.; Domb, A.J.; Polacheck, I.; Hoffman, A. Polysaccharide pharmacokinetics: Amphotericin B arabinogalactan conjugate-a drug delivery system or a new pharmaceutical entity? Biomacromolecules, 2010, 11(8), 1972-1977.
[http://dx.doi.org/10.1021/bm100298r] [PMID: 20690709]
[59]
Mohamed-Ahmed, A.H.A.; Les, K.A.; Seifert, K.; Croft, S.L.; Brocchini, S. Noncovalent complexation of amphotericin-B with Poly(α-glutamic acid). Mol. Pharm., 2013, 10(3), 940-950.
[http://dx.doi.org/10.1021/mp300339p] [PMID: 23234235]
[60]
Borowski, E.; Salewska, N.; Boros-Majewska, J.; Milewska, M.; Wysocka, M.; Milewski, S.; Łącka, I.; Sabisz, M. IV-substituted second generation derivaties of antifungal antibiotic amphotericin B and methods of thier preparation and application. WO2013/186384Al, 2013.
[61]
Thanki, K.; Date, T.; Jain, S. Improved oral bioavailability and gastrointestinal stability of amphotericin b through fatty acid conjugation approach. Mol. Pharm., 2019, 16(11), 4519-4529.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00662] [PMID: 31509418]
[62]
Zhang, J.; Ma, J.; Dong, Y.; Zhao, W.; Feng, J. Synthesis and characterization of NH2-(AEEA)n-amphotericin B derivatives. J. Antibiot. (Tokyo), 2019, 72(4), 210-217.
[http://dx.doi.org/10.1038/s41429-018-0138-8] [PMID: 30635615]
[63]
Tevyashova, A.N.; Bychkova, E.N.; Solovieva, S.E.; Zatonsky, G.V.; Grammatikova, N.E.; Isakova, E.B.; Mirchink, E.P.; Treshchalin, I.D.; Pereverzeva, E.R.; Bykov, E.E.; Efimova, S.S.; Ostroumova, O.S.; Shchekotikhin, A.E. Discovery of amphamide, a drug candidate for the second generation of polyene antibiotics. ACS Infect. Dis., 2020, 6(8), 2029-2044.
[http://dx.doi.org/10.1021/acsinfecdis.0c00068] [PMID: 32598131]
[64]
Carriera, E. Amphotericin derivatives WO 2007096137 Al (2007),
[65]
Burke, M.D.; Davis, S.; Uno, B.E.; Struble, J.; Dailey, I.; Gray, K.C.; Knapp, D.M.; Wang, P.; Palyam, N. Amphotericin B derivatives with improved therapeutic index WO 2015054148 A1 (2015).,
[66]
Burke, M.D. Concise synthesis of urea derivatives of amphotericin B WO 2016112260 (2016),
[67]
Tucker, M.D.B.D. Urea derivatives of AmB derived from secondary amines WO 2016/112243 Al (2016),
[68]
Burke, M.D. WO2016061437.,
[69]
Davis, S.A.; Vincent, B.M.; Endo, M.M.; Whitesell, L.; Marchillo, K.; Andes, D.R.; Lindquist, S.; Burke, M.D. Nontoxic antimicrobials that evade drug resistance. Nat. Chem. Biol., 2015, 11(7), 481-487.
[http://dx.doi.org/10.1038/nchembio.1821] [PMID: 26030729]
[70]
Conover, C.D.; Zhao, H.; Longley, C.B.; Shum, K.L.; Greenwald, R.B. Utility of poly(ethylene glycol) conjugation to create prodrugs of amphotericin B. Bioconjug. Chem., 2003, 14(3), 661-666.
[http://dx.doi.org/10.1021/bc0256594] [PMID: 12757392]
[71]
Borders, D.B. Methods for preparing salts of polyene macrolide esters US2003/0040610Al, 2003.
[72]
Sedlák, M.; Drabina, P.; Bílková, E.; Simůnek, P.; Buchta, V. New targeting system for antimycotic drugs: β-glucosidase sensitive amphotericin B-star poly(ethylene glycol) conjugate. Bioorg. Med. Chem. Lett., 2008, 18(9), 2952-2956.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.065] [PMID: 18396401]
[73]
Liu, S.Y.; Liu, H.; Shen, Z.Q.; Huang, W.Y.; Zhong, A.G.; Wen, H.R. Atom- and step-economic synthesis of π-conjugated large oligomers via CH activated oligomerization. Dyes Pigments, 2019, 162, 640-646.
[http://dx.doi.org/10.1016/j.dyepig.2018.10.075]
[74]
Liu, S.Y.; Liu, W.Q.; Yuan, C.X.; Zhong, A.G.; Han, D.; Wang, B.; Shah, M.N.; Shi, M.M.; Chen, H. Diketopyrrolopyrrole-based oligomers accessed via sequential C[Formula Presented]H activated coupling for fullerene-free organic photovoltaics. Dyes Pigments, 2016, 134, 139-147.
[http://dx.doi.org/10.1016/j.dyepig.2016.07.007]
[75]
Ai-Guo, Z. Dissecting the nature of halogen bonding interactions from energy decomposition and wavefunction analysis. Monatsh. Chem., 2017, 148(7), 1259-1267.
[http://dx.doi.org/10.1007/s00706-017-1937-5]
[76]
Villamil, J.C.; Parra-Giraldo, C.M.; Pérez, L.D. Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol. Colloids Surf. A Physicochem. Eng. Asp., 2019, 572(March), 79-87.
[http://dx.doi.org/10.1016/j.colsurfa.2019.03.086]
[77]
Chaudhari, M.B.; Desai, P.P.; Patel, P.A.; Patravale, V.B. Solid lipid nanoparticles of amphotericin B (AmbiOnp): In vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv. Transl. Res., 2016, 6(4), 354-364.
[http://dx.doi.org/10.1007/s13346-015-0267-6] [PMID: 26712123]
[78]
Butani, D.; Yewale, C.; Misra, A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf. B Biointerfaces, 2016, 139, 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.032] [PMID: 26700229]
[79]
Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.; Das, P. Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv., 2015, 22(3), 383-388.
[http://dx.doi.org/10.3109/10717544.2014.891271] [PMID: 24601828]
[80]
Radwan, M.A.; AlQuadeib, B.T.; Šiller, L.; Wright, M.C.; Horrocks, B. Oral administration of amphotericin B nanoparticles: Antifungal activity, bioavailability and toxicity in rats. Drug Deliv., 2017, 24(1), 40-50.
[http://dx.doi.org/10.1080/10717544.2016.1228715] [PMID: 28155565]
[81]
Al-Quadeib, B.T.; Radwan, M.A.; Siller, L.; Horrocks, B.; Wright, M.C. Stealth Amphotericin B nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharm. J., 2015, 23(3), 290-302.
[http://dx.doi.org/10.1016/j.jsps.2014.11.004] [PMID: 26106277]
[82]
Ling, Tan J.S.; Roberts, C.J.; Billa, N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm. Dev. Technol., 2019, 24(4), 504-512.
[http://dx.doi.org/10.1080/10837450.2018.1515225] [PMID: 30132723]
[83]
Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of nanostructured lipid carriers: Understanding the types, designs, and parameters in the process of formulations. J. Nanopart. Res., 2020, 22(6)
[http://dx.doi.org/10.1007/s11051-020-04848-0]
[84]
Chen, Y.C.; Su, C.Y.; Jhan, H.J.; Ho, H.O.; Sheu, M.T. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles. Int. J. Nanomedicine, 2015, 10, 7265-7274.
[http://dx.doi.org/10.2147/IJN.S95194] [PMID: 26664117]
[85]
Wang, Y.; Ke, X.; Voo, Z.X.; Yap, S.S.L.; Yang, C.; Gao, S.; Liu, S.; Venkataraman, S.; Obuobi, S.A.O.; Khara, J.S.; Yang, Y.Y.; Ee, P.L.R. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater., 2016, 46, 211-220.
[http://dx.doi.org/10.1016/j.actbio.2016.09.036] [PMID: 27686042]
[86]
Silva, A.E.; Barratt, G.; Chéron, M.; Egito, E.S.T. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int. J. Pharm., 2013, 454(2), 641-648.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.044] [PMID: 23726904]
[87]
Richter, A.R.; Feitosa, J.P.A.; Paula, H.C.B.; Goycoolea, F.M.; de Paula, R.C.M. Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. Colloids Surf. B Biointerfaces, 2018, 164, 201-209.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.023] [PMID: 29413597]
[88]
Bhatia, S.; Kumar, V.; Sharma, K.; Nagpal, K.; Bera, T. Significance of algal polymer in designing amphotericin B nanoparticles. ScientificWorldJournal, 2014, 2014, 564573.
[http://dx.doi.org/10.1155/2014/564573] [PMID: 25478596]
[89]
Mohamed, H.A.; Radwan, R.R.; Raafat, A.I.; Ali, A.E.H. Antifungal activity of oral (Tragacanth/acrylic acid) Amphotericin B carrier for systemic candidiasis: In vitro and in vivo study. Drug Deliv. Transl. Res., 2018, 8(1), 191-203.
[http://dx.doi.org/10.1007/s13346-017-0452-x] [PMID: 29280061]
[90]
Banshoya, K.; Kaneo, Y.; Tanaka, T.; Yamamoto, S.; Maeda, H. Synthesis and evaluation of styrene-maleic acid copolymer conjugated amphotericin B. Int. J. Pharm., 2019, 572, 118719.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118719] [PMID: 31654700]
[91]
Singh, K.; Tiwary, A.K.; Rana, V. Spray dried chitosan-EDTA superior microparticles as solid substrate for the oral delivery of amphotericin B. Int. J. Biol. Macromol., 2013, 58, 310-319.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.053] [PMID: 23624284]
[92]
Yang, Z.; Tan, Y.; Chen, M.; Dian, L.; Shan, Z.; Peng, X.; Wu, C. Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech, 2012, 13(4), 1483-1491.
[http://dx.doi.org/10.1208/s12249-012-9876-2] [PMID: 23090113]
[93]
Prajapati, V.K.; Awasthi, K.; Yadav, T.P.; Rai, M.; Srivastava, O.N.; Sundar, S. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J. Infect. Dis., 2012, 205(2), 333-336.
[http://dx.doi.org/10.1093/infdis/jir735] [PMID: 22158723]
[94]
Sun, H.; She, P.; Lu, G.; Xu, K.; Zhang, W.; Liu, Z. Recent advances in the development of functionalized carbon nanotubes: A versatile vector for drug delivery. J. Mater. Sci., 2014, 49(20), 6845-6854.
[http://dx.doi.org/10.1007/s10853-014-8436-4]
[95]
Serrano, D.R.; Lalatsa, A.; Dea-Ayuela, M.A.; Bilbao-Ramos, P.E.; Garrett, N.L.; Moger, J.; Guarro, J.; Capilla, J.; Ballesteros, M.P.; Schätzlein, A.G.; Bolás, F.; Torrado, J.J.; Uchegbu, I.F. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol. Pharm., 2015, 12(2), 420-431.
[http://dx.doi.org/10.1021/mp500527x] [PMID: 25558881]
[96]
Delmas, G.; Park, S.; Chen, Z.W.; Tan, F.; Kashiwazaki, R.; Zarif, L.; Perlin, D.S. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob. Agents Chemother., 2002, 46(8), 2704-2707.
[http://dx.doi.org/10.1128/AAC.46.8.2704-2707.2002] [PMID: 12121962]
[97]
Zarif, L.; Graybill, J.R.; Perlin, D.; Mannino, R.J. Cochleates: New lipid-based drug delivery system. J. Liposome Res., 2000, 10(4), 523-538.
[http://dx.doi.org/10.3109/08982100009031116]
[98]
Wasan, K.M.; Wasan, E.K.; Gershkovich, P.; Zhu, X.; Tidwell, R.R.; Werbovetz, K.A.; Clement, J.G.; Thornton, S.J. Highly effective oral amphotericin B formulation against murine visceral leishmaniasis. J. Infect. Dis., 2009, 200(3), 357-360.
[http://dx.doi.org/10.1086/600105] [PMID: 19545212]
[99]
Wasan, E.K.; Bartlett, K.; Gershkovich, P.; Sivak, O.; Banno, B.; Wong, Z.; Gagnon, J.; Gates, B.; Leon, C.G.; Wasan, K.M. Development and characterization of oral lipid-based amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int. J. Pharm., 2009, 372(1-2), 76-84.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.003] [PMID: 19236839]
[100]
Wasan, E.K.; Gershkovich, P.; Zhao, J.; Zhu, X.; Werbovetz, K.; Tidwell, R.R.; Clement, J.G.; Thornton, S.J.; Wasan, K.M. A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral Leishmaniasis in a murine model. PLoS Negl. Trop. Dis., 2010, 4(12), e913.
[http://dx.doi.org/10.1371/journal.pntd.0000913] [PMID: 21151883]
[101]
Sivak, O.; Gershkovich, P.; Lin, M.; Wasan, E.K.; Zhao, J.; Owen, D.; Clement, J.G.; Wasan, K.M. Tropically stable novel oral lipid formulation of amphotericin B (iCo-010): Biodistribution and toxicity in a mouse model. Lipids Health Dis., 2011, 10, 135.
[http://dx.doi.org/10.1186/1476-511X-10-135] [PMID: 21824435]
[102]
Cao, X.; Rong, C.; Zhong, A.; Lu, T.; Liu, S. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory. J. Comput. Chem., 2018, 39(2), 117-129.
[http://dx.doi.org/10.1002/jcc.25090] [PMID: 29076175]
[103]
Saleem, H.; Thanikachalam, V.; Babu, N.R.; Bharanidharan, S. Vibrational spectroscopy (FT-IR, FT-Raman and UV) studies of E-[1-Methyl-2,6-Diphenyl- 3-(Propan-2-Yl)Piperidin-4-Ylidene] Amino 3-Methylbenzoate] using DFT method physics. Int. J. Sci. Res., 2016. (November), 2017.

© 2025 Bentham Science Publishers | Privacy Policy