Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Anticancer Drug Development: Evaluative Architecture

Author(s): Da-Yong Lu*, Bin Xu and Ting-Ren Lu

Volume 21, Issue 5, 2024

Published on: 21 February, 2023

Page: [836 - 846] Pages: 11

DOI: 10.2174/1570180819666220610102444

Price: $65

Abstract

Anticancer drug development is complex and multi-factorial, demanding robust drug evaluative architecture in experimental and preclinical studies. To increase the number of drug licensing, biochemical, pharmacological, technical and economic changes (balance and integration) in evaluative systems should be focused in labs throughout the world. Despite great progress, treatment breakthroughs and drug industry need new ideas and more competitive technology (new generation of in vitro test systems). Overall, drug evaluative systems comprise anticancer drug development (medicinal chemistry and pharmacology) from initial screening to clinical validity. Its advances greatly impact the outcomes of drug production (rates of final drug licensing and efficacy of therapeutics in the clinic). In this regard, creative ideas and new techniques will change the norm and convention of drug screening and mechanic exploration in the future. This article provides multi-disciplinary approaches for experimental and preclinical anticancer drug evaluations, selections and combinations (chemistry and biomedicine). Future trends for drug evaluative systems are especially highlighted in in-depth, multilateral and multidisciplinary approaches.

Keywords: Drug development, microfluidics, tumor microenvironment, tissue culture, bio-printing, drug evaluation

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Ahmad, A.S.; Ormiston-Smith, N.; Sasieni, P.D. Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960. Br. J. Cancer, 2015, 112(5), 943-947.
[http://dx.doi.org/10.1038/bjc.2014.606] [PMID: 25647015]
[3]
Fojo, T. The high cost of ignorance in oncology. Semin. Oncol., 2016, 43(6), 623-624.
[http://dx.doi.org/10.1053/j.seminoncol.2016.11.010] [PMID: 28061979]
[4]
Mina, L.A.; Sledge, G.W. Jr. Rethinking the metastatic cascade as a therapeutic target. Nat. Rev. Clin. Oncol., 2011, 8(6), 325-332.
[http://dx.doi.org/10.1038/nrclinonc.2011.59] [PMID: 21502993]
[5]
Ruggeri, B.A.; Camp, F.; Miknyoczki, S. Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem. Pharmacol., 2014, 87(1), 150-161.
[http://dx.doi.org/10.1016/j.bcp.2013.06.020] [PMID: 23817077]
[6]
Herter-Sprie, G.S.; Kung, A.L.; Wong, K.K. New cast for a new era: preclinical cancer drug development revisited. J. Clin. Invest., 2013, 123(9), 3639-3645.
[http://dx.doi.org/10.1172/JCI68340] [PMID: 23999436]
[7]
Lu, D.Y.; Lu, T.R. Antimetastatic activities and mechanisms of bisdioxopiperazine compounds. Anticancer. Agents Med. Chem., 2010, 10(7), 564-570.
[http://dx.doi.org/10.2174/187152010793498654] [PMID: 20950258]
[8]
Lu, D.Y.; Lu, T.R.; Cao, S. Cancer metastases and clinical therapies. Cell Dev. Biol., 2012, 1(4), e110.
[http://dx.doi.org/10.4172/2168-9296.1000e110]
[9]
Lu, D.Y.; Lu, T.R.; Wu, H.Y.; Cao, S. Cancer Metastasis treatments. Curr. Drug Ther., 2013, 8(1), 24-29.
[http://dx.doi.org/10.2174/1574885511308010003]
[10]
Ahuja, V. New drug approvals by FDA from 2013-2017. EC Pharmacol. Toxicol., 2018, 6(9), 772-774.
[11]
Mervis, J. Productivity counts--but the definition is key. Science, 2005, 309(5735), 726-727.
[http://dx.doi.org/10.1126/science.309.5735.726] [PMID: 16051784]
[12]
Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol., 2014, 32(1), 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[13]
Lu, D.Y.; Chen, E.H.; Lu, T.R. Anticancer drug development, a matter of money or a matter of idea? Metabolomics, 2015, 5(2), e134.
[14]
Lu, D.Y.; Ding, J.; Chen, R.T.; Xu, B.; Lu, T.R. Antimetastatic activities and mechanisms of action among Bisdioxopiperazine compounds. In: Pharmaceutical Formulation and Medicinal Chemistry: Mechanisms, Developments and Treatments; Moore, B., Ed.; Nova Science Publishing: US, 2016; pp. 73-106.
[15]
Lu, D.Y.; Lu, T.R.; Zhu, H.; Ding, J.; Xu, B.; Wu, S.Y.; Yarla, N.S. Anticancer drug development, getting out from bottleneck. Int. J. Mol. Biol., 2017, 2(1), 00010.
[16]
Lu, D.Y.; Lu, T.R. Anticancer drug development, challenge and dilemma. Nursing Care Open Access., 2020, 7(3), 72-75.
[http://dx.doi.org/10.15406/ncoaj.2020.07.00222]
[17]
Lu, D.Y.; Xu, B.; Lu, T.R. Anticancer drug development, pharmacology update. EC Pharmacol. Toxicol, 2020, 1-6.
[18]
Lu, D.Y.; Lu, T.R.; Xu, B.; Yarla, N.S. Anticancer drug developments, challenge from historic perspective. EC Pharmacol. Toxicol., 2018, 6(11), 922-936.
[19]
Behren, A.; Thompson, E.W.; Anderson, R.L.; Ferrao, P.T. Cancer plasticity and the microenvironment: Implications for immunity and therapy response. Front. Oncol., 2019, 9, 276.
[http://dx.doi.org/10.3389/fonc.2019.00276] [PMID: 31134142]
[20]
Singla, S.; Sahai, D.; Mangal, N. Clinical trials in oncology: A comprehensive review. EC Pharmacol. Toxicol., 2020, 8(2), 1-11.
[21]
Gupta, G.P. Massagué, J. Cancer metastasis: Building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[22]
Talmadge, J.E.; Fidler, I.J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res., 2010, 70(14), 5649-5669.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1040] [PMID: 20610625]
[23]
Bedard, P.L.; Hansen, A.R.; Ratain, M.J.; Siu, L.L. Tumour heterogeneity in the clinic. Nature, 2013, 501(7467), 355-364.
[http://dx.doi.org/10.1038/nature12627] [PMID: 24048068]
[24]
Valastyan, S.; Weinberg, R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147(2), 275-292.
[http://dx.doi.org/10.1016/j.cell.2011.09.024] [PMID: 22000009]
[25]
Nieto, M.A.; Huang, R.Y.J.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell, 2016, 166(1), 21-45.
[http://dx.doi.org/10.1016/j.cell.2016.06.028] [PMID: 27368099]
[26]
Lu, D.Y.; Lu, T.R.; Xu, B.; Qi, R.X.; Sastry, N.Y.; Zhou, X.D.; Ding, J. Cancer metastasis, a clinical dilemma for therapeutics. Curr. Drug Ther., 2016, 11(2), 163-169.
[http://dx.doi.org/10.2174/1574885511666160810143216]
[27]
Lambert, A.W.; Pattabiraman, D.R.; Weinberg, R.A. Emerging biological principles of metastasis. Cell, 2017, 168(4), 670-691.
[http://dx.doi.org/10.1016/j.cell.2016.11.037] [PMID: 28187288]
[28]
Lu, D.Y.; Lu, T.R. Drug sensitivity testing, a unique drug selection strategy. Adv. Biomarker Sci. Technol., 2020, 2, 59-66.
[http://dx.doi.org/10.1016/j.abst.2020.11.001]
[29]
Popova, A.A.; Levkin, P.A. Precision medicine in oncology: In vitro drug sensitivity and resistance test (DSRT) for selection of personalized anticancer therapy. Adv. Ther. (Weinh.), 2020, 3(2), 1900100.
[http://dx.doi.org/10.1002/adtp.201900100]
[30]
Lu, D.Y.; Lu, T.R.; Chen, E.H.; Yarla, N.S.; Xu, B.; Ding, J.; Zhu, H. Anticancer drug development, system updating and global participation. Curr. Drug Ther., 2017, 12(1), 37-45.
[http://dx.doi.org/10.2174/1574885511666161025122906]
[31]
Lu, D.Y.; Lu, T.R.; Chen, E.H.; Yarla, N.S.; Xu, B.; Ding, J.; Huang, M.; Zhu, H. Keep up the pace of drug development evolution and expenditure. Cancer Rep. Rev., 2018, 2(5), 165.
[http://dx.doi.org/10.15761/CRR.1000165]
[32]
Kitaeva, K.V.; Rutland, C.S.; Rizvanov, A.A.; Solovyeva, V.V. Cell culture based in vitro test systems for anticancer drug screening. Front. Bioeng. Biotechnol., 2020, 8, 322.
[http://dx.doi.org/10.3389/fbioe.2020.00322] [PMID: 32328489]
[33]
Qian, J.; Olbrecht, S.; Boeckx, B.; Vos, H.; Laoui, D.; Etlioglu, E.; Wauters, E.; Pomella, V.; Verbandt, S.; Busschaert, P.; Bassez, A.; Franken, A.; Bempt, M.V.; Xiong, J.; Weynand, B.; van Herck, Y.; Antoranz, A.; Bosisio, F.M.; Thienpont, B.; Floris, G.; Vergote, I.; Smeets, A.; Tejpar, S.; Lambrechts, D. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res., 2020, 30(9), 745-762.
[http://dx.doi.org/10.1038/s41422-020-0355-0] [PMID: 32561858]
[34]
Peng, M.; Cheng, X.; Xiong, W.; Lu, Y.; Wang, Y.H. Integrated analysis of a competing endogenomic RNA network reveals a prognostic Inc RNA signature in bladder cancer. Fron Onc, 2021, 11, 684242.
[35]
Ortiz-Otero, N.; Marshall, J.R.; Lash, B.; King, M.R. Chemotherapy-induced release of circulating-tumor cells into the bloodstream in collective migration units with cancer-associated fibroblasts in metastatic cancer patients. BMC Cancer, 2020, 20(1), 873.
[http://dx.doi.org/10.1186/s12885-020-07376-1] [PMID: 32917154]
[36]
Cencioni, C.; Comunanza, V.; Middonti, E.; Vallariello, E.; Bussolino, F. The role of redox system in metastasis formation. Angiogenesis, 2021, 24(3), 435-450.
[http://dx.doi.org/10.1007/s10456-021-09779-5] [PMID: 33909153]
[37]
Gauro, R.; Nandave, M.; Jain, V.K.; Jain, K. Advances in dendrimer-mediated targeted drug delivery to the brain. J. Nanopart. Res., 2021, 23(3), 76.
[http://dx.doi.org/10.1007/s11051-021-05175-8]
[38]
Young, H.S.; McGowan, L.M.; Jepson, K.A.; Adams, J.C. Impairment of cell adhesion and migration by inhibition of protein disulphide isomerases in three breast cancer cell lines. Biosci. Rep., 2020, 40(10), BSR20193271.
[http://dx.doi.org/10.1042/BSR20193271] [PMID: 33095243]
[39]
Heissig, B.; Salama, Y.; Osada, T.; Okumura, K.; Hattori, K. The multifaceted role of plasminogen in cancer. Int. J. Mol. Sci., 2021, 22(5), 2304.
[http://dx.doi.org/10.3390/ijms22052304] [PMID: 33669052]
[40]
Lander, E.S. Initial impact of the sequencing of the human genome. Nature, 2011, 470(7333), 187-197.
[http://dx.doi.org/10.1038/nature09792] [PMID: 21307931]
[41]
Rahimzadeh, V.; Bartlett, G. Policies and practices of data-intensive primary care in the precision-medicine era. Intern. Med. Rev. (Wash. D. C.), 2017, 3(9), 1-14.
[http://dx.doi.org/10.18103/imr.v3i9.558]
[42]
Wei, J.; Ni, N.; Meng, W.; Huan, Y.; Gao, Y. Early urinary protein changes during tumor formation in a NuTu-19 tail vein injection rat model. Sci. Rep., 2020, 10(1), 11709.
[http://dx.doi.org/10.1038/s41598-020-68674-z] [PMID: 32678190]
[43]
Lu, D.Y.; Lu, T.R.; Chen, E.H.; Ding, J.; Xu, B. Tumor fibrin/fibrinogen matrix as a unique therapeutic target for pulmonary cancer growth and metastases. Clin. Res. Pulmonol., 2015, 3(1), 1027.
[44]
Dvorak, H.F.; Weaver, V.M.; Tlsty, T.D.; Bergers, G. Tumor microenvironment and progression. J. Surg. Oncol., 2011, 103(6), 468-474.
[http://dx.doi.org/10.1002/jso.21709] [PMID: 21480238]
[45]
Lu, D.Y.; Lu, T.R.; Xu, B.; Ding, J.; Chen, E-H.; Wu, H.Y.; Wu, S-Y.; Sastry Yarla, N.; Zhu, H. Antimetastatic therapy at aberrant sialylation in cancer cells, a potential hotspot. Clin. Proteomics Bioinform., 2017, 2(1), 118.
[http://dx.doi.org/10.15761/CPB.1000118]
[46]
Lu, D.Y.; Chen, X.L.; Ding, J. Treatment of solid tumors and metastases by fibrinogen-targeted anticancer drug therapy. Med. Hypoth., 2007, 68(1), 188-193.
[http://dx.doi.org/10.1016/j.mehy.2006.06.045]
[47]
Prityko, D.A.; Burkov, I.V.; Safonov, V.V.; Klimov, D.E.; Gusev, L. Palliative care for children, problems and ways to solve them. EC Clin Experi. Anat., 2019, 2(9), 23-29.
[48]
Lu, D.Y.; Chen, Y.Z.; Shen, Y.; Xu, B.; Lu, D.F. Medical treatment for chronic or aggressive diseases, palliative therapy and nursery. Novel Res. Sci., 2020, 3(2), 556.
[http://dx.doi.org/10.31031/NRS.2020.3.000556]
[49]
Watson, J.; Salisbury, C.; Banks, J.; Whiting, P.; Hamilton, W. Predictive value of inflammatory markers for cancer diagnosis in primary care: a prospective cohort study using electronic health records. Br. J. Cancer, 2019, 120(11), 1045-1051.
[http://dx.doi.org/10.1038/s41416-019-0458-x] [PMID: 31015558]
[50]
Lu, D.Y.; Chen, Y.Z.; Lu, T.R.; Xu, B.; Lu, D.F. Cancer metastasis, palliative treatment and nursery. Ann. Pharmacol. Pharm., 2020, 5(1), 1175.
[51]
Lin, L.H.; Chou, H.C.; Chang, S.J.; Liao, E.C.; Tsai, Y.E.; Wei, Y.S.; Chen, H.Y.; Lin, M.W.; Wang, Y.S.; Chien, Y.A.; Yu, X.R.; Chan, H.L. Targeting UDP-glucose dehydrogenase inhibitors ovarian cancer growth and metastasis. J. Cell. Mol. Med., 2020, 24(20), 11883-11902.
[52]
Fu, Y.; Li, A.; Wu, J.; Kunz, R.F.; Sun, R.; Ding, Z.; Wu, J.; Dong, C. Fibrinogen and fibrin differentially regulate the local hydrodynamic environment in neutrophil-tumor cell-endothelial cell adhesion system. Appl. Sci. (Basel), 2020, 11(1), 79.
[http://dx.doi.org/10.3390/app11010079]
[53]
Lu, D.Y.; Wu, F.G.; Zhen, Z.M.; Lu, T.R.; Wu, H.Y.; Che, J.Y.; Xu, B. Different spontaneous pulmonary metastasis inhibitions against lewis lung carcinoma in mice by bisdioxopiperazine compounds of different treatment schedules. Sci. Pharm., 2010, 78(1), 13-20.
[http://dx.doi.org/10.3797/scipharm.0910-16] [PMID: 21179367]
[54]
Lu, DY; Lu, TR; Xu, B; Che, JY; Wu, SY; Wu, HY; Yarla, NS Anti-metastatic drug development, work out towards new direction. Med. Chem., 2018, 8(7), 192-196.
[55]
Montero, J.; Sarosiek, K.A.; DeAngelo, J.D.; Maertens, O.; Ryan, J.; Ercan, D.; Piao, H.; Horowitz, N.S.; Berkowitz, R.S.; Matulonis, U.; Jänne, P.A.; Amrein, P.C.; Cichowski, K.; Drapkin, R.; Letai, A. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell, 2015, 160(5), 977-989.
[http://dx.doi.org/10.1016/j.cell.2015.01.042] [PMID: 25723171]
[56]
Lu, D.; Huang, M.; Xu, C.; Yang, W.; Hu, C.; Lin, L.; Tong, L.; Li, M.; Lu, W.; Zhang, X.; Ding, J. Anti-proliferative effects, cell cycle G2/M phase arrest and blocking of chromosome segregation by probimane and MST-16 in human tumor cell lines. BMC Pharmacol., 2005, 5(1), 11.
[http://dx.doi.org/10.1186/1471-2210-5-11] [PMID: 15963241]
[57]
Eduati, F.; Utharala, R.; Madhavan, D.; Neumann, U.P.; Longerich, T.; Cramer, T.; Saez-Rodriguez, J.; Merten, C.A. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat. Commun., 2018, 9(1), 2434.
[http://dx.doi.org/10.1038/s41467-018-04919-w] [PMID: 29934552]
[58]
Xu, Z.; Gao, Y.; Hao, Y.; Li, E.; Wang, Y.; Zhang, J.; Wang, W.; Gao, Z.; Wang, Q. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials, 2013, 34(16), 4109-4117.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.045] [PMID: 23473962]
[59]
Cui, H.J.; Wang, X.X.; Wesslowski, J.; Tronser, T.; Rosenbauer, J.; Schug Am Davidson, G.; Popova, A.A.; Levkin, P.A. Assembly of multi-sphoroid cellular architectures by programmable droplet merging. Adv. Mater., 2020, 33(4), e2006434.
[60]
Rosenfeld, A.; Göckler, T.; Kuzina, M.; Reischl, M.; Schepers, U.; Levkin, P.A. Designing inherently photodegradable cell-adhesive hydrogels for 3D cell culture. Adv. Healthc. Mater., 2021, 10(16), 2100632.
[http://dx.doi.org/10.1002/adhm.202100632] [PMID: 34111332]
[61]
Sontheimer-Phelps, A.; Hassell, B.A.; Ingber, D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer, 2019, 19(2), 65-81.
[http://dx.doi.org/10.1038/s41568-018-0104-6] [PMID: 30647431]
[62]
Zhang, Y.; Xu, J.; Yu, Y.; Shang, W.; Ye, A. Anticancer drug sensitivity assay with quantitative heterogeneity testing using single-cell Raman Spectroscope. Molecules, 2018, 23(11), 2903.
[http://dx.doi.org/10.3390/molecules23112903] [PMID: 30405051]
[63]
Wang, J.; Lin, K.; Hu, H.; Qie, X.; Huang, W.E.; Cui, Z.; Gong, Y.; Song, Y. In vitro anticancer drug sensitivity sensing through single-cell Raman Spectroscopy. Biosensors (Basel), 2021, 11(8), 286.
[http://dx.doi.org/10.3390/bios11080286] [PMID: 34436088]
[64]
Hammoud, M.K.; Yosef, H.K.; Lechtonen, T.; Aljakouch, K.; Schuler, M.; Alsaidi, W.; Daho, I.; Maghnouj, A.; Hahn, S.; El-Mashtoly, S.F.; Gerwert, K. Raman micro-spectroscopy monitors acquired resistance to targeted cancer therapy at the cellular level. Sci. Rep., 2018, 8(1), 15278.
[http://dx.doi.org/10.1038/s41598-018-33682-7] [PMID: 30323297]
[65]
Jelgersma, C.; Vajkoczy, P. How to target spinal metastasis in experimental research: An overview of currently used experimental mouse model and future prospects. Int. J. Mol. Sci., 2021, 22(11), 5420.
[http://dx.doi.org/10.3390/ijms22115420] [PMID: 34063821]
[66]
Ruiz-Espigares, J.; Nieto, D.; Moroni, L.; Jiménez, G.; Marchal, J.A. Evolution of metastasis study models toward metastasis-on-a-chip: The ultimate model? Small, 2021, 17(14), 2006009.
[http://dx.doi.org/10.1002/smll.202006009] [PMID: 33705602]
[67]
Ali, I.; Saleem, K.; Uddin, R.; Haque, A.; El-Azzouny, A. Natural products: human friendly anti-cancer medications. Egypt Pharm. J., 2010, 9(2), 133-179.
[68]
Lu, D.Y.; Lu, T.R.; Lu, Y.; Sastry, N.; Wu, H.Y. Discover natural chemical drugs in modern medicines. Metabolomics, 2016, 6(3), 181.
[69]
Putta, S.; Yarla, N.S.; Peluso, I.; Tiwari, D.K.; Reddy, G.V.; Girl, P.V.; Kumar, N.; Malia, R.; Chari, V.B.; Reddy, R.D.; Bade, R.; Barretto, G.; Lu, D.Y.; Tarasov, V.V.; Chubarev, V.M.; Ribeiro, F.F.; Scotti, L.; Scotti, L.; Scotti, M.T.; Kamal, M.A.; Aliev, G.; Rao, C.V.; Perry, G.; Bishayee, A. Anthocyanins: Possible role as multitarget therapeutic agents for prevention and therapy of chronic diseases. Curr. Pharm. Des., 2017, 23(30), 4475-4483.
[PMID: 28831925]
[70]
Lu, D.Y.; Lu, T.R.; Yarla, N.S.; Lu, Y.; Che, J.Y.; Ding, J.; Xu, B.; Zhu, H.; Shen, Y.; Wu, H.Y. Natural drug cancer treatments, strategies from herbal medicine to chemical or biological drugs. Studies Nat. Prod. Chem., 2020, 66, 91-115.
[http://dx.doi.org/10.1016/B978-0-12-817907-9.00004-0]
[71]
Lu, D.Y.; Lu, T.R. Herbal medicine in new era. Hospice Palliat. Med. Inter. J., 2019, 3(4), 125-130.
[http://dx.doi.org/10.15406/hpmij.2019.03.00165]
[72]
Lu, D.Y.; Lu, T.R. Drug discoveries from natural resources. J. Primary Health Care General Pract., 2019, 3(1), 28.
[73]
Agarwal, N.; Majee, C.; Chakraborthy, G.S. Natural herbs as anticancer drugs. Int. J. Pharm. Tech. Res., 2012, 4(3), 1142-1153.
[74]
Suares, A.; Medina, M.V.; Coso, O. Autophagy in viral development and progression of cancer. Front. Oncol., 2021, 11, 603224.
[http://dx.doi.org/10.3389/fonc.2021.603224] [PMID: 33763351]
[75]
Di Sotto, A.; Mancinelli, R.; Gullì, M.; Eufemi, M.; Mammola, C.L.; Mazzanti, G.; Di Giacomo, S. Chemopreventive potential of caryophyllane sesquiterpenes-An overview preliminary evidence. Cancers (Basel), 2020, 12(10), 3034.
[http://dx.doi.org/10.3390/cancers12103034] [PMID: 33081075]
[76]
Pantano, F.; Croset, M.; Driouch, K.; Bednarz-Knoll, N.; Iuliani, M.; Ribelli, G.; Bonnelye, E.; Wikman, H.; Geraci, S.; Bonin, F.; Simonetti, S.; Vincenzi, B.; Hong, S.S.; Sousa, S.; Pantel, K.; Tonini, G.; Santini, D.; Clézardin, P. Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene, 2021, 40(7), 1284-1299.
[http://dx.doi.org/10.1038/s41388-020-01603-6] [PMID: 33420367]
[77]
Hernández-Balmaseda, I.; Guerra, I.R.; Declerck, K.; Herrera Isidrón, J.A.; Pérez-Novo, C.; Van Camp, G.; De Wever, O.; González, K.; Labrada, M.; Carr, A.; Dantas-Cassali, G.; dos Reis, D.C.; Delgado-Roche, L.; Nuñez, R.R.; Delgado-Hernández, R.; Fernández, M.D.; Paz-Lopes, M.T.; Vanden Berghe, W. Marine seagrass extract of Thalassia testudinum suppresses colorectal tumor growth, motility and angiogenesis by autophagic stress and immunogenic cell death pathways. Mar. Drugs, 2021, 19(2), 52.
[http://dx.doi.org/10.3390/md19020052] [PMID: 33499163]
[78]
Zou, Y.; Henry, W.S.; Ricq, E.L.; Graham, E.T.; Phadnis, V.V.; Maretich, P.; Paradkar, S.; Boehnke, N.; Deik, A.A.; Reinhardt, F.; Eaton, J.K.; Ferguson, B.; Wang, W.; Fairman, J.; Keys, H.R. Dančík, V.; Clish, C.B.; Clemons, P.A.; Hammond, P.T.; Boyer, L.A.; Weinberg, R.A.; Schreiber, S.L. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature, 2020, 585(7826), 603-608.
[http://dx.doi.org/10.1038/s41586-020-2732-8] [PMID: 32939090]
[79]
Ali, I.; Saleem, K.; Wesselinova, D.; Haque, A. Synthesis, DNA binding, hemolytic, and anticancer assays of curcumin I-based ligands and their ruthenium complex (potential treatment of (III) cervical cancer. Med. Chem. Res., 2013, 22(3), 1386-1398.
[http://dx.doi.org/10.1007/s00044-012-0133-8]
[80]
Pariak, C.; Alver, O.; Ouma, C.N.M.; Rhyman, L.; Ramasami, P. Can the antivirals remdesivir and favipiravir work jointly? In silico insights. Drug Res. (Stuttg.), 2021, 72(1), 34-40.
[http://dx.doi.org/10.1055/a-1585-1323] [PMID: 34535038]
[81]
Muthuraman, A.; Thiagarajan, U.R.K.; Paramakrishman, N. Integration of artificial intelligence in pharmacological research with deep and machine learning process. EC Pharmacol. Toxicol., 2019, 7(11), 56-61.
[82]
Freedman, D.H. Hunting for new drugs with AI. Nature, 2019, 576(7787), S49-S53.
[http://dx.doi.org/10.1038/d41586-019-03846-0] [PMID: 31853074]
[83]
Lu, D.Y.; Lu, T.R. Mathematics or physics-majored students on the biomedical fields, insiders or outsiders? Metabolomics, 2015, 5(4), e142.
[84]
Lu, D.Y.; Wu, H.Y.; Lu, T.R.; Che, J.Y.; Lu, Y. Updating biomedical studies by recruiting more mathematics or physics-majored talents. Metabolomics, 2016, 6(2), e148.
[85]
Franssen, L.C.; Lorenzi, T.; Burgess, A.E.F.; Chaplain, M.A.J. A mathematical framework for modeling the metastatic spread of cancer. Bull. Math. Biol., 2019, 81(6), 1965-2010.
[http://dx.doi.org/10.1007/s11538-019-00597-x] [PMID: 30903592]
[86]
Anvari, S.; Nambiar, S.; Pang, J.; Maftoon, N. Computational models and simulations of cancer metastasis. Arch. Comput. Methods Eng., 2021, 28(7), 4837-4859.
[http://dx.doi.org/10.1007/s11831-021-09554-1]
[87]
Gerlee, P.; Johansson, M. Inferring rates of metastatic dissemination using stochastic network models. PLOS Comput. Biol., 2019, 15(4), e1006868.
[http://dx.doi.org/10.1371/journal.pcbi.1006868] [PMID: 30933969]
[88]
Lu, D.Y.; Lu, T.R.; Lu, Y.; Wu, H.Y.; Yarla, N.S. The acquisition of mathematical language in biomedical articles. J. Cell Develop. Biol., 2017, 1(1), 8.
[89]
Lu, D.Y.; Lu, T.R.; Xu, B.; Ding, J.; Yi, L.; Yarla, N.S. Perspectives of personalized cancer therapy. Adv. Biotechnol. Microbiol., 2017, 4(3), 555637.
[http://dx.doi.org/10.19080/AIBM.2017.04.555638]
[90]
Lu, D.Y. Personalized cancer chemotherapy, an effective way for enhancing outcomes in clinics; Woodhead Publishing, Elsevier: UK, 2014.
[91]
Lu, D.Y.; Lu, T.R.; Xu, B.; Che, J-Y.; Shen, Y.; Yarla, N.S. Individualized cancer therapy, future approaches. Curr. Pharmacogenom. Person. Med., 2018, 16(2), 156-163.
[http://dx.doi.org/10.2174/1875692116666180821095434]
[92]
Lu, D.Y.; Lu, T.R. Drug sensitivity testing for cancer therapy, technique analysis and trend. Curr. Rev. Clin. Exp. Pharmacol., 2023, 18(1), 3-11.
[93]
Lu, D.Y.; Chen, E.H.; Wu, H.Y.; Lu, T.R.; Xu, B.; Ding, J. Anticancer drug combination, how far we can go through? Anticancer. Agents Med. Chem., 2017, 17(1), 21-28.
[http://dx.doi.org/10.2174/1871520616666160404112028] [PMID: 27039923]
[94]
Lu, D.Y.; Lu, T.R.; Yarla, N.S.; Wu, H.Y.; Xu, B.; Ding, J.; Zhu, H. Drug combination in clinical cancer treatment. Rev. Recent Clin. Trials, 2017, 12(3), 202-211.
[PMID: 28782482]
[95]
Lu, D.Y.; Lu, T.R.; Che, J.Y.; Yarla, N.S. Individualized cancer therapy, what is the next generation? EC Cancer, 2018, 2(6), 286-297.
[96]
Knudsen, L.; Brandenberger, C.; Ochs, M. Stereology as the 3D tool to quantitate lung architecture. Histochem. Cell Biol., 2021, 155(2), 163-181.
[http://dx.doi.org/10.1007/s00418-020-01927-0] [PMID: 33051774]
[97]
Ali, I. Nano drugs: novel agents for cancer chemotherapy. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[98]
Mukhtar, M.; Bilal, M.; Rahdar, A.; Barani, M.; Arshad, R.; Behl, T.; Brisc, C.; Banica, F.; Bungau, S. Nanomaterials for diagnosis and treatment of brain cancer: Recent update. Chemosensors (Basel), 2020, 8(4), 117.
[http://dx.doi.org/10.3390/chemosensors8040117]
[99]
Reig-Vano, B.; Tylkowski, B.; Montané, X.; Giamberini, M. Alginate-based hydrogels for cancer therapy and research. Int. J. Biol. Macromol., 2021, 170, 424-436.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.161] [PMID: 33383080]
[100]
Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L.S.; Sytar, O.; Sestito, S.; Rapposelli, S.; Akram, M.; Iqbal, M.; Krishna, A.; Kumar, N.V.A.; Braga, S.S.; Cardoso, S.M.; Jafernik, K.; Ekiert, H.; Cruz-Martins, N.; Szopa, A.; Villagran, M.; Mardones, L.; Martorell, M.; Docea, A.O.; Calina, D. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int., 2021, 21(1), 318.
[http://dx.doi.org/10.1186/s12935-021-02025-4] [PMID: 34167552]
[101]
Jain, V.; Kumar, H.; Anod, H.V.; Chand, P.; Gupta, N.V.; Dey, S.; Kesharwani, S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy