Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Cancer Cell De-Differentiation: Plasticity-Driven Stratagem For Tumor Metastasis and Recurrence

Author(s): Sanaa EL Marsafy* and Jérôme Larghero

Volume 18, Issue 1, 2023

Published on: 27 July, 2022

Page: [54 - 61] Pages: 8

DOI: 10.2174/1574888X17666220608101852

Price: $65

Abstract

Tumor recurrence is a colossal challenge in clinical oncology. This multifactorial problem is attributed to the emergence of additional genetic mutations and the presence of dormant cancer cells. However, the plasticity of non-stem cancer cells and the acquisition of cancer stem cell (CSC) functionality is another contributing factor to tumor recurrence. Herein, I focus attention on the mechanisms that fuel cancer cell de-differentiation and the interplay between intra-cellular regulators and tumor microenvironment (TME) landscape that promotes cancer cell stemness. Our understanding of the mechanisms underlying tumor cell de-differentiation is crucial for developing innovative therapeutic strategies that prevent cancer from ever recurring.

Keywords: Cancer stem cells, cancer cell plasticity, de-differentiation, epithelial-mesenchymal transition, cancer cell immune evasion, cancer cell dormancy.

[1]
Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1(3): 269-77.
[http://dx.doi.org/10.1016/S1535-6108(02)00046-6] [PMID: 12086863]
[2]
Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol 2020; 17(4): 204-32.
[http://dx.doi.org/10.1038/s41571-019-0293-2] [PMID: 31792354]
[3]
Schwitalla S, Fingerle AA, Cammareri P, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152(1-2): 25-38.
[http://dx.doi.org/10.1016/j.cell.2012.12.012] [PMID: 23273993]
[4]
Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009; 457(7229): 608-11.
[http://dx.doi.org/10.1038/nature07602] [PMID: 19092804]
[5]
Gomatou G, Syrigos N, Vathiotis IA, Kotteas EA. Tumor dormancy: Implication for invasion and metastasis. Int J Mol Sci 2021; 22(9): 4862-78.
[http://dx.doi.org/10.3390/ijms22094862] [PMID: 34064392]
[6]
Hen O, Barkan D. Dormant disseminated tumor cells and cancer stem/progenitor-like cells: Similarities and opportunities. Semin Cancer Biol 2020; 60: 157-65.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.002] [PMID: 31491559]
[7]
Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D, Fisher PB. Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res 2019; 141: 43-84.
[http://dx.doi.org/10.1016/bs.acr.2018.12.002] [PMID: 30691685]
[8]
Pienta KJ, Hammarlund EU, Austin RH, et al. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 1: S1044-579X(20): 30254-6.
[9]
Pienta KJ, Hammarlund EU, Brown JS, Amend SR, Axelrod RM. Cancer recurrence and lethality are enabled by enhanced survival and reversible cell cycle arrest of polyaneuploid cells. Proc Natl Acad Sci USA 2021; 118(7): e2020838118.
[http://dx.doi.org/10.1073/pnas.2020838118] [PMID: 33504594]
[10]
Boumahdi S, de Sauvage FJ. The great escape: Tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 2020; 19(1): 39-56.
[http://dx.doi.org/10.1038/s41573-019-0044-1] [PMID: 31601994]
[11]
Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic plasticity: Driver of cancer initiation, progression and therapy resistance. Cell Stem Cell 2019; 24(1): 65-78.
[http://dx.doi.org/10.1016/j.stem.2018.11.011] [PMID: 30554963]
[12]
Wang WA, Groenendyk J, Michalak M. Endoplasmic reticulum stress associated responses in cancer. Biochim Biophys Acta 2014; 1843(10): 2143-9.
[http://dx.doi.org/10.1016/j.bbamcr.2014.01.012] [PMID: 24440276]
[13]
Munoz P. LLiou MS and Esteller M. Epigenetic alternations involved incancer stem cell reprogramming. Mol Oncol 2012; (6): 620-33.
[http://dx.doi.org/10.1016/j.molonc.2012.10.006] [PMID: 23141800]
[14]
Saggese P, Sellitto A, Martinez CA, et al. Metabolic regulation of epigenetic modifications and cell differentiation in Cancer. Cancers (Basel) 2020; 12(12): 3788.
[http://dx.doi.org/10.3390/cancers12123788] [PMID: 33339101]
[15]
Das PK, Pillai S, Rakib MA, et al. Plasticity of cancer stem cell: Origin and role in disease progression and therapy resistance. Stem Cell Rev Rep 2020; 16(2): 397-412.
[http://dx.doi.org/10.1007/s12015-019-09942-y] [PMID: 31965409]
[16]
Poli V, Fagnocchi L, Zippo A. Tumorigenic cell reprogramming and cancer plasticity: Interplay between signal-ing, microenvironment, and epigenetics. Stem Cells Int 2018; 2018: Article ID: 4598195.
[17]
Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 2014; 15(3): 244-53.
[http://dx.doi.org/10.1002/embr.201338254] [PMID: 24531722]
[18]
Mittal P, Roberts CWM. The SWI/SNF complex in cancer - biology, biomarkers and therapy. Nat Rev Clin Oncol 2020; 17(7): 435-48.
[http://dx.doi.org/10.1038/s41571-020-0357-3] [PMID: 32303701]
[19]
Jahangiri L, Tsaprouni L, Trigg RM, et al. Core regulatory circuitries in defining cancer cell identity across the malignant spectrum. Open Biol 2021; (10): 1-13.
[PMID: 32634370]
[20]
Chen X, Yang F, Zhang T, et al. MiR-9 promotes tumorigenesis and angiogenesis and is activated by MYC and OCT4 in human glioma. J Exp Clin Cancer Res 2019; 38(1): 99.
[http://dx.doi.org/10.1186/s13046-019-1078-2] [PMID: 30795814]
[21]
Murakami S, Ninomiya W, Sakamoto E, Shibata T, Akiyama H, Tashiro F. SRY and Oct4 are required for the acquisition of cancer stem cell like properties and are potential differentiation therapy targets. Stem Cells 2015; 33(9): 2652-63.
[http://dx.doi.org/10.1002/stem.2059] [PMID: 26013162]
[22]
Chen YC, Hsu HS, Chen YW, et al. Oct4 expression-maintained cancer cell-like properties in lung cancer derived CD133- positive cells. PLoS One 2008; (7): e263.
[23]
Kaufhold S, Garban H, Bonavida B. Yin Yang1 is associated with cancer stem cell transcription factors (Sox2, Oct4, BMI1) and clinical implication. Exp Clin Cancer Res 2016; 35-84.
[24]
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2020; 67(Pt 1): 74-82.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.007] [PMID: 31412296]
[25]
Karagonlar ZF, Akbari S, Karabicici M, et al. A novel function of KLF4 in modulating the dedifferentiation of Ep CAM-/CD133- non stem cells in HCC cell line HuH7. Cells 2020; (5): 1198.
[http://dx.doi.org/10.3390/cells9051198]
[26]
Wang P, Wan W, Xiong S, et al. HIF1α regulates glioma chemosensitivity through the transformation between differentiation and dedifferentiation in various oxygen levels. Sci Rep 2017; 7(1): 7965.
[http://dx.doi.org/10.1038/s41598-017-06086-2] [PMID: 28801626]
[27]
Lin SC, Chung CH, Chung CH, et al. OCT4B mediates hypoxia-induced cancer dissemination. Oncogene 2019; 38(7): 1093-105.
[http://dx.doi.org/10.1038/s41388-018-0487-6] [PMID: 30209362]
[28]
Zhang L, Shi H, Chen H, et al. Dedifferentiation process driven by radiotherapy-induced HMGB1/TLR2/YAP/HIF-1α signaling enhances pancreatic cancer stemness. Cell Death Dis 2019; 10(10): 724.
[http://dx.doi.org/10.1038/s41419-019-1956-8] [PMID: 31558702]
[29]
Sacchetti A, Teeuwssen M, Verhagen M, et al. Phenotypic plasticity underlies local invasion and distant metastasis in colon cancer. eLife 2021; 26(10): e61461.
[30]
Chao J, Zhao S, Sun H. Dedifferentiation of hepatocellular carcinoma: molecular mechanisms and therapeutic implications. Am J Transl Res 2020; 12(5): 2099-109.
[PMID: 32509204]
[31]
Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol 2017; 51(5): 1357-69.
[http://dx.doi.org/10.3892/ijo.2017.4129] [PMID: 29048660]
[32]
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36(11): 1461-73.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[33]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5(1): 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[34]
Fukusumi T, Guo TW, Sakai A, et al. The NOTCH4-HEY1 pathway induces epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Clin Cancer Res 2018; 24(3): 619-33.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1366] [PMID: 29146722]
[35]
Boeckmann L, Martens MC, Emmert S. Molecular biology of basal and squamous cell carcinomas. Adv Exp Med Biol 2020; 1268: 171-91.
[http://dx.doi.org/10.1007/978-3-030-46227-7_9] [PMID: 32918219]
[36]
Jeng KS, Chang CF, Lin SS. Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci 2020; 21(3): 758.
[37]
Pietrobono S, Gagliardi S, Stecca B. Non-canonical hedgehog signaling pathway in Cancer: Activation of GLI Tran-scription factors beyond smoothened. Front Genet 2019; 12(10): 566.
[38]
Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci 2018; 18(1): 8-20.
[http://dx.doi.org/10.17305/bjbms.2018.2756] [PMID: 29274272]
[39]
Nakano M, Kikushige Y, Miyawaki K, et al. Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene 2019; 38(6): 780-93.
[http://dx.doi.org/10.1038/s41388-018-0480-0] [PMID: 30181548]
[40]
D’Orazi G, Cordani M, Cirone M. Oncogenic pathways activated by pro-inflammatory cytokines promote mutant p53 stability: Clue for novel anticancer therapies. Cell Mol Life Sci 2021; 78(5): 1853-60.
[http://dx.doi.org/10.1007/s00018-020-03677-7] [PMID: 33070220]
[41]
Deng P, Haynes CM. Mitochondrial dysfunction in cancer: Potential roles of ATF5 and the mitochondrial UPR. Semin Cancer Biol 2017; 47(47): 43-9.
[http://dx.doi.org/10.1016/j.semcancer.2017.05.002] [PMID: 28499833]
[42]
Khandia R, Munjal A. Interplay between inflammation and cancer. Adv Protein Chem Struct Biol 2020; 119: 199-245.
[http://dx.doi.org/10.1016/bs.apcsb.2019.09.004] [PMID: 31997769]
[43]
Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev 2021; 101(1): 147-76.
[http://dx.doi.org/10.1152/physrev.00048.2019] [PMID: 32466724]
[44]
Biffi G, Oni TE, Spielman B, et al. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to Shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov 2019; 9(2): 282-301.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0710] [PMID: 30366930]
[45]
Feldmann K, Maurer C, Peschke k, et al. Mesenchymal plasticity regulated by Prrx1 drives aggressive pancreatic cancer. Biol Gastroenterol (Paris) 2021; 160(1): 346-61.
[PMID: 33007300]
[46]
Zambelli A, Biamonti G, Amato A. HGF/c-Met Signalling in the Tumor Microenvironment. Adv Exp Med Biol 2021; 1270: 31-44.
[http://dx.doi.org/10.1007/978-3-030-47189-7_2] [PMID: 33123991]
[47]
Liu D, Zhong M, Zhan D, Zhang Y, Liu S. Roles of the HGF/Met signaling in head and neck squamous cell carcinoma: Focus on tumor immunity (Review). Oncol Rep 2020; 44(6): 2337-44.
[http://dx.doi.org/10.3892/or.2020.7799] [PMID: 33125120]
[48]
Roccaro AM, Sacco A, Maiso P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013; 123(4): 1542-55.
[http://dx.doi.org/10.1172/JCI66517] [PMID: 23454749]
[49]
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 2020; 15(15): 123-47.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012718] [PMID: 31530089]
[50]
Yeom DH, Lee YS, Ryu I, et al. ABL001, a bispecific antibody targeting VEGF and DLL4, with chemotherapy, synergistically inhibits tumor progression in xenograft models. Int J Mol Sci 2020; 22(1): 241.
[http://dx.doi.org/10.3390/ijms22010241] [PMID: 33383646]
[51]
Zhou R, Wang S, Wen H, Wang M, Wu M. The bispecific antibody HB-32, blockade of both VEGF and DLL4 shows potent anti-angiogenic activity in vitro and anti-tumor activity in breast cancer xenograft models. Exp Cell Res 2019; 380(2): 141-8.
[http://dx.doi.org/10.1016/j.yexcr.2019.04.025] [PMID: 31034805]
[52]
Liu Z, Qi L, Li Y, Zhao X, Sun B. VEGFR2 regulates endothelial differentiation of colon cancer cells. BMC Cancer 2017; 17(1): 593.
[http://dx.doi.org/10.1186/s12885-017-3578-9] [PMID: 28854900]
[53]
Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci 2018; 25(1): 20.
[http://dx.doi.org/10.1186/s12929-018-0426-4] [PMID: 29506506]
[54]
Tao L, Huang G, Song H, Chen Y, Chen L. Cancer associated fibroblasts: An essential role in the tumor microenvironment. Oncol Lett 2017; 14(3): 2611-20.
[http://dx.doi.org/10.3892/ol.2017.6497] [PMID: 28927027]
[55]
Bexell D, Gunnarsson S, Tormin A, et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 2009; 17(1): 183-90.
[http://dx.doi.org/10.1038/mt.2008.229] [PMID: 18985030]
[56]
Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2017; 8(28): 45200-12.
[http://dx.doi.org/10.18632/oncotarget.16778] [PMID: 28423355]
[57]
Yarchoan M, Johnson BA III, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017; 17(4): 209-22.
[http://dx.doi.org/10.1038/nrc.2016.154] [PMID: 28233802]
[58]
Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020; 581(7806): 100-5.
[http://dx.doi.org/10.1038/s41586-020-2229-5] [PMID: 32376951]
[59]
Garrido F. HLA Class-I Expression and Cancer Immunotherapy. Adv Exp Med Biol 2019; 1151: 79-90.
[http://dx.doi.org/10.1007/978-3-030-17864-2_3] [PMID: 31140107]
[60]
Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-Approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel) 2020; 12(3): 738.
[http://dx.doi.org/10.3390/cancers12030738] [PMID: 32245016]
[61]
Onishi H, Fujimura A, Oyama Y, et al. Hedgehog signaling regulates PDL-1 expression in cancer cells to induce anti-tumor activity by activated lymphocytes. Cell Immunol 2016; 310(10): 199-204.
[http://dx.doi.org/10.1016/j.cellimm.2016.08.003] [PMID: 27522179]
[62]
Krijgsman D, Roelands J, Hendrickx W, Bedognetti D, Kuppen PJK. HLA-G: A new immune checkpoint in Cancer? Int J Mol Sci 2020; 21(12): 4528.
[http://dx.doi.org/10.3390/ijms21124528] [PMID: 32630545]
[63]
Rouas-Freiss N, LeMaoult J, Verine J, et al. Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: Focus on HLA-G/ILT2/ILT4. OncoImmunology 2017; 6(9): e1342023.
[http://dx.doi.org/10.1080/2162402X.2017.1342023] [PMID: 28932645]
[64]
Pritchard A, Tousif S, Wang Y, et al. Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells 2020; 9(5): 1303.
[65]
Han Q, Zhao H, Jiang Y, Yin C, Zhang J. HCC-derived exosomes: Critical player and target for cancer immune escape. Cells 2019; 8(6): 558.
[http://dx.doi.org/10.3390/cells8060558] [PMID: 31181729]
[66]
Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophag M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol 2020; 13(1): 156. [Erratum in: J Hematol Oncol. 2021 Feb 23;14(1):33.
[67]
Hosseini R, Asef-Kabiri L, Yousefi H, et al. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer 2021; 20(1): 83.
[http://dx.doi.org/10.1186/s12943-021-01376-w] [PMID: 34078376]
[68]
Jiang M, Zhang W, Zhang R, et al. Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene 2020; 39(24): 4681-94.
[http://dx.doi.org/10.1038/s41388-020-1322-4] [PMID: 32398867]
[69]
Cuevas VD, Simón-Fuentes M, Orta-Zavalza E, et al. The gene signature of activated M-CSF-Primed human monocyte-derived macrophages is IL-10-dependent. J Innate Immun 2021; (20): 1-14.
[http://dx.doi.org/10.1159/000519305] [PMID: 34670213]
[70]
Zhou J, Tang Z, Gao S, Li C, Feng Y, Zhou X. Tumor-associated macrophages: Recent insights and therapies. Front Oncol 2020; 10: 188.
[http://dx.doi.org/10.3389/fonc.2020.00188] [PMID: 32161718]
[71]
Nowak M, Klink M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells 2020; 9(5): 1299.
[http://dx.doi.org/10.3390/cells9051299] [PMID: 32456078]
[72]
Raghavan S, Mehta P, Xie Y, Lei YL, Mehta G. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J Immunother Cancer 2019; 7(1): 190.
[http://dx.doi.org/10.1186/s40425-019-0666-1] [PMID: 31324218]
[73]
Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006; 107(4): 1484-90.
[http://dx.doi.org/10.1182/blood-2005-07-2775] [PMID: 16239427]
[74]
Poggi A, Musso A, Dapino I, Zocchi MR. Mechanisms of tumor escape from immune system: Role of mesenchymal stromal cells. Immunol Lett 2014; 159(1-2): 55-72.
[http://dx.doi.org/10.1016/j.imlet.2014.03.001] [PMID: 24657523]
[75]
Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26(1): 212-22.
[http://dx.doi.org/10.1634/stemcells.2007-0554] [PMID: 17932417]
[76]
Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23(11): 1233-44.
[http://dx.doi.org/10.1089/scd.2013.0479] [PMID: 24367916]
[77]
Lee JH, Jeon EJ, Kim N, et al. The synergistic immunoregulatory effects of culture-expanded mesenchymal stromal cells and CD4(+)25(+)Foxp3+ regulatory T cells on skin allograft rejection. PLoS One 2013; 8(8): e70968.
[http://dx.doi.org/10.1371/journal.pone.0070968] [PMID: 23940676]
[78]
Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid AA, Mardani K. Microvesicles derived from mesenchymal stem cells: Potent organelles for induction of tolerogenic signaling. Immunol Lett 2012; 147(1-2): 47-54.
[http://dx.doi.org/10.1016/j.imlet.2012.06.001] [PMID: 22705267]
[79]
Yang J, Antin P, Berx G, et al. EMT international association (TEMTIA). Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2020; 21(6): 341-52.
[http://dx.doi.org/10.1038/s41580-020-0237-9] [PMID: 32300252]
[80]
Kang E, Seo J, Yoon H, Cho S. The post-translational regulation of epithelial-mesenchymal transition-inducing transcription factors in cancer metastasis. Int J Mol Sci 2021; 22(7): 3591.
[http://dx.doi.org/10.3390/ijms22073591] [PMID: 33808323]
[81]
Erin N, Grahovac J, Brozovic A, Efferth T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 2020; 53: 100715.
[http://dx.doi.org/10.1016/j.drup.2020.100715] [PMID: 32679188]
[82]
Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol 2018; 13(13): 395-412.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043854] [PMID: 29414248]
[83]
Decker AM, Cackowski FC, Jung Y, Taichman RS. Biochemical changes in the niche following tumor cell invasion. J Cell Biochem 2017; 118(8): 1956-64.
[http://dx.doi.org/10.1002/jcb.25843] [PMID: 27982511]
[84]
Gurzu S, Kobori L, Fodor D, Jung I. Epithelial mesenchymal and endothelial mesenchymaltransitions in hepatocellular carcinoma: A review. BioMed Res Int 2019.
[85]
Pei D, Shu X, Gassama-Diagne A, Thiery JP. Mesenchymal-epithelial transition in development and reprogramming. Nat Cell Biol 2019; 21(1): 44-53.
[http://dx.doi.org/10.1038/s41556-018-0195-z] [PMID: 30602762]
[86]
Xiong G, Chen J, Zhang G, et al. Hsp47 promotes cancer metastasis by enhancing collagen- dependent cancer cell-platelet interaction. Proc Natl Acad Sci USA 2020; 117(7): 3748-58.
[87]
Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cells 2013; 155(4): 750-64.
[88]
Ono M, Kosaka N, Tominaga N, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 2014; 7(332): ra63.
[http://dx.doi.org/10.1126/scisignal.2005231] [PMID: 24985346]
[89]
Morganti S, Tarantino P, Ferraro E, et al. Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit Rev Oncol Hematol 2019; 133: 171-82.
[http://dx.doi.org/10.1016/j.critrevonc.2018.11.008] [PMID: 30661654]
[90]
Recasens A, Munoz L. Targeting cancer cell dormancy. Trends Pharmacol Sci 2019; 40(2): 128-41.
[http://dx.doi.org/10.1016/j.tips.2018.12.004] [PMID: 30612715]
[91]
Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 2020; 38(4): 473-88.
[http://dx.doi.org/10.1016/j.ccell.2020.07.005] [PMID: 32735779]
[92]
Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med 2017; 68: 139-52.
[http://dx.doi.org/10.1146/annurev-med-062315-120245] [PMID: 27860544]
[93]
Quintarelli C, Sivori S, Caruso S, et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia 2020; 34(4): 1102-15.
[http://dx.doi.org/10.1038/s41375-019-0613-7] [PMID: 31745215]
[94]
Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 2018; 23(2): 181-192.e5.
[http://dx.doi.org/10.1016/j.stem.2018.06.002] [PMID: 30082067]
[95]
Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 2018; 32(2): 520-31.
[http://dx.doi.org/10.1038/leu.2017.226] [PMID: 28725044]
[96]
Gatenbee CD, Minor ES, Slebos RJC, Chung CH, Anderson ARA. Histoecology: Applying ecological principles and approaches to describe and predict tumor ecosystem dynamics across space and time. Cancer Contr 2020; 27(3): 1073274820946804.
[http://dx.doi.org/10.1177/1073274820946804] [PMID: 32869651]
[97]
Grünwald BT, Devisme A, Andrieux G, et al. Spatially confined sub-tumor microenvironments in pancreatic cancer. Cell 2021; 184(22): 5577-5592.e18.
[http://dx.doi.org/10.1016/j.cell.2021.09.022] [PMID: 34644529]
[98]
Gu P, Sun M, Li L, et al. Breast tumor-derived exosomal MicroRNA-200b-3p promotes specific organ metastasis through regulating CCL2 expression in lung epithelial cells. Front Cell Dev Biol 2021.
[99]
Pritchard A, Tousif S, Wang Y, et al. Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells 2020; 9(5): 1303.
[100]
Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater 2020; 32(40): e2002054.
[http://dx.doi.org/10.1002/adma.202002054] [PMID: 32856350]
[101]
Lee PJ, Ho CC, Ho H, et al. Tumor microenvironment-based screening repurposes drugs targeting cancer stem cells and cancer-associated fibroblasts. Theranostics 2021; 11(19): 9667-86.
[http://dx.doi.org/10.7150/thno.62676] [PMID: 34646392]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy