Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Saikosaponin-A Exhibits Antipancreatic Cancer Activity by Targeting the EGFR/PI3K/Akt Pathway

Author(s): Chengda Shi, Linglin Sun, Rong Fang, Shuying Zheng, Mingming Yu and Qiang Li*

Volume 24, Issue 4, 2023

Published on: 13 September, 2022

Page: [579 - 588] Pages: 10

DOI: 10.2174/1389201023666220610113514

Price: $65

Abstract

Background: A diagnosis of pancreatic cancer is pretty grim. Saikosaponin-A (SSA) is a Chinese herbal extract with anticancer activity. However, the therapeutic effect of SSA on pancreatic cancer remains elusive.

Aim: The study aims to evaluate the antitumor effects of SSA on pancreatic cancer cells in vitro and in vivo.

Methods: After treatment with SSA, cell viability was measured using the CCK-8 assay, DAPI staining was performed to analyze the effect on nuclear morphology, propidium iodide (PI) staining was used to detect the cell cycle, and Annexin V/PI double staining was conducted to analyze apoptosis. Then, the expression of apoptosis-related proteins and EGFR/PI3K/Akt pathway-related proteins was determined using western blotting. The binding of SSA to EGFR was analyzed by performing molecular docking. The mouse pancreatic cancer model was established by subcutaneously injecting pancreatic cancer cells, and after 30 days of SSA gavage, the tumor volume was calculated. Tumor tissue sections were subjected to Ki67 immunohistochemical staining and HE staining.

Results: SSA inhibited the proliferation of pancreatic cancer cells. As the concentration of SSA increased, the proportions of BxPC-3 and MIA PaCa-2 cells in the G0/G1 phase increased, the proportions of early and late apoptotic cells also increased, and the apoptosis rate gradually increased. Apoptosis inhibitor experiments indicated that SSA promoted the activation of caspase 3 to induce apoptosis in pancreatic cancer cells. In addition, SSA treatment significantly reduced the levels of phosphorylated EGFR, Akt, and PI3K in the two cell lines. Molecular docking results showed that SSA may have potential binding sites in EGFR. Results of the xenograft experiment confirmed the antitumor effects of SSA, as evidenced by the decreased tumor weight and downregulated expression of Ki67.

Conclusion: The results revealed that SSA exerted inhibitory effects on pancreatic cancer cells. These effects may be related to the inactivation of the EGFR/PI3K/Akt signalling pathway.

Keywords: Saikosaponin-A, pancreatic cancer, EGFR/PI3K/Akt pathway, cell cycle, apoptosis, identification.

Graphical Abstract

[1]
Remon, J.; Ahn, M.J.; Girard, N.; Johnson, M.; Kim, D.W.; Lopes, G.; Pillai, R.N.; Solomon, B.; Villacampa, G.; Zhou, Q. Advanced-stage non-small cell lung cancer: Advances in thoracic oncology 2018. J. Thorac. Oncol., 2019, 14(7), 1134-1155.
[http://dx.doi.org/10.1016/j.jtho.2019.03.022] [PMID: 31002952]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Saranya, K.; Sreejith, K. Ajaykumar, Comparison of quality of life of patients on treatment with cisplatin and gemcitabine, carboplatin and gemcitabine, carboplatin and paclitaxel, carboplatin and pemetrexed for non-small cell lung cancer. J. Oncol. Pharm. Pract., 2019, 25(8), 1853-1859.
[http://dx.doi.org/10.1177/1078155218820932] [PMID: 30616471]
[4]
Chang, Z.; Zhang, Y.; Liu, J.; Guan, C.; Gu, X.; Yang, Z.; Ye, Q.; Ding, L.; Liu, R. GATA1 promotes gemcitabine resistance in pancreatic cancer through antiapoptotic pathway. J. Oncol., 2019, 2019, 9474273.
[http://dx.doi.org/10.1155/2019/9474273] [PMID: 31093285]
[5]
Gao, Y.; Chen, S.; Sun, J.; Su, S.; Yang, D.; Xiang, L.; Meng, X. Traditional Chinese medicine may be further explored as candidate drugs for pancreatic cancer: A review. Phytother. Res., 2021, 35(2), 603-628.
[http://dx.doi.org/10.1002/ptr.6847] [PMID: 32965773]
[6]
Troiani, T.; Martinelli, E.; Capasso, A.; Morgillo, F.; Orditura, M.; De Vita, F.; Ciardiello, F. Targeting EGFR in pancreatic cancer treatment. Curr. Drug Targets, 2012, 13(6), 802-810.
[http://dx.doi.org/10.2174/138945012800564158] [PMID: 22458527]
[7]
Perera, R.M.; Bardeesy, N. Ready, set, go: The EGF receptor at the pancreatic cancer starting line. Cancer Cell, 2012, 22(3), 281-282.
[http://dx.doi.org/10.1016/j.ccr.2012.08.019] [PMID: 22975369]
[8]
Navas, C.; Hernández-Porras, I.; Schuhmacher, A.J.; Sibilia, M.; Guerra, C.; Barbacid, M. EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell, 2012, 22(3), 318-330.
[http://dx.doi.org/10.1016/j.ccr.2012.08.001] [PMID: 22975375]
[9]
Nedaeinia, R.; Avan, A.; Manian, M.; Salehi, R.; Ghayour-Mobarhan, M. EGFR as a potential target for the treatment of pancreatic cancer: Dilemma and controversies. Curr. Drug Targets, 2014, 15(14), 1293-1301.
[http://dx.doi.org/10.2174/1389450115666141125123003] [PMID: 25429712]
[10]
Yuan, B.; Yang, R.; Ma, Y.; Zhou, S.; Zhang, X.; Liu, Y. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications. Pharm. Biol., 2017, 55(1), 620-635.
[http://dx.doi.org/10.1080/13880209.2016.1262433] [PMID: 27951737]
[11]
Wang, Y.; Zhao, L.; Han, X.; Wang, Y.; Mi, J.; Wang, C.; Sun, D.; Fu, Y.; Zhao, X.; Guo, H.; Wang, Q. Saikosaponin a inhibits triple-negative breast cancer growth and metastasis through downregulation of CXCR4. Front. Oncol., 2020, 9, 1487.
[http://dx.doi.org/10.3389/fonc.2019.01487] [PMID: 32047724]
[12]
Zhao, X.; Liu, J.; Ge, S.; Chen, C.; Li, S.; Wu, X.; Feng, X.; Wang, Y.; Cai, D. Saikosaponin a inhibits breast cancer by regulating Th1/Th2 balance. Front. Pharmacol., 2019, 10, 624.
[http://dx.doi.org/10.3389/fphar.2019.00624] [PMID: 31214035]
[13]
Kim, B.M.; Hong, S.H. Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines. Apoptosis, 2011, 16(2), 184-197.
[http://dx.doi.org/10.1007/s10495-010-0557-x] [PMID: 21107704]
[14]
Liu, Y.; Gao, L.; Zhao, X.; Guo, S.; Liu, Y.; Li, R.; Liang, C.; Li, L.; Dong, J.; Li, L.; Yang, H. Saikosaponin a protects from pressure overload-induced cardiac fibrosis via inhibiting fibroblast activation or endothelial cell EndMT. Int. J. Biol. Sci., 2018, 14(13), 1923-1934.
[http://dx.doi.org/10.7150/ijbs.27022] [PMID: 30443195]
[15]
Ali, J.; Khan, A.U.; Shah, F.A.; Ali, H.; Islam, S.U.; Kim, Y.S.; Khan, S. Mucoprotective effects of Saikosaponin-A in 5-fluorouracil-induced intestinal mucositis in mice model. Life Sci., 2019, 239, 116888.
[http://dx.doi.org/10.1016/j.lfs.2019.116888] [PMID: 31639401]
[16]
Cui, L.; Li, C.; Zhuo, Y.; Yang, L.; Cui, N.; Li, Y.; Zhang, S. Saikosaponin A inhibits the activation of pancreatic stellate cells by suppressing autophagy and the NLRP3 inflammasome via the AMPK/mTOR pathway. Biomed. Pharmacother., 2020, 128, 110216.
[http://dx.doi.org/10.1016/j.biopha.2020.110216] [PMID: 32497863]
[17]
Khan, A.A.; Liu, X.; Yan, X.; Tahir, M.; Ali, S.; Huang, H. An overview of genetic mutations and epigenetic signatures in the course of pancreatic cancer progression. Cancer Metastasis Rev., 2021, 40(1), 245-272.
[http://dx.doi.org/10.1007/s10555-020-09952-0] [PMID: 33423164]
[18]
Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet, 2020, 395(10242), 2008-2020.
[http://dx.doi.org/10.1016/S0140-6736(20)30974-0] [PMID: 32593337]
[19]
Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res., 2009, 59(6), 365-378.
[http://dx.doi.org/10.1016/j.phrs.2009.01.017] [PMID: 19429468]
[20]
Feng, P.; Xu, Y.; Tong, B.; Tong, X.; Bian, Y.; Zhao, S.; Shen, H. Saikosaponin a attenuates hyperlipidemic pancreatitis in rats via the PPAR-γ/NF-κB signaling pathway. Exp. Ther. Med., 2020, 19(2), 1203-1212.
[PMID: 32010290]
[21]
Li, J.; Han, J.; Lv, J.; Wang, S.; Qu, L.; Jiang, Y. Saikosaponin A-induced gut microbiota changes attenuate severe acute pancreatitis through the activation of Keap1/Nrf2-ARE antioxidant signaling. Oxid. Med. Cell. Longev., 2020, 2020, 9217219.
[http://dx.doi.org/10.1155/2020/9217219] [PMID: 33204401]
[22]
Sun, Y.; Cai, T.T.; Zhou, X.B.; Xu, Q. Saikosaponin a inhibits the proliferation and activation of T cells through cell cycle arrest and induction of apoptosis. Int. Immunopharmacol., 2009, 9(7-8), 978-983.
[http://dx.doi.org/10.1016/j.intimp.2009.04.006] [PMID: 19375524]
[23]
Chen, J.C.; Chang, N.W.; Chung, J.G.; Chen, K.C. Saikosaponin-A induces apoptotic mechanism in human breast MDA-MB-231 and MCF-7 cancer cells. Am. J. Chin. Med., 2003, 31(3), 363-377.
[http://dx.doi.org/10.1142/S0192415X03001065] [PMID: 12943168]
[24]
Oliveira-Cunha, M.; Newman, W.G.; Siriwardena, A.K. Epidermal growth factor receptor in pancreatic cancer. Cancers, 2011, 3(2), 1513-1526.
[http://dx.doi.org/10.3390/cancers3021513] [PMID: 24212772]
[25]
Fatima, I.; Barman, S.; Uppada, J.; Chauhan, S.; Rauth, S.; Rachagani, S.; Ponnusamy, M.P.; Smith, L.; Talmon, G.; Singh, A.B.; Batra, S.K.; Dhawan, P. MASTL regulates EGFR signaling to impact pancreatic cancer progression. Oncogene, 2021, 40(38), 5691-5704.
[http://dx.doi.org/10.1038/s41388-021-01951-x] [PMID: 34331012]
[26]
Temraz, S.; Shamseddine, A.; Mukherji, D.; Charafeddine, M.; Tfayli, A.; Assi, H.; Hammoud, M.S.; Makki, I.; Nassif, S. Ki67 and P53 in relation to disease progression in metastatic pancreatic cancer: A single institution analysis. Pathol. Oncol. Res., 2019, 25(3), 1059-1066.
[http://dx.doi.org/10.1007/s12253-018-0464-y] [PMID: 30187215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy