Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Green Synthesized Nanomaterials for Safe Technology in Sustainable Agriculture

Author(s): Nakshatra Bahadur Singh*, Ratiram Gomaji Chaudhary*, Martin Federico Desimone, Anupam Agrawal and Saroj K. Shukla

Volume 24, Issue 1, 2023

Published on: 09 September, 2022

Page: [61 - 85] Pages: 25

DOI: 10.2174/1389201023666220608113924

Price: $65

conference banner
Abstract

Nanotechnology is a new emerging cutting-edge technology in the 21st century and has applications in medical, cosmetics, electronics, energy, food, agriculture, and many sectors. Nanomaterials (NMs) are the main component of nanotechnology. NMs prepared by chemical routes are very hazardous and not safe for life. Therefore, attempts are being made to prepare NMs via different green routes. It is expected that nanotechnology using green synthesized NMs will be safe. At the same time, green synthesized nanomaterials will be cost-effective. In this chapter, the applications of green synthesized NMs in agriculture have been discussed in detail.

Keywords: Green nanomaterials, Bioinspired synthesis, Nanomaterials characterizations, Agriculture

Graphical Abstract

[1]
Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities. Env. Techn. Innov., 2020, 20, 101067.
[http://dx.doi.org/10.1016/j.eti.2020.101067]
[2]
Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater., 2000, 48(1), 1-29.
[http://dx.doi.org/10.1016/S1359-6454(99)00285-2]
[3]
Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv., 2021, 2(6), 1821-1871.
[http://dx.doi.org/10.1039/D0MA00807A]
[4]
Aarthye, P.; Sureshkumar, M. Green synthesis of nanomaterials: An overview. Mater. Today Proc., 2021, 47, 907-913.
[http://dx.doi.org/10.1016/j.matpr.2021.04.564]
[5]
Vishwakarma, V. Impact of Engineered Nanomaterials for Environmental Industries. In: Handbook of Nanomaterials for Industrial Appli-cations; Elsevier, 2020, pp. 952-958.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00054-7]
[6]
Bandala, E.R.; Berli, M. Engineered nanomaterials (ENMs) and their role at the nexus of food, energy, and water. Mater. Sci. Energy Technol., 2019, 2(1), 29-40.
[http://dx.doi.org/10.1016/j.mset.2018.09.004]
[7]
Kamali, M.; Elisabete, M.; Costa, V.; Capela, I. Green synthesis of nanomaterials - A scientometric assessment. J. Clean. Prod., 2020, 267, 122036.
[http://dx.doi.org/10.1016/j.jclepro.2020.122036]
[8]
Rajasekhar, C.; Kanch, S. Green nanomaterials for clean environment. In: Handbook of Ecomaterials; 2018, pp. 1-8.
[http://dx.doi.org/10.1007/978-3-319-48281-1_73-1]
[9]
Nath, D.; Banerjee, P.; Das, B. Green nanomaterial-how green they are as biotherapeutic tool. J. Nanomed. Biother Discov., 2014, 4, 1-11.
[10]
Jagwani, D.; Krishna, P. Hari, Nature’s nano-assets: Green synthesis, characterization techniques and applications – A graphical review. Mater. Today Proc., 2021, 46, 2307-2317.
[http://dx.doi.org/10.1016/j.matpr.2021.04.185]
[11]
Mishra, B.; Saxena, A.; Tiwari, A. Biosynthesis of silver nanoparticles from marine diatoms Chaetoceros sp., Skeletonema sp., Thalassiosira sp., and their antibacterial study. Biotechnol. Rep., (Amst.), 2020, 28, e00571.
[http://dx.doi.org/10.1016/j.btre.2020.e00571] [PMID: 33312881]
[12]
Mondal, P.; Anweshan, A.; Purkait, M.K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. Chemosphere, 2020, 259, 127509.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127509] [PMID: 32645598]
[13]
Gottardo, S.; Mech, A.; Drbohlavová, J.; Małyska, A.; Bøwadt, S.; Riego Sintes, J.; Rauscher, H. Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials. NanoImpact, 2021, 21, 100297.
[http://dx.doi.org/10.1016/j.impact.2021.100297] [PMID: 33738354]
[14]
Rai, Sarita; Shukla, Saroj K. Nanomaterials: Green synthesis, characterization and applications. In: Applications of Advanced Green Mate-rials; Woodhead Publishing: UK, 2021, pp. 441-480.
[15]
Chaudhary, R.G.; Chouke, P.B.; Bagade, R.D.; Potbhare, A.K.; Dadure, K.M. Molecular docking and antioxidant activity of Cleome sim-plicifolia assisted synthesis of cerium oxide nanoparticles. Mater. Today Proc., 2020, 29(4), 1085-1090.
[http://dx.doi.org/10.1016/j.matpr.2020.05.062]
[16]
Potbhare, A.K.; Umekar, M.S.; Chouke, P.B.; Bagade, M.B.; Aziz, S.K.T.; Abdala, A.A.; Chaudhary, R.G. Bioinspired graphene-based silver nanoparticles: Fabrication, characterization and antibacterial activity. Mater. Today Proc., 2020, 29(3), 720-725.
[http://dx.doi.org/10.1016/j.matpr.2020.04.212]
[17]
Mondal, A.; Umekar, M.S.; Bhusari, G.S.; Chouke, P.B.; Lambat, T.; Mondal, S.; Chaudhary, R.G.; Mahmood, S.H.; Sami, M. Biogenic synthesis of metal/metal oxide nanostructured materials. Curr. Pharm. Biotechnol., 2021, 22(13), 1782-1793.
[http://dx.doi.org/10.2174/1389201022666210111122911] [PMID: 33430726]
[18]
Potbhare, A.K.; Chaudhary, R.G.; Chouke, P.B.; Yerpude, S.; Mondal, A.; Sonkusare, V.N.; Rai, A.R.; Juneja, H.D. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater. Sci. Eng. C, 2019, 99, 783-793.
[http://dx.doi.org/10.1016/j.msec.2019.02.010] [PMID: 30889753]
[19]
Umekar, M.S.; Bhusari, G.S.; Potbhare, A.K.; Chaudhary, R.G. ZnO decorated reduced graphene oxide nanohybrid by Clerodendrum in-fortunatum. Emerg. Mater. Res., 2021, 10(1), 75-84.
[http://dx.doi.org/10.1680/jemmr.19.00175]
[20]
Umekar, M.S.; Bhusari, G.S.; Potbhare, A.K.; Mondal, A.; Kapgate, B.P.; Desimone, M.F.; Chaudhary, R.G. Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications. Curr. Pharm. Biotechnol., 2021, 22(13), 1759-1781.
[http://dx.doi.org/10.2174/1389201022666201231115826] [PMID: 33390112]
[21]
Thunugunta, T.R.; Anand, C.; Lakshmana, R.D.C. Green synthesis of nanoparticles: Current prospectus. J. Nanotechnol. Rev., 2015, 4(4), 303-323. https://www.researchgate.net/publication/277944432
[22]
Herlekar, M.; Barve, S.; Kumar, R. Plant-mediated green synthesis of iron nanoparticles. J. Nanomater., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/140614]
[23]
Narayanaswamy, K.; Athimoolam, R.; Ayyavoo, J. Green synthesis of silver nanoparticles using leaf extracts of Clitoriaternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci., 2015, 1-8.
[http://dx.doi.org/10.1155/2015/928204]
[24]
Chouke, P.B.; Potbhare, A.K.; Bhusari, G.S.; Somkuwar, S.; Shaik, D.P.M.D. Mishra, Raghvendra K.; Chaudhary, R.G. Green fabrication of zinc oxide nanospheres by Aspidopterys cordata for effective antioxidant and antibacterial activity. Adv. Mater. Lett., 2019, 10, 355-360.
[http://dx.doi.org/10.5185/amlett.2019.2235]
[25]
Chhangte, V.; Samuel, L. Biswas, A.; Manickam,Selvaraj.; Changmai, B.; Samuel, L.R. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Advances, 2021, 11(5), 2804-2837.
[http://dx.doi.org/10.1039/D0RA09941D]
[26]
Chouke, P.B.; Potbhare, A.K.; Dadure, K.M.; Mungole, A.J.; Meshram, N.P.; Chaudhary, R.R.; Rai, A.R.; Chaudhary, R.G. An antibacterial activity of Bauhinia racemosa assisted ZnO nanoparticles during lunar eclipse and docking assay. Mater. Today Proc., 2020, 2020(29), 815-821.
[http://dx.doi.org/10.1016/j.matpr.2020.04.758]
[27]
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P. Green synthesis and characterization of silver nanoparticles using Lantana ca-mara leaf extract. Mater. Sci. Eng. C, 2015, 49, 373-381.
[http://dx.doi.org/10.1016/j.msec.2015.01.035] [PMID: 25686962]
[28]
Teimouri, M.; Khosravi-Nejad, F.; Attar, F.; Saboury, A.A.; Kostova, I.; Benelli, G.; Falahati, M. Gold nanoparticles fabrication by plant extracts: Synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity -A review. J. Clean. Prod., 2018, 184, 740-753.
[http://dx.doi.org/10.1016/j.jclepro.2018.02.268]
[29]
Marouzi, S.; Sabouri, Z.; Darroudi, M. Greener synthesis and medical applications of metal oxide nanoparticles. Ceram. Int., 2021, 47(14), 19632-19650.
[http://dx.doi.org/10.1016/j.ceramint.2021.03.301]
[30]
Umekar, M.S.; Chaudhary, R.G.; Bhusari, G.S.; Mondal, A.; Potbhare, A.K.; Sami, M. phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract. Mater. Today Proc., 2020, 29(3), 709-714.
[http://dx.doi.org/10.1016/j.matpr.2020.04.169]
[31]
a) Verma, R.; Pathak, S.; Srivastava, A.K.; Prawer, S.; Tomljenovic-Hanic, S. ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. J. Alloys Compd., 2021, 876, 160175.
[http://dx.doi.org/10.1016/j.jallcom.2021.160175];
b) Abhijeet, D.G.; Dhwanil, H.T.; Nilesh, L.J.; Dipak, V.P. Sustainable and green synthesis of carbon nanomaterials: A review. J. Environ. Chem. Eng., 2021, 9(5), 106118.
[32]
Gahlawat, G.; Choudhury, A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 2019, 9(23), 12944-12967.
[http://dx.doi.org/10.1039/C8RA10483B]
[33]
Baghbanzadeh, M.; Carbone, L.; Cozzoli, P.D.; Kappe, C.O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Ed. Engl., 2011, 50(48), 11312-11359.
[http://dx.doi.org/10.1002/anie.201101274] [PMID: 22058070]
[34]
Chaudhary, R.G.; Sonkusare, V.; Bhusari, G.; Mondal, A.; Shaik, D.; Juneja, H.D. Microwave-mediated synthesis of spinel CuAl2O4 nano-composites for enhanced electrochemical and catalytic performance. Res. Chem. Intermed., 2017, 44, 239-2060.
[35]
Esohe, O.J.; Arash, T.; Dou, J.; Rou, W.; Yu, J. A review on the recent advances in the production of carbon nanotubes and carbon nano-fibers via microwave-assisted pyrolysis of biomass. Fuel Process. Technol., 2021, 214, 106686.
[http://dx.doi.org/10.1016/j.fuproc.2020.106686]
[36]
Kamali, M.; Dewil, R.; Appels, L.; Aminabhavi, T.M. Nanostructured materials via green sonochemical routes - Sustainability aspects. Chemosphere, 2021, 276, 130146.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130146] [PMID: 33740648]
[37]
Srivastava, M.; Srivastava, N.; Saeed, M.; Mishra, P.K.; Saeed, A.; Gupta, V.K.; Malhotra, B.D. Bioinspired synthesis of iron-based na-nomaterials for application in biofuels production: A new in-sight. Renew. Sustain. Energy Rev., 2021, 141, 111206.
[http://dx.doi.org/10.1016/j.rser.2021.111206]
[38]
Goswami Abhijeet, D.; Trivedi Dhwanil, H.; Jadhav Nilesh, L.; Pinjari Dipak, V. Sustainable and green synthesis of carbon nanomaterials: A review. J. Environ. Chem. Eng., 2021, 9(5), 106118.
[http://dx.doi.org/10.1016/j.jece.2021.106118]
[39]
Pallabi, S.; Sik, O.Y.; Ki-Hyun, K.; Kwon, E.E.; Tsang, D.C.W. Synthesis of nanomaterials from various wastes and their new age applica-tions. J. Clean. Prod., 2018, 197, 1190-1209.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.262]
[40]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[41]
Bartolucci, C.; Antonacci, A.; Arduini, F.; Moscone, D.; Fraceto, L.; Campos, E.; Attaallah, R.; Amine, A.; Zanardi, C.; Cubillana-Aguilera, L.M.; Santander, J.M.P.; Scognamiglio, V. Green nanomaterials fostering agrifood sustainability. Trends Analyt. Chem., 2020, 125, 15840.
[http://dx.doi.org/10.1016/j.trac.2020.115840]
[42]
Neme, K.; Nafady, A.; Uddin, S.; Tola, Y.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: Food security implication and challenges. Heliyon, 2021, 7(12), e08539.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08539] [PMID: 34934845]
[43]
Singh, R.P.; Handa, R.; Manchanda, G. Nanoparticles in sustainable agriculture: An emerging opportunity. J. Control. Release, 2021, 329, 1234-1248.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.051] [PMID: 33122001]
[44]
a) Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R.K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel), 2018, 11(6), 940.
[http://dx.doi.org/10.3390/ma11060940] [PMID: 29865278];
b) Anubhav, K.; Navya, P.N.; Akhela, U.; Hemant, K.D. Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ. Chem. Lett., 2018, 16, 43-58.
[45]
Bhagwan, T.; Sonawale, V.A.M.; Abhishek, V.; Deepak, B.; Shyam, T.; Chinmay, H.; Debasree, K.; Ajinkya, S.; Saurabh, T.; Aniruddha, C. Nanofertilizers: A review on synthesis and impact of their use on crop yield and environment. Environ. Technol. Innov., 2021, 24, 101986.
[http://dx.doi.org/10.1016/j.eti.2021.101986]
[46]
Yearla, S.R.; Padmasree, K. Exploitation of subabul stem lignin as a matrix in controlled release agrochemical nanoformulations: A case study with herbicide diuron. Environ. Sci. Pollut. Res. Int., 2016, 23(18), 18085-18098.
[http://dx.doi.org/10.1007/s11356-016-6983-8] [PMID: 27259957]
[47]
Velmurugan, P.; Lee, S.M.; Iydroose, M.; Lee, K.J.; Oh, B.T. Pine cone-mediated green synthesis of silver nanoparticles and their antibac-terial activity against agricultural pathogens. Appl. Microbiol. Biotechnol., 2013, 97(1), 361-368.
[http://dx.doi.org/10.1007/s00253-012-3892-8] [PMID: 22290649]
[48]
Rajwade, J.M.; Chikte, R.G.; Paknikar, K.M. Nanomaterials: New weapons in a crusade against phytopathogens. Appl. Microbiol. Biotechnol., 2020, 104(4), 1437-1461.
[http://dx.doi.org/10.1007/s00253-019-10334-y] [PMID: 31900560]
[49]
Muhammad, U.; Muhammad, F.; Abdul, W.; Nawaz, A.; Alam, C.S. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ., 2020, 721, 137778.
[http://dx.doi.org/10.1016/j.scitotenv.2020.137778]
[50]
Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in agroindustry: Applications, toxicity, chal-lenges, and trends. Nanomaterials, 2020, 10(9), 1654.
[http://dx.doi.org/10.3390/nano10091654] [PMID: 32842495]
[51]
Itroutwar, P.D.; Govindaraju, K.; Tamilselvan, S.; Kannan, M.; Raja, K.; Subramanian, K.S. Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). J. Plant Growth Regul., 2020, 39(2), 717-728.
[http://dx.doi.org/10.1007/s00344-019-10012-3]
[52]
Sheoran, P.; Goel, S.; Boora, R.; Kumari, S.; Yashveer, S.; Grewal, S. Biogenic synthesis of potassium nanoparticles and their evaluation as a growth promoter in wheat. Plant Gene, 2021, 100310, 100310.
[http://dx.doi.org/10.1016/j.plgene.2021.100310]
[53]
Kannaujia, R.; Srivastava, C.M.; Prasad, V.; Singh, B.N.; Pandey, V. Phyllanthus emblica fruit extract stabilized biogenic silver nanoparti-cles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiol. Biochem., 2019, 142, 460-471.
[http://dx.doi.org/10.1016/j.plaphy.2019.08.008]
[54]
Chaudhuri, S.K.; Malodia, L. Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci., 2017, 7(8), 501-512.
[http://dx.doi.org/10.1007/s13204-017-0586-7]
[55]
Shende, S.; Rathod, D.; Gade, A.; Rai, M. Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol., 2017, 11(7), 773-781.
[http://dx.doi.org/10.1049/iet-nbt.2016.0179]
[56]
Irum, S.; Jabeen, N.; Ahmad, K.S.; Shafique, S.; Khan, T.F.; Gul, H.; Anwaar, S.; Shah, N.I.; Mehmood, A.; Hussain, S.Z. Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L. PLoS One, 2020, 15(12), e0242829.
[http://dx.doi.org/10.1371/journal.pone.0242829] [PMID: 33259506]
[57]
Singh, Y.; Kaushal, S.; Sodhi, R.S. Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Adv., 2020, 2(9), 3972-3982.
[http://dx.doi.org/10.1039/D0NA00357C]
[58]
Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Gaurav, K.; Karthik, L.; Rao, K.V. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 90, 78-84.
[http://dx.doi.org/10.1016/j.saa.2012.01.006] [PMID: 22321514]
[59]
Hassan, S.E.; Fouda, A.; Radwan, A.A.; Salem, S.S.; Barghoth, M.G.; Awad, M.A.; Abdo, A.M.; El-Gamal, M.S. Endophytic actinomy-cetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Eur. J. Biochem., 2019, 24(3), 377-393.
[http://dx.doi.org/10.1007/s00775-019-01654-5] [PMID: 30915551]
[60]
Olaitan, O.S.; Muchen, Z.; Yasmine, A.; Temoor, A.; Wen, Q.; Arshad, A.M.; Chengqi, Y.; Yong, Y.; Jianping, C.; Bin, L. The bio-synthesis of three metal oxide nanoparticles (ZnO, MnO2, and MgO) and their antibacterial activity against the bacterial leaf blight patho-gen. Front. Microbiol., 2020, 11, 3099.
[http://dx.doi.org/10.3389/fmicb.2020.588326]
[61]
Ahmed, T.; Noman, M.; Shahid, M.; Shahid, M.S.; Li, B. Antibacterial potential of green magnesium oxide nanoparticles against rice path-ogen Acidovoraxoryzae. Mater. Lett., 2021, 282, 128839.
[http://dx.doi.org/10.1016/j.matlet.2020.128839]
[62]
Ahmed, T.; Noman, M.; Luo, J.; Muhammad, S.; Shahid, M.; Ali, M.A.; Zhang, M.; Li, B. Bioengineered chitosan-magnesium nanocom-posite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. Int. J. Biol. Macromol., 2021, 168, 834-845.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.148] [PMID: 33242551]
[63]
Hasan, R.; Ahommed, S.; Bacchu, S.; Ali, R.; Khan, Z.H. Nanofertilizers towards sustainable agriculture and environment. Environ. Technol. Innov., 2021, 23, 101658.
[64]
Kopittke, P.M.; Lombi, E.; Wang, P.; Schjoerring, K.; Husted, S. Nanomaterials as fertilizers for improving plant mineral nutrition and environmental outcomes. Environ. Sci. Nano, 2019, 6(12), 3513-3524.
[http://dx.doi.org/10.1039/C9EN00971J]
[65]
Cakmak, I.; Kalayci, M.; Kaya, Y.; Torun, A.A.; Aydin, N.; Wang, Y.; Arisoy, Z.; Erdem, H.; Yazici, A.; Gokmen, O.; Ozturk, L.; Horst, W.J. Biofortification and localization of zinc in wheat grain. J. Agric. Food Chem., 2010, 58(16), 9092-9102.
[http://dx.doi.org/10.1021/jf101197h] [PMID: 23654236]
[66]
Yruela, I. Toxic metals in plants: Copper in plants. Braz. J. Plant Physiol., 2005, 17(1), 145-156.
[http://dx.doi.org/10.1590/S1677-04202005000100012]
[67]
Badawy, A.A.; Abdelfattah, N.A.H.; Salem, S.S.; Awad, M.F.; Fouda, A. Efficacy assessment of biosynthesized copper oxide nanoparti-cles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.). Plant Biol., 2021, 10(3), 233.
[http://dx.doi.org/10.3390/biology10030233] [PMID: 33802973]
[68]
Yasmeen, F.; Razzaq, A.; Iqbal, M.N.; Jhanzab, H.M. Effect of silver, copper and iron nanoparticles on wheat germination. Int. J. Biosci., 2015, 86(6), 112-117.
[69]
Zuverza-Mena, N.; Medina-Velo, I.A.; Barrios, A.C.; Tan, W.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Copper nanoparti-cles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ. Sci. Process. Impacts, 2015, 17(10), 1783-1793.
[http://dx.doi.org/10.1039/C5EM00329F] [PMID: 26311125]
[70]
Hafeez, A.; Razzaq, A.; Mahmood, T.; Jhanzab, H.M. Potential of copper nanoparticles to increase growth and yield of wheat. J. Nanosci. Adv. Technol., 2015, 1, 6-11.
[71]
Baskar, V.; Nayeem, S.; Kuppuraj, S.P.; Muthu, T.; Ramalingam, S. Assessment of the effects of metal oxide nanoparticles on the growth, physiology and metabolic responses in vitro grown eggplant (Solanum melongena). 3 Biotech., 2018, 8, 362.
[72]
Thirugnanasambandan, T. Advances and trends in nanobiofertilizers. SSRN, 2019, 59.
[http://dx.doi.org/10.2139/ssrn.3306998]
[73]
Kumari, R.; Singh, D.P. Nano-biofertilizer: An emerging eco-friendly approach for sustainable agriculture. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2020, 90(4), 733-741.
[http://dx.doi.org/10.1007/s40011-019-01133-6]
[74]
Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The role of nanotechnology in the fortification of plant nutrients and im-provement of crop production. Appl. Sci., 2019, 9(3), 499.
[http://dx.doi.org/10.3390/app9030499]
[75]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[76]
Ahmad, H.; Venugopal, K.; Bhat, A.H.; Kavitha, K.; Ramanan, A.; Rajagopal, K.; Srinivasan, R.; Manikandan, E. Enhanced biosynthesis synthesis of copper oxide nanoparticles (CuO-NPs) for their antifungal activity toxicity against major phyto-pathogens of apple orchards. Pharm. Res., 2020, 37(12), 246.
[http://dx.doi.org/10.1007/s11095-020-02966-x] [PMID: 33215292]
[77]
Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam, seed extract and its antibacterial activity. Ind. Crops Prod., 2013, 46, 132-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[78]
Zhang, H.; Chen, S.; Jia, X.; Huang, Y.; Ji, R.; Zhao, L. Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Sci. Total Environ., 2021, 752, 142264.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142264] [PMID: 33207511]
[79]
Meruvu, H.; Vangalapati, M.; Chippada, S.C.; Bammidi, S.R. Synthesis and characterization of zinc oxide nanoparticles and its antimicro-bial activity against Bacillus subtilis and Escherichia coli. J. Rasayan Chem., 2011, 4(1), 217-222.
[80]
Yasmin, S.; Hafeez, F.Y.; Mirza, M.S.; Rasul, M.; Arshad, H.M.I.; Zubair, M.; Iqbal, M. Biocontrol of bacterial leaf blight of rice and pro-filing of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol., 2017, 8, 1895.
[http://dx.doi.org/10.3389/fmicb.2017.01895] [PMID: 29018437]
[81]
Keawchaoon, L.; Yoksan, R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B Biointerfaces, 2011, 84(1), 163-171.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.031] [PMID: 21296562]
[82]
Saha, A. Bionanotechnology-based nanopesticide application in crop protection systems. Functionalized Nanomaterials for Catalytic Ap-plication; Hussain, C.M.; Shukla, S.K; Mangla, B., Ed.; , 2021, pp. 89-107.
[http://dx.doi.org/10.1002/9781119809036.ch3]
[83]
Rawtani, D.; Khatri, N.; Tyagi, S.; Pandey, G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. J. Environ. Manage., 2018, 206, 749-762.
[http://dx.doi.org/10.1016/j.jenvman.2017.11.037] [PMID: 29161677]
[84]
Nair, P.P. A Unique Perspective in Precision of Nano-biotechnology for Sustainable Agricultural Fields. Bio-Manufactured Nanomaterials; Pal, K., Ed.; Springer: Cham, 2021.
[http://dx.doi.org/10.1007/978-3-030-67223-2_14]
[85]
Khater, M.; Escosura-Muñiz, A.; Merkoçi, A. Biosensors for plant pathogen detection. Biosens. Bioelectron., 2017, 93, 72-86.
[http://dx.doi.org/10.1016/j.bios.2016.09.091]
[86]
Singh, N.B.; Susan, A.B.H.; Mridula, G. Applications of green synthesized nanoparticles in water remediation. Curr. Pharm. Biotechnol., 2021, 22(6), 723-751.
[http://dx.doi.org/10.2174/1389201021666201027160029] [PMID: 33109041]
[87]
Singh, N.B.; Jain, P.; De, A.; Tomar, R. Green synthesis and applications of nanomaterials. Curr. Pharm. Biotechnol., 2021, 22(13), 1705-1747.
[http://dx.doi.org/10.2174/1389201022666210412142734] [PMID: 33845733]
[88]
Agarwal, A.; Ashraf, I.; Rachna, K.; Singh, N.B. Sensing and removal of chromium metal ion from water using spectroscopic and adsorp-tion techniques. Smart Biomedical and Physiological Sensor Technology XVIII. International Society for Optics and Photonics, 2020, vol. 11757, pp. 44-47.
[89]
Guin, M.; Singh, N.B. Removal of Hydrophobic Pollutants from Water Using Adsorption and Degradation Method with Special Reference to Biosurfactants. In Green Sustainable Process for; Chemical and Environmental Engineering and Science, 2021, pp. 227-273.
[90]
Sonkusare, V.N.; Chaudhary, R.G.; Bhusari, G.S.; Mondal, A.; Potbhare, A.K.; Mishra, R.K.; Juneja, H.D.; Abdala, A.A. Mesoporous octahedron-shaped tricobalt tetroxide nanoparticles for photocatalytic degradation of toxic dyes. ACS Omega, 2020, 5(14), 7823-7835.
[http://dx.doi.org/10.1021/acsomega.9b03998] [PMID: 32309692]
[91]
Sonkusare, V.N.; Chaudhary, R.G.; Bhusari, G.; Rai, A.R.; Juneja, H.D. Microwave-mediated synthesis, photocatalytic degradation and antibacterial activity of α-Bi2O3microflowers/novel γ-Bi2O3 microspindles. Nano-Struct. Nano-Objects, 2018, 13, 121-131.
[92]
Wang, N.; Lin, M.; Dai, H.; Ma, H. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electro-chemical sensing of mercury ions based on thymine-mercury-thymine structure. Biosens. Bioelectron., 2016, 79, 320-326.
[http://dx.doi.org/10.1016/j.bios.2015.12.056] [PMID: 26720921]
[93]
Liu, N.; Ma, Z. Au-ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detec-tion of multiple analytes. Biosens. Bioelectron., 2014, 51, 184-190.
[http://dx.doi.org/10.1016/j.bios.2013.07.051] [PMID: 23962704]
[94]
Jensen, U.B.; Ferapontova, E.E.; Sutherland, D.S. Quantifying protein adsorption and function at nanostructured materials: Enzymatic activity of glucose oxidase at GLAD structured electrodes. Langmuir, 2012, 28(30), 11106-11114.
[http://dx.doi.org/10.1021/la3017672] [PMID: 22746098]
[95]
Potbhare, A.K.; Chaudhary, R.G. Aziz, Tarik, S.K.; Umekar, M.; Bhuyar, S.; Mondal, A. Phytochemically fabricated reduced graphene Oxide-ZnO NCs by Sesbania bispinosa for photocatalytic performances. Mater. Today:Procs, 2021, 36, 756-762.
[96]
Anjum, H.; Johari, K.; Gnanasundaram, N.; Ganesapillai, M.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes. J. Mol. Liq., 2019, 277, 1005-1025.
[http://dx.doi.org/10.1016/j.molliq.2018.10.105]
[97]
Dehghani, M.H.; Yetilmezsoy, K.; Salari, M.; Heidarinejad, Z.; Yousefi, M.S.M.; Sillanpää, M. Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on re-sponse surface methodology and artificial neural network. J. Mol. Liq., 2020, 299, 112-154.
[http://dx.doi.org/10.1016/j.molliq.2019.112154]
[98]
Jawed, A.; Saxena, V.; Pandey, L.M. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. J. Water Process Eng., 2020, 33, 101009.
[http://dx.doi.org/10.1016/j.jwpe.2019.101009]
[99]
Huang, Z.N.; Wang, X.L.; Yang, D.S. Adsorption of Cr (VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng., 2015, 8(3), 226-232.
[http://dx.doi.org/10.1016/j.wse.2015.01.009]
[100]
Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solu-tion by advanced carbon nanotubes: Critical review of adsorption applications. Separ. Purif. Tech., 2016, 157, 141-161.
[http://dx.doi.org/10.1016/j.seppur.2015.11.039]
[101]
Chaudhary, R.G.; Potbhare, A.K.; Chouke, P.B.; Rai, A.R.; Mishra, R.K.; Desimone, M.F.; Abdala, A.A. Graphene-based materials and their nanocomposites with metal oxides: Biosynthesis, electrochemical, photocatalytic and antimicrobial applications, magnetic oxides and composites-II. M. Res. Forum, 2020, 83, 79-116.
[102]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1), 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[103]
Singh, S.; Barick, K.C.; Bahadur, D. Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(10), 3325-3333.
[http://dx.doi.org/10.1039/c2ta01045c]
[104]
Zare, E.N.; Motahari, A.; Sillanpää, M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res., 2018, 162, 173-195.
[http://dx.doi.org/10.1016/j.envres.2017.12.025] [PMID: 29329014]
[105]
Pradhan, A.C.; Uyar, T. Morphological control of mesoporosity and nanoparticles within Co3O4-CuO electrospun nanofibers: Quantum confinement and visible light photocatalysis performance. ACS Appl. Mater. Interfaces, 2017, 9(41), 35757-35774.
[http://dx.doi.org/10.1021/acsami.7b09026] [PMID: 28948778]
[106]
Chaudhary, A.U.; Lonkar, S.P.; Chaudhary, R.G. Thermal, electrical, and mechanical properties of highly filled HDPE/graphite nanoplate-lets composites. Mater. Today Proc., 2020, 29(3), 704-708.
[http://dx.doi.org/10.1016/j.matpr.2020.04.168]
[107]
Ratova, M.; Klaysri, R.; Praserthdam, P.; Kelly, P. Visible light active photocatalytic C-doped titanium dioxide films deposited via reactive pulsed DC magnetron co-sputtering: Properties and photocatalytic activity. Vacuum, 2018, 149, 214-224.
[http://dx.doi.org/10.1016/j.vacuum.2018.01.003]
[108]
Pei, S.; Cheng, H. The reduction of graphene oxide. Carbon, 2012, 50(9), 3210-3218.
[http://dx.doi.org/10.1016/j.carbon.2011.11.010]
[109]
Jawaid, M.; Ahmad, A.; Lokhat, D., Eds.; Graphene-Based Nanotechnologies for Energy and Environmental Applications; Elsevier Science B. V: Amsterdam , 2019.
[110]
Lightcap, I.V.; Kosel, T.H.; Kamat, P.V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett., 2010, 10(2), 577-583.
[http://dx.doi.org/10.1021/nl9035109] [PMID: 20055433]
[111]
Williams, G.; Seger, B.; Kamat, P.V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2008, 2(7), 1487-1491.
[http://dx.doi.org/10.1021/nn800251f] [PMID: 19206319]
[112]
Kusiak-Nejman, E.; Morawski, A. TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance. Appl. Catal. B, 2019, 253, 179-186.
[http://dx.doi.org/10.1016/j.apcatb.2019.04.055]
[113]
Bushra, R. Nanoadsorbents-based polymer nanocomposite for environmental remediation. New Polymer Nanocomposites for Environmen-tal Remediation; Elsevier: Amsterdam, 2018, pp. 243-260.
[114]
Kumar, V.; Talreja, N.; Deva, D.; Sankararamakrishnan, N.; Sharma, A.; Verma, N. Development of bi-metal doped micro- and nano mul-ti-functional polymeric adsorbents for the removal of fluoride and Arsenic(V) from wastewater. Desalination, 2011, 282, 27-38.
[http://dx.doi.org/10.1016/j.desal.2011.05.013]
[115]
Shirazi, M.M.A.; Kargari, A.; Ramakrishna, S.; Doyle, J.; Rajendrian, M.; Ramesh, B.P. Electrospun membranes for desalination and wa-ter/wastewater treatment: A comprehensive review. J. Membr. Sci. Res., 2017, 3, 209-227.
[116]
Sadeghi-Kiakhani, M.; Mokhtar, A.M.; Gharanjig, K. Dye removal from coloredtextile wastewater using chitosan-PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies. J. Appl. Polym. Sci., 2013, 127(4), 2607-2619.
[http://dx.doi.org/10.1002/app.37615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy