Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Review Article

Biological Importance and Therapeutic Benefit of Rhamnocitrin: A Review of Pharmacology and Analytical Aspects

Author(s): Dinesh Kumar Patel*

Volume 15, Issue 3, 2022

Published on: 04 October, 2022

Page: [150 - 158] Pages: 9

DOI: 10.2174/2949681015666220609100336

Price: $65

conference banner
Abstract

Background: Humans have a long history of the uses of plant based products, including extracts and pure phytoconstituents for the treatment of human diseases in the different system of medicine. In the developing countries, phytoproducts play an important role in the healthcare systems due to their medicinal importance and pharmacological activities. Flavonoids class phytochemicals are beneficial for human beings because of their free radical scavenging properties and trace metals chelating potential. Flavonoids have inhibitory potential for the growth of bacteria and virus mainly through enzyme inhibition functions and viral translation. Rhamnocitrin is also called 7- methyl-kaempferol is important flavonoids, which has been isolated from different medicinal plants and has pharmacological activities in the medicine.

Methods: Present paper describes the biological potential and health beneficial aspects of rhamnocitrin in the medicine through the data analysis of published papers in the recent years in the field of medicine and modern medical sciences. Scientific data on rhamnocitrin have been collected from electronic databases such as PubMed, Google Scholar, Google, Scopus and Science Direct in the present investigation and analyzed to know the biological importance and pharmacological activities of rhamnocitrin. Pharmacological scientific data of rhamnocitrin have been collected and analyzed in the present work with their analytical aspects.

Results: Literature data analysis of different scientific work on rhamnocitrin revealed the biological importance of rhamnocitrin in medicine. Rhamnocitrin is known to be a promising phytoconstituents found to be present in medicinal plants with a wide range of biological activities. Rhamnocitrin was found to have pharmacological activities, including anti-atherogenic, anti-oxidant, anti-cancer, anti-bacterial, anti-inflammatory, enzymatic and neuroprotective potential. Further biological effect of rhamnocitrin on adipocyte differentiation has been also studied in the present work. Analytical data on rhamnocitrin signified the application of different analytical techniques for the separation, isolation and identification of rhamnocitrin in medicine.

Conclusion: Literature data analysis of different scientific research works revealed the biological importance and therapeutic benefit of rhamnocitrin in medicine.

Keywords: Rhamnocitrin, flavonoid, anti-atherogenic, anti-oxidant, anti-cancer, anti-bacterial, anti-inflammatory, enzymatic, neuroprotective.

Graphical Abstract

[1]
Kuppusamy, P.; Lee, K.D.; Song, C.E.; Ilavenil, S.; Srigopalram, S.; Arasu, M.V.; Choi, K.C. Quantification of major phenolic and flavonoid markers in forage crop Lolium multiflorum using HPLC-DAD. Rev. Bras. Farmacogn., 2018, 28(3), 282-288.
[http://dx.doi.org/10.1016/j.bjp.2018.03.006]
[2]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[3]
Patel, D.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders. Curr. Bioact. Compd., 2021, 17, 17.
[http://dx.doi.org/10.2174/1573407217666210824125427]
[4]
Patel, D.K. Therapeutic potential of poncirin against numerous human health complications: Medicinal uses and therapeutic benefit of an active principle of citrus species. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1974-1981.
[http://dx.doi.org/10.2174/1871530321666210108122924] [PMID: 33423654]
[5]
Xu, Z.; Gao, R.; Pu, X.; Xu, R.; Wang, J.; Zheng, S.; Zeng, Y.; Chen, J.; He, C.; Song, J. Comparative genome analysis of Scutellaria baicalensis and Scutellaria barbata reveals the evolution of active flavonoid biosynthesis. Genomics Proteomics Bioinformatics, 2020, 18(3), 230-240.
[http://dx.doi.org/10.1016/j.gpb.2020.06.002] [PMID: 33157301]
[6]
Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14(2), 117-125.
[http://dx.doi.org/10.2174/1872312814666210726112910] [PMID: 34313205]
[7]
Patel, K.; Patel, D.K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects of the medicine. Curr. Cancer Ther. Rev., 2021, 17.
[8]
Rengarajan, S.; Melanathuru, V.; Govindasamy, C.; Chinnadurai, V.; Elsadek, M.F. Antioxidant activity of flavonoid compounds isolated from the petals of Hibiscus rosa sinensis. J. King Saud Univ. Sci., 2020, 32(3), 2236-2242.
[http://dx.doi.org/10.1016/j.jksus.2020.02.028]
[9]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[10]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[11]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[12]
Al Amri, F.S.; Hossain, M.A. Comparison of total phenols, flavonoids and antioxidant potential of local and imported ripe bananas. Egypt. J. Basic Appl. Sci., 2018, 5(4), 245-251.
[http://dx.doi.org/10.1016/j.ejbas.2018.09.002]
[13]
Ortega, J.T.; Parmar, T.; Jastrzebska, B. Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation. J. Biol. Chem., 2019, 294(20), 8101-8122.
[http://dx.doi.org/10.1074/jbc.RA119.007808] [PMID: 30944172]
[14]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[15]
Chaudhuri, A.; Ray, S. In vitro free radical scavenging activities of aerial parts’ aqueous extract and extract fractions of Ampelocissus latifolia Roxb. Planch. in relation to total phenolics and flavonoid contents. J. King Saud Univ. Sci., 2020, 32(1), 732-739.
[http://dx.doi.org/10.1016/j.jksus.2018.12.006]
[16]
Li, Y.; Feng, X.; Yu, X.; Wang, Y.; Liu, Y.; Ye, X.; Jia, R.; Chen, W.; Yu, T.; Zheng, X.; Chu, Q. Radix Tetrastigma flavonoids inhibit the migration and promote the apoptosis of A549 cells both in vitro and in vivo. J. Funct. Foods, 2020, 72, 104076.
[http://dx.doi.org/10.1016/j.jff.2020.104076]
[17]
N’Goka, V.; Obaya, N.N.; Mokoko, J.B.; Antheaume, C. Facile root for isolation of rhamnocitrin sulphate from Tetracera alnifolia willd. Adv. Anal. Chem., 2020, 10, 1-6.
[18]
Tu, Y.C.; Lian, T.W.; Yen, J.H.; Chen, Z.T.; Wu, M.J. Antiatherogenic effects of kaempferol and rhamnocitrin. J. Agric. Food Chem., 2007, 55(24), 9969-9976.
[http://dx.doi.org/10.1021/jf0717788] [PMID: 17973448]
[19]
Baek, S.C.; Park, M.H.; Ryu, H.W.; Lee, J.P.; Kang, M.G.; Park, D.; Park, C.M.; Oh, S.R.; Kim, H. Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg. Chem., 2019, 83, 317-325.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.051] [PMID: 30396116]
[20]
Hong, J.T.; Yen, J.H.; Wang, L.; Lo, Y.H.; Chen, Z.T.; Wu, M.J. Regulation of heme oxygenase-1 expression and MAPK pathways in response to kaempferol and rhamnocitrin in PC12 cells. Toxicol. Appl. Pharmacol., 2009, 237(1), 59-68.
[http://dx.doi.org/10.1016/j.taap.2009.02.014] [PMID: 19265714]
[21]
Bhouri, W.; Sghaier, M.B.; Kilani, S.; Bouhlel, I.; Dijoux-Franca, M-G.; Ghedira, K.; Ghedira, L.C. Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. Rhamnaceae: Kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside. Food Chem. Toxicol., 2011, 49(5), 1167-1173.
[http://dx.doi.org/10.1016/j.fct.2011.02.011] [PMID: 21338653]
[22]
Jiang, H.; Zhan, W.Q.; Liu, X.; Jiang, S.X. Antioxidant activities of extracts and flavonoid compounds from Oxytropis falcate Bunge. Nat. Prod. Res., 2008, 22(18), 1650-1656.
[http://dx.doi.org/10.1080/14786410701875686] [PMID: 19085423]
[23]
Saleem, S.; Shaharyar, M.A.; Khusroo, M.J.; Ahmad, P.; Rahman, R.U.; Ahmad, K.; Alam, M.J.; Al-Harbi, N.O.; Iqbal, M.; Imam, F. Anticancer potential of rhamnocitrin 4′-β-D-galactopyranoside against N-diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol. Cell. Biochem., 2013, 384(1-2), 147-153.
[http://dx.doi.org/10.1007/s11010-013-1792-6] [PMID: 24026428]
[24]
Hu, T.; Liu, Q.M.; He, X.W.; Huang, F.; Zhang, M.W.; Jiang, J.G. Identification of bioactives from Astragalus chinensis L.f. and their antioxidant, anti-inflammatory and anti-proliferative effects. J. Food Sci. Technol., 2017, 54(13), 4315-4323.
[http://dx.doi.org/10.1007/s13197-017-2902-3] [PMID: 29184237]
[25]
Bhouri, W.; Bouhlel, I.; Boubaker, J.; Kilani, S.; Ghedira, K.; Ghedira, L.C. Induction of apoptosis in human lymphoblastoid cells by kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside from Rhamnus alaternus L. Rhamnaceae. Cell Prolif., 2011, 44(3), 283-290.
[http://dx.doi.org/10.1111/j.1365-2184.2011.00749.x] [PMID: 21535269]
[26]
Fang, S.H.; Rao, Y.K.; Tzeng, Y.M. Anti-oxidant and inflammatory mediator’s growth inhibitory effects of compounds isolated from Phyllanthus urinaria. J. Ethnopharmacol., 2008, 116(2), 333-340.
[http://dx.doi.org/10.1016/j.jep.2007.11.040] [PMID: 18187278]
[27]
Zhang, X.; Hung, T.M.; Phuong, P.T.; Ngoc, T.M.; Min, B.S.; Song, K.S.; Seong, Y.H.; Bae, K. Anti-inflammatory activity of flavonoids from Populus davidiana. Arch. Pharm. Res., 2006, 29(12), 1102-1108.
[http://dx.doi.org/10.1007/BF02969299] [PMID: 17225458]
[28]
Cottiglia, F.; Casu, L.; Bonsignore, L.; Casu, M.; Floris, C.; Sosa, S.; Altinier, G.; Della Loggia, R. Topical anti-inflammatory activity of flavonoids and a new xanthone from Santolina insularis. Z. Naturforsch. C J. Biosci., 2005, 60(1-2), 63-66.
[http://dx.doi.org/10.1515/znc-2005-1-212] [PMID: 15787246]
[29]
Máñez, S.; Recio, M.C.; Gil, I.; Gómez, C.; Giner, R.M.; Waterman, P.G.; Ríos, J.L. A glycosyl analogue of diacylglycerol and other antiinflammatory constituents from Inula viscosa. J. Nat. Prod., 1999, 62(4), 601-604.
[http://dx.doi.org/10.1021/np980132u] [PMID: 10217718]
[30]
Gu, Q.; Huang, C.; Zhang, L.; Jiang, H. A Preliminary Study on Anti-inflammatory Effects of Rhamnocitrin from Oxytropis falcata Bunge. Zhongguo Zhongyiyao Xinxi Zazhi, 2014, 12, 48-50.
[31]
Martini, N.D.; Katerere, D.R.; Eloff, J.N. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum Combretaceae. J. Ethnopharmacol., 2004, 93(2-3), 207-212.
[http://dx.doi.org/10.1016/j.jep.2004.02.030] [PMID: 15234754]
[32]
Li, K; Xing, S; Wang, M; Peng, Y; Dong, Y; Li, X Anticomplement and antimicrobial activities of flavonoids from Entada phaseoloides. Nat Prod Commun, 2012, 7(7), 1934578X1200700.
[http://dx.doi.org/10.1177/1934578X1200700715]
[33]
Jiang, H.; Hu, J.R.; Zhan, W.Q.; Liu, X. Screening for fractions of Oxytropis falcata Bunge with antibacterial activity. Nat. Prod. Res., 2009, 23(10), 953-959.
[http://dx.doi.org/10.1080/14786410902906934] [PMID: 19521909]
[34]
Cai, L.; Wu, C.D. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J. Nat. Prod., 1996, 59(10), 987-990.
[http://dx.doi.org/10.1021/np960451q] [PMID: 8904847]
[35]
Sultanova, N.; Makhmoor, T.; Yasin, A.; Abilov, Z.A.; Omurkamzinova, V.B. Atta-ur-Rahman; Choudhary, M.I. Isotamarixen - a new antioxidant and prolyl endopeptidase-inhibiting triterpenoid from Tamarix hispida. Planta Med., 2004, 70(1), 65-67.
[http://dx.doi.org/10.1055/s-2004-815458] [PMID: 14765296]
[36]
Lee, S.W.; Hung, W.J.; Chen, Z.T. A new flavonol from the kino of Eucalyptus citriodora. Nat. Prod. Res., 2017, 31(1), 37-42.
[http://dx.doi.org/10.1080/14786419.2016.1209667] [PMID: 27426624]
[37]
Kondeva-Burdina, M.; Krasteva, I.; Mitcheva, M. Effects of rhamnocitrin 4-β-D-galactopyranoside, isolated from Astragalus hamosus on toxicity models in vitro. Pharmacogn. Mag., 2014, 10(39)(Suppl. 3), S487-S493.
[http://dx.doi.org/10.4103/0973-1296.139778] [PMID: 25298664]
[38]
Li, Y.; Wang, C.; Li, H.; Yu, T.; Tan, L. Simultaneous determination of formononetin, calycosin and rhamnocitrin from astragalus complanatus by UHPLC-MS-MS in rat plasma: Application to a pharmacokinetic study. J. Chromatogr. Sci., 2016, 54(9), 1605-1612.
[http://dx.doi.org/10.1093/chromsci/bmw110] [PMID: 27325683]
[39]
Yao, Y.F.; Lin, C.Z.; Liu, F.L.; Zhang, R.J.; Zhang, Q.Y.; Huang, T.; Zou, Y.S.; Wang, M.Q.; Zhu, C.C. Identification and pharmacokinetic studies on complanatuside and its major metabolites in rats by UHPLC-Q-TOF-MS/MS and LC-MS/MS. Molecules, 2018, 24(1), 71.
[http://dx.doi.org/10.3390/molecules24010071] [PMID: 30585251]
[40]
Nishina, A.; Itagaki, M.; Suzuki, Y.; Koketsu, M.; Ninomiya, M.; Sato, D.; Suzuki, T.; Hayakawa, S.; Kuroda, M.; Kimura, H. Effects of flavonoids and triterpene analogues from leaves of Eleutherococcus sieboldianus Makino Koidz. ‘Himeukogi’ in 3T3-L1 preadipocytes. Molecules, 2017, 22(4), 671.
[http://dx.doi.org/10.3390/molecules22040671]
[41]
Zhou, B.D.; Zhang, X.L.; Niu, H.Y.; Guan, C.Y.; Liu, Y.P.; Fu, Y.H. Chemical constituents from stems and leaves of Psychotria serpens. Zhongguo Zhongyao Zazhi, 2018, 43(24), 4878-4883.
[PMID: 30717534]
[42]
Wei, Q.; Xie, J.Z.; Qiu, L.; Jiao, Y.; Zou, L.H.; Zhu, Q.L. Two new flavonoid glycosides from Nervilia fordii. Yao Xue Xue Bao, 2016, 51(6), 961-964.
[PMID: 29883073]
[43]
Gohar, A.A. Flavonol glycosides from Cadaba glandulosa. Z. Naturforsch. C J. Biosci., 2002, 57(3-4), 216-220.
[http://dx.doi.org/10.1515/znc-2002-3-403] [PMID: 12064716]
[44]
Perrone, A.; Masullo, M.; Plaza, A.; Hamed, A.; Piacente, S. Flavone and flavonol glycosides from Astragalus eremophilus and Astragalus vogelii. Nat. Prod. Commun., 2009, 4(1), 77-82.
[http://dx.doi.org/10.1177/1934578X0900400117] [PMID: 19370879]
[45]
Benmerache, A.; Benteldjoune, M.; Alabdul Magid, A.; Abedini, A.; Berrehal, D.; Kabouche, A.; Gangloff, S.C.; Voutquenne-Nazabadioko, L. Kabouche, Z. Chemical composition, antioxidant and antibacterial activities of Tamarix balansae J. Gay aerial parts. Nat. Prod. Res., 2017, 31(24), 2828-2835.
[http://dx.doi.org/10.1080/14786419.2017.1299729] [PMID: 28281364]
[46]
Zhou, G.X.; Lu, C.L.; Wang, H.S.; Yao, X.S. An acetyl flavonol from Nervilia fordii Hance Schltr. J. Asian Nat. Prod. Res., 2009, 11(6), 498-502.
[http://dx.doi.org/10.1080/10286020902893074] [PMID: 20183281]
[47]
Li, X.; Zhang, S.D.; Jin, H.Z.; Dong, F.; Shan, L.; Zhang, W.D. A new flavonol from Oxytropis ochrocephala Bunge. Nat. Prod. Res., 2013, 27(6), 554-557.
[http://dx.doi.org/10.1080/14786419.2012.678350] [PMID: 22494026]
[48]
Xie, B.B.; Hou, L.; Guo, B.L.; Huang, W.H.; Yu, J.G. The compounds from n-butanol fraction of Alpinia oxyphylla. Yao Xue Xue Bao, 2014, 49(11), 1569-1573.
[PMID: 25757283]
[49]
Gossan, D.P.A.; Magid, A.A.; Yao-Kouassib, P.A.; Le Faucheur, D.; Coffy, A.A.; Harakat, D.; Voutquenne-Nazabadioko, L. New flavonol glycoside from the leaves of ventilago africana. Nat. Prod. Commun., 2015, 10(11), 1805-1807.
[http://dx.doi.org/10.1177/1934578X1501001103] [PMID: 26749801]
[50]
Yao, S.Y.; Ma, Y.B.; Tang, Y.; Chen, J.J.; Zhang, X.M. Chemical constituents of oxytropis falcate. Zhongguo Zhongyao Zazhi, 2008, 33(12), 1418-1421.
[PMID: 18837346]
[51]
Lu, C.L.; Zhou, G.X.; Wang, H.S.; Li, Y.L.; Yao, X-S. Studies on the chemical constituents of Nerviliae fordii. Zhong Yao Cai, 2009, 32(3), 373-375.
[PMID: 19565714]
[52]
Krasteva, I.; Platikanov, S.; Nikolov, S.; Kaloga, M. Flavonoids from Astragalus hamosus. Nat. Prod. Res., 2007, 21(5), 392-395.
[http://dx.doi.org/10.1080/14786410701236871] [PMID: 17487608]
[53]
Ryu, B.; Kim, H.M.; Lee, J.S.; Lee, C.K.; Sezirahiga, J.; Woo, J.H.; Choi, J.H.; Jang, D.S. New Flavonol Glucuronides from the Flower Buds of Syzygium aromaticum Clove. J. Agric. Food Chem., 2016, 64(15), 3048-3053.
[http://dx.doi.org/10.1021/acs.jafc.6b00337] [PMID: 27045836]
[54]
Zhang, L.; Zhu, C.C.; Zhao, Z.X.; Lin, C.Z. Simultaneous determination of seven flavonoids in Nervilia fordii with HPLC. Yao Xue Xue Bao, 2011, 46(10), 1237-1240.
[PMID: 22242457]
[55]
Wang, S.S.; Zhang, X.J.; Que, S.; Tu, G.Z.; Wan, D.; Cheng, W.; Liang, H.; Ye, J.; Zhang, Q.Y. 3-Hydroxy-3-methylglutaryl flavonol glycosides from Oxytropis falcata. J. Nat. Prod., 2012, 75(7), 1359-1364.
[http://dx.doi.org/10.1021/np300292f] [PMID: 22775441]
[56]
Haiping, L. Chemical constituents contained in Populus tomentosa. China J Chinese Mater Medica, 2012, 28, 437-441.
[57]
Gu, Y.; Huang, Z.D.; Liu, Y.H. Studies on the efficacious constituents of Astragalus complanatus. Yao Xue Xue Bao, 1997, 32(1), 59-61.
[PMID: 11243221]
[58]
Song, S.; Zheng, X.; Liu, W.; Du, R.; Bi, L.; Zhang, P. 3-Hydroxymethylglutaryl flavonol glycosides from a Mongolian and Tibetan medicine, Oxytropis racemosa. Chem. Pharm. Bull. (Tokyo), 2010, 58(12), 1587-1590.
[http://dx.doi.org/10.1248/cpb.58.1587] [PMID: 21139259]
[59]
Luo, J.G.; Kong, L.Y. Study on flavonoids from leaf of Ipomoea batatas. Zhongguo Zhongyao Zazhi, 2005, 30(7), 516-518.
[PMID: 16011096]
[60]
Santos, D.Y.A.C.; Salatino, M.L.F. Foliar flavonoids of Annonaceae from Brazil: Taxonomic significance. Phytochemistry, 2000, 55(6), 567-573.
[http://dx.doi.org/10.1016/S0031-94220000227-2] [PMID: 11130666]
[61]
Cao, J.Q.; Sun, S.W.; Chen, H.; Wang, Y.N.; Pei, Y.H. Studies on flavonoids from Blumea riparia. Zhongguo Zhongyao Zazhi, 2008, 33(7), 782-784.
[PMID: 18589780]
[62]
Zhen, H shen; Zhou, Y yuan; Yuan, Y fei; Mo, H heng; Zhong, Z guo; Liang, C yan Studies on the chemical constituents of the ethyl acetate portion of Nervilia fordii. Zhong Yao Cai, 2007, 30, 942-945.
[63]
Lin, C.N.; Chung, M.I.; Gan, K.H.; Lu, C.M. Flavonol and anthraquinone glycosides from Rhamnus formosana. Phytochemistry, 1991, 30(9), 3103-3106.
[http://dx.doi.org/10.1016/S0031-94220098262-1] [PMID: 1367798]
[64]
Huang, L.; Yang, J.; Peng, Y.; Xiao, P. Chemical constituents of Iris dichotoma. Zhongguo Zhongyao Zazhi, 2010, 35(23), 3168-3171.
[PMID: 21355241]
[65]
Lin, J.H.; Chiou, Y.N.; Lin, Y.L. Phenolic glycosides from Viscum angulatum. J. Nat. Prod., 2002, 65(5), 638-640.
[http://dx.doi.org/10.1021/np010548z] [PMID: 12027732]
[66]
Devkota, H.P.; Watanabe, M.; Watanabe, T.; Yahara, S. Flavonoids from the aerial parts of Diplomorpha canescens. Chem. Pharm. Bull. (Tokyo), 2010, 58(6), 859-861.
[http://dx.doi.org/10.1248/cpb.58.859] [PMID: 20523001]
[67]
Okada, Y.; Miyauchi, N.; Suzuki, K.; Kobayashi, T.; Tsutsui, C.; Mayuzumi, K.; Nishibe, S.; Okuyama, T. Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation. Chem. Pharm. Bull. (Tokyo), 1995, 43(8), 1385-1387.
[http://dx.doi.org/10.1248/cpb.43.1385] [PMID: 7553983]
[68]
Semmar, N.; Fenet, B.; Gluchoff-Fiasson, K.; Hasan, A.; Jay, M. Four new flavonol glycosides from the leaves of Astragalus caprinus. J. Nat. Prod., 2002, 65(4), 576-579.
[http://dx.doi.org/10.1021/np010328l] [PMID: 11975505]
[69]
Scio, E.; Ribeiro, A.; Alves, T.M.A.; Romanha, A.J.; Dias de Souza Filho, J.; Cordell, G.A.; Zani, C.L. Diterpenes from Alomia myriadenia Asteraceae with cytotoxic and trypanocidal activity. Phytochemistry, 2003, 64(6), 1125-1131.
[http://dx.doi.org/10.1016/S0031-94220300529-6] [PMID: 14568079]
[70]
Zhoua, X.F.; Tong, G.T.; Wang, X.W.; He, Y. Anti-proliferative constituents from Selaginella moellendorffii. Nat. Prod. Commun., 2016, 11(5), 623-626.
[PMID: 27319134]
[71]
Kim, Y.K.; Kim, Y.S.; Choi, S.U.; Ryu, S.Y. Isolation of flavonol rhamnosides from Loranthus tanakae and cytotoxic effect of them on human tumor cell lines. Arch. Pharm. Res., 2004, 27(1), 44-47.
[http://dx.doi.org/10.1007/BF02980044] [PMID: 14969337]
[72]
Arora, S.; Itankar, P. Extraction, isolation and identification of flavonoid from Chenopodium album aerial parts. J. Tradit. Complement. Med., 2018, 84, 476-482.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.002] [PMID: 30302328]
[73]
Patel, K.; Patel, D.K. Health beneficial potential of pectolinarigenin on human diseases: An updated review of medicinal importance and pharmacological activity. Nat. Prod. J., 2021, 11(1), 3-12.
[http://dx.doi.org/10.2174/2210315509666191111110901]
[74]
Patel, K.; Patel, D.K. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. Bioact. Food as Diet. Interv. Arthritis Relat. Inflamm. Dis., 2019, 457-7.
[75]
Sati, P.; Dhyani, P.; Bhatt, I.D.; Pandey, A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J. Tradit. Complement. Med., 2018, 9(1), 15-23.
[http://dx.doi.org/10.1016/j.jtcme.2017.10.003] [PMID: 30671362]
[76]
Khalid, M. Saeed-ur-Rahman; Bilal, M.; Huang, D. Role of flavonoids in plant interactions with the environment and against human pathogens-A review. J. Integr. Agric., 2019, 18(1), 211-230.
[http://dx.doi.org/10.1016/S2095-31191962555-4]
[77]
Patel, D.K. Therapeutic benefit of salvigenin against various forms of human disorders including cancerous disorders: Medicinal properties and biological application in the modern medicine. Curr. Chinese Sci., 2021, 1(3), 387-395.
[http://dx.doi.org/10.2174/2210298101666210224100246]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy