Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Neuroprotective Potential of Curcuminoids in Modulating Alzheimer’s Disease via Multiple Signaling Pathways

Author(s): Anam Shabbir, Kanwal Rehman, Moazzama Akbar and Muhammad Sajid Hamid Akash*

Volume 29, Issue 34, 2022

Published on: 02 August, 2022

Page: [5560 - 5581] Pages: 22

DOI: 10.2174/0929867329666220607161328

Price: $65

Abstract

Alzheimer's disease (AD) is a progressive and frequent neurodegenerative disease in elderly people. In the 21st century, owing to the increasing prevalence of AD, there is a crucial need for finding better and more effective pharmacotherapeutic approaches. This review article demonstrated various sources and possible metabolic pathways of curcuminoids obtained from Curcuma longa herb, to prevent and treat AD, but the information related to the metabolic fate of curcuminoids is deficient. Different in vitro and in vivo research studies demonstrating the mechanisms by which curcuminoids attenuated AD have been summarized. Administration of curcuminoids has been indicated to inhibit hyperphosphorylation of tau protein, deposition, and oligomerization of amyloid beta plaques in several AD models. Curcuminoids also inhibit acetylcholinesterase activity, chelate metals and form complexes, have antioxidant properties, mediate neuroinflammatory signaling pathways by altering the activity of microglial cells, and modulate other related signaling pathways such as the heme-oxygenase pathway and the insulin signaling pathways. Briefly curcuminoids exhibit the capability to be more productive and efficacious compared to many recent treatments due to their antioxidant, delayed neuron degeneration, and anti-inflammatory potential. Although their effectiveness as a curative agent is considered to be reduced due to their low bioavailability, if the issue of curcuminoids' low bioavailability is resolved then curcuminoid-based medications are hopefully on the horizon against AD.

Keywords: Curcuminoids, Alzheimer’s disease, oxidative stress, neuroinflammation, amyloid beta, multiple signaling pathways.

« Previous
[1]
Khan, S.; Ahmad, K.; Alshammari, E.; Adnan, M.; Baig, M.H.; Lohani, M. Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. Biomed. Res. Int., 2015, 2015, 379817.
[http://dx.doi.org/10.1155/2015/379817]
[2]
Liu, B.; Li, Y.; Mehmood, K.; Nabi, F.; Ahmed, S.; Faheem, M. Role of oxidative stress and antioxidants in thiram-induced tibial dyschondroplasia. Pak. Vet. J., 2021, 41(1), 1-6.
[http://dx.doi.org/10.29261/pakvetj/2020.094]
[3]
Namratha, M.L.; Lakshman, M.; Jeevanalatha, M.; Kumar, B.A. Assessment of vitamin C protective activity in glyphosate-induced hepatotoxicity in rats. Pak. Vet. J., 2021, 41(3), 439-445.
[4]
Hossain, M.F.; Uddin, M.S.; Uddin, G.M.S.; Sumsuzzman, D.M.; Islam, M.S.; Barreto, G.E.; Mathew, B.; Ashraf, G.M. Melatonin in Alzheimer’s disease: A latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol. Neurobiol., 2019, 56(12), 8255-8276.
[http://dx.doi.org/10.1007/s12035-019-01660-3] [PMID: 31209782]
[5]
Uddin, M.S.; Kabir, M.T. Oxidative stress in Alzheimer’s disease: Molecular hallmarks of underlying vulnerability. In: Biological, diagnostic and therapeutic advances in Alzheimer’s disease; Springer, 2019; pp. 91-115.
[http://dx.doi.org/10.1007/978-981-13-9636-6_5]
[6]
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[7]
Hampel, H.; Prvulovic, D.; Teipel, S.; Jessen, F.; Luckhaus, C.; Frölich, L.; Riepe, M.W.; Dodel, R.; Leyhe, T.; Bertram, L.; Hoffmann, W.; Faltraco, F. German Task Force on Alzheimer’s Disease (GTF-AD). The future of Alzheimer’s disease: The next 10 years. Prog. Neurobiol., 2011, 95(4), 718-728.
[http://dx.doi.org/10.1016/j.pneurobio.2011.11.008] [PMID: 22137045]
[8]
Jeon, S.G.; Song, E.J.; Lee, D.; Park, J.; Nam, Y.; Kim, J.I.; Moon, M. Traditional oriental medicines and Alzheimer’s disease. Aging Dis., 2019, 10(2), 307-328.
[http://dx.doi.org/10.14336/AD.2018.0328] [PMID: 31435482]
[9]
Itami, N.; Shirasuna, K.; Kuwayama, T.; Iwata, H. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes. Biol. Reprod., 2018, 98(5), 644-653.
[http://dx.doi.org/10.1093/biolre/ioy023] [PMID: 29385411]
[10]
Guo, F.; Liu, X.; Cai, H.; Le, W. Autophagy in neurodegenerative diseases: Pathogenesis and therapy. Brain Pathol., 2018, 28(1), 3-13.
[http://dx.doi.org/10.1111/bpa.12545] [PMID: 28703923]
[11]
Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., 2015, 24(4), 325-340.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[12]
Somtimuang, C.; Olatunji, O.J.; Ovatlarnporn, C. Evaluation of in vitro α-amylase and α-glucosidase inhibitory potentials of 14 medicinal plants constituted in Thai folk antidiabetic formularies. Chem. Biodivers., 2018, 15(4), e1800025.
[http://dx.doi.org/10.1002/cbdv.201800025] [PMID: 29460340]
[13]
Akash, M.S.H.; Rehman, K.; Tariq, M.; Chen, S. Zingiber officinale and type 2 diabetes mellitus: Evidence from experimental studies. Crit. Rev. Eukaryot. Gene Expr., 2015, 25(2), 91-112.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2015013358] [PMID: 26080605]
[14]
Lin, X.; Rafique, A.; Fayyaz, T.; Bashir, W.; Luqman, M.; Zahid, F.M. Appraisal of Cymbopogon citratus (Lemon grass) for antibacterial activity against uropathogens. Pak. Vet. J., 2021, 41(1), 122-126.
[http://dx.doi.org/10.29261/pakvetj/2020.040]
[15]
Sallam, A.O.; Rizk, H.A.; Emam, M.A.; Fadl, S.E.; Abdelhiee, E.Y.; Khater, H. The ameliorative effects of L-carnitine against cisplatin-induced gonadal toxicity in rats. Pak. Vet. J., 2021, 41(1), 147-151.
[http://dx.doi.org/10.29261/pakvetj/2020.082]
[16]
Sayyar, H.T.; Afroz, S.; Assad, T. Evaluation of phytochemical screening, antimicrobial and antioxidant activities of ethanol extracts of Cucumis flexouses and Cucumis reticulatus seeds. Pak. Vet. J., 2021, 41(1), 142-146.
[http://dx.doi.org/10.29261/pakvetj/2020.089]
[17]
Wajiha, W., Qureshi, N.A. In vitro anticoccidial, antioxidant activities and biochemical screening of methanolic and aqueous leaves extracts of selected plants. Pak. Vet. J., 2021, 41(1), 57-63.
[http://dx.doi.org/10.29261/pakvetj/2020.071]
[18]
Albarracin, S.L.; Stab, B.; Casas, Z.; Sutachan, J.J.; Samudio, I.; Gonzalez, J.; Gonzalo, L.; Capani, F.; Morales, L.; Barreto, G.E. Effects of natural antioxidants in neurodegenerative disease. Nutr. Neurosci., 2012, 15(1), 1-9.
[http://dx.doi.org/10.1179/1476830511Y.0000000028] [PMID: 22305647]
[19]
Hesari, A.; Rezaei, M.; Rezaei, M.; Dashtiahangar, M.; Fathi, M.; Rad, J.G.; Momeni, F.; Avan, A.; Ghasemi, F. Effect of curcumin on glioblastoma cells. J. Cell. Physiol., 2019, 234(7), 10281-10288.
[http://dx.doi.org/10.1002/jcp.27933] [PMID: 30585634]
[20]
Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[21]
Youssef, K.M.; El-Sherbeny, M.A. Synthesis and antitumor activity of some curcumin analogs. Arch. Pharm. (Weinheim), 2005, 338(4), 181-189.
[http://dx.doi.org/10.1002/ardp.200400939] [PMID: 15864788]
[22]
Akbar, M.U.; Zia, K.M.; Nazir, A.; Iqbal, J.; Ejaz, S.A.; Akash, M.S.H. Pluronic-based mixed polymeric micelles enhance the therapeutic potential of curcumin. AAPS PharmSciTech, 2018, 19(6), 2719-2739.
[http://dx.doi.org/10.1208/s12249-018-1098-9] [PMID: 29978290]
[23]
Akbar, M.U.; Rehman, K.; Zia, K.M.; Qadir, M.I.; Akash, M.S.H.; Ibrahim, M. Critical review on curcumin as a therapeutic agent: From traditional herbal medicine to an ideal therapeutic agent. Crit. Rev. Eukaryot. Gene Expr., 2018, 28(1), 17-24.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2018020088] [PMID: 29773013]
[24]
Ahmed, T.; Gilani, A.H. Therapeutic potential of turmeric in Alzheimer’s disease: Curcumin or curcuminoids? Phytother. Res., 2014, 28(4), 517-525.
[http://dx.doi.org/10.1002/ptr.5030] [PMID: 23873854]
[25]
Akbar, M.U.; Zia, K.M.; Akash, M.S.H.; Nazir, A.; Zuber, M.; Ibrahim, M. In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. Int. J. Biol. Macromol., 2018, 120(Pt B), 2418-2430.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.010] [PMID: 30195611]
[26]
Pi, J.; Jin, H.; Jiang, J.; Yang, F.; Cai, H.; Yang, P.; Cai, J.; Chen, Z.W. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells. Pharmacol. Res., 2017, 119, 479-489.
[http://dx.doi.org/10.1016/j.phrs.2016.11.036] [PMID: 28411855]
[27]
Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res., 2017, 115, 133-148.
[http://dx.doi.org/10.1016/j.phrs.2016.11.017] [PMID: 27888157]
[28]
Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med., 2016, 7(3), 339-346.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.002] [PMID: 28725630]
[29]
Ahmed, T.; Gilani, A-H. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol. Biochem. Behav., 2009, 91(4), 554-559.
[http://dx.doi.org/10.1016/j.pbb.2008.09.010] [PMID: 18930076]
[30]
Ahmed, T.; Gilani, A.H.; Hosseinmardi, N.; Semnanian, S.; Enam, S.A.; Fathollahi, Y. Curcuminoids rescue long-term potentiation impaired by amyloid peptide in rat hippocampal slices. Synapse, 2011, 65(7), 572-582.
[http://dx.doi.org/10.1002/syn.20876] [PMID: 20963814]
[31]
Lobo, R.; Prabhu, K.S.; Shirwaikar, A.; Shirwaikar, A. Curcuma zedoaria Rosc. (white turmeric): A review of its chemical, pharmacological and ethnomedicinal properties. J. Pharm. Pharmacol., 2009, 61(1), 13-21.
[http://dx.doi.org/10.1211/jpp/61.01.0003] [PMID: 19126292]
[32]
Duke, J.A. CRC Handbook of Medicinal Spices; CRC Press: USA, 2002.
[http://dx.doi.org/10.1201/9781420040487]
[33]
Chen, X.; Pei, L.; Zhong, Z.; Guo, J.; Zhang, Q.; Wang, Y. Anti-tumor potential of ethanol extract of Curcuma phaeocaulis Valeton against breast cancer cells. Phytomedicine, 2011, 18(14), 1238-1243.
[http://dx.doi.org/10.1016/j.phymed.2011.06.017] [PMID: 21795032]
[34]
Bos, R.; Windono, T.; Woerdenbag, H.J.; Boersma, Y.L.; Koulman, A.; Kayser, O. HPLC-photodiode array detection analysis of curcuminoids in Curcuma species indigenous to Indonesia. Phytochem. Anal., 2007, 18(2), 118-122.
[http://dx.doi.org/10.1002/pca.959] [PMID: 17439012]
[35]
Somparn, P.; Phisalaphong, C.; Nakornchai, S.; Unchern, S.; Morales, N.P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol. Pharm. Bull., 2007, 30(1), 74-78.
[http://dx.doi.org/10.1248/bpb.30.74] [PMID: 17202663]
[36]
Ahsan, H.; Parveen, N.; Khan, N.U.; Hadi, S.M. Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem. Biol. Interact., 1999, 121(2), 161-175.
[http://dx.doi.org/10.1016/S0009-2797(99)00096-4] [PMID: 10418962]
[37]
Thapliyal, R.; Maru, G.B. Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem. Toxicol., 2001, 39(6), 541-547.
[http://dx.doi.org/10.1016/S0278-6915(00)00165-4] [PMID: 11346483]
[38]
Huang, M-T.; Lou, Y-R.; Xie, J.G.; Ma, W.; Lu, Y-P.; Yen, P.; Zhu, B.T.; Newmark, H.; Ho, C.T. Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis, 1998, 19(9), 1697-1700.
[http://dx.doi.org/10.1093/carcin/19.9.1697] [PMID: 9771944]
[39]
Sreejayan, ; Rao, M.N. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol., 1997, 49(1), 105-107.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06761.x] [PMID: 9120760]
[40]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin: Miniperspective. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[41]
Ravindranath, V.; Chandrasekhara, N. Metabolism of curcumin-studies with [3H]curcumin. Toxicology, 1981-1982, 22(4), 337-344.
[http://dx.doi.org/10.1016/0300-483X(81)90027-5] [PMID: 7342372]
[42]
Asai, A.; Miyazawa, T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci., 2000, 67(23), 2785-2793.
[http://dx.doi.org/10.1016/S0024-3205(00)00868-7] [PMID: 11105995]
[43]
Ireson, C.; Orr, S.; Jones, D.J.; Verschoyle, R.; Lim, C-K.; Luo, J-L.; Howells, L.; Plummer, S.; Jukes, R.; Williams, M.; Steward, W.P.; Gescher, A. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res., 2001, 61(3), 1058-1064.
[PMID: 11221833]
[44]
Ireson, C.R.; Jones, D.J.; Orr, S.; Coughtrie, M.W.; Boocock, D.J.; Williams, M.L.; Farmer, P.B.; Steward, W.P.; Gescher, A.J. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol. Biomarkers Prev., 2002, 11(1), 105-111.
[PMID: 11815407]
[45]
Okada, K.; Wangpoengtrakul, C.; Tanaka, T.; Toyokuni, S.; Uchida, K.; Osawa, T. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J. Nutr., 2001, 131(8), 2090-2095.
[http://dx.doi.org/10.1093/jn/131.8.2090] [PMID: 11481399]
[46]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[47]
Douglass, B.J.; Clouatre, D.L. Beyond yellow curry: Assessing commercial curcumin absorption technologies. J. Am. Coll. Nutr., 2015, 34(4), 347-358.
[http://dx.doi.org/10.1080/07315724.2014.950392] [PMID: 25856323]
[48]
Stohs, S.J.; Ji, J.; Bucci, L.R.; Preuss, H.G. A comparative pharmacokinetic assessment of a novel highly bioavailable curcumin formulation with 95% curcumin: A randomized, double-blind, crossover study. J. Am. Coll. Nutr., 2018, 37(1), 51-59.
[http://dx.doi.org/10.1080/07315724.2017.1358118] [PMID: 29043927]
[49]
Jankun, J.; Wyganowska-Świątkowska, M.; Dettlaff, K.; Jelińska, A.; Surdacka, A.; Wątróbska-Świetlikowska, D.; Skrzypczak-Jankun, E. Determining whether curcumin degradation/condensation is actually bioactivation (Review). Int. J. Mol. Med., 2016, 37(5), 1151-1158.
[http://dx.doi.org/10.3892/ijmm.2016.2524] [PMID: 26985652]
[50]
Holder, G.M.; Plummer, J.L.; Ryan, A.J. The metabolism and excretion of curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) in the rat. Xenobiotica, 1978, 8(12), 761-768.
[http://dx.doi.org/10.3109/00498257809069589] [PMID: 726520]
[51]
Pan, M-H.; Huang, T-M.; Lin, J-K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos., 1999, 27(4), 486-494.
[PMID: 10101144]
[52]
Murugan, P.; Pari, L. Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats. Life Sci., 2006, 79(18), 1720-1728.
[http://dx.doi.org/10.1016/j.lfs.2006.06.001] [PMID: 16806281]
[53]
Vijaya Saradhi, U.V.; Ling, Y.; Wang, J.; Chiu, M.; Schwartz, E.B.; Fuchs, J.R.; Chan, K.K.; Liu, Z. A liquid chromatography-tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(30), 3045-3051.
[http://dx.doi.org/10.1016/j.jchromb.2010.08.039] [PMID: 20934924]
[54]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[55]
Ahmed, T.; Gilani, A-H. A comparative study of curcuminoids to measure their effect on inflammatory and apoptotic gene expression in an Aβ plus ibotenic acid-infused rat model of Alzheimer’s disease. Brain Res., 2011, 1400, 1-18.
[http://dx.doi.org/10.1016/j.brainres.2011.05.022] [PMID: 21640982]
[56]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[57]
Ramkumar, M.; Rajasankar, S.; Gobi, V.V.; Janakiraman, U.; Manivasagam, T.; Thenmozhi, A.J.; Essa, M.M.; Chidambaram, R.; Chidambaram, S.B.; Guillemin, G.J. Demethoxycurcumin, a natural derivative of curcumin abrogates rotenone-induced dopamine depletion and motor deficits by its antioxidative and anti-inflammatory properties in Parkinsonian rats. Pharmacogn. Mag., 2018, 14(53), 9-16.
[http://dx.doi.org/10.4103/pm.pm_113_17] [PMID: 29576695]
[58]
Zheng, K.; Dai, X.; Xiao, N.; Wu, X.; Wei, Z.; Fang, W.; Zhu, Y.; Zhang, J.; Chen, X. Curcumin ameliorates memory decline via inhibiting BACE1 expression and β-Amyloid pathology in 5× FAD transgenic mice. Mol. Neurobiol., 2017, 54(3), 1967-1977.
[http://dx.doi.org/10.1007/s12035-016-9802-9] [PMID: 26910813]
[59]
Di Martino, R.M.C.; De Simone, A.; Andrisano, V.; Bisignano, P.; Bisi, A.; Gobbi, S.; Rampa, A.; Fato, R.; Bergamini, C.; Perez, D.I.; Martinez, A.; Bottegoni, G.; Cavalli, A.; Belluti, F. Versatility of the curcumin scaffold: Discovery of potent and balanced dual BACE-1 and GSK-3β inhibitors. J. Med. Chem., 2016, 59(2), 531-544.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00894] [PMID: 26696252]
[60]
Wang, J.; Zhang, Y.J.; Du, S. The protective effect of curcumin on Aβ induced aberrant cell cycle reentry on primary cultured rat cortical neurons. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(4), 445-454.
[PMID: 22696871]
[61]
Xiong, Z.; Hongmei, Z.; Lu, S.; Yu, L. Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacol. Rep., 2011, 63(5), 1101-1108.
[http://dx.doi.org/10.1016/S1734-1140(11)70629-6] [PMID: 22180352]
[62]
Thapa, A.; Jett, S.D.; Chi, E.Y. Curcumin attenuates amyloid-β aggregate toxicity and modulates amyloid-β aggregation pathway. ACS Chem. Neurosci., 2016, 7(1), 56-68.
[http://dx.doi.org/10.1021/acschemneuro.5b00214] [PMID: 26529184]
[63]
Jope, R.S.; Yuskaitis, C.J.; Beurel, E. Glycogen synthase kinase-3 (GSK3): Inflammation, diseases, and therapeutics. Neurochem. Res., 2007, 32(4-5), 577-595.
[http://dx.doi.org/10.1007/s11064-006-9128-5] [PMID: 16944320]
[64]
Kabir, M.T.; Rahman, M.H.; Akter, R.; Behl, T.; Kaushik, D.; Mittal, V.; Pandey, P.; Akhtar, M.F.; Saleem, A.; Albadrani, G.M.; Kamel, M.; Khalifa, S.A.M.; El-Seedi, H.R.; Abdel-Daim, M.M. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules, 2021, 11(3), 392.
[http://dx.doi.org/10.3390/biom11030392] [PMID: 33800000]
[65]
Huang, H-C.; Tang, D.; Xu, K.; Jiang, Z-F. Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway. J. Recept. Signal Transduct. Res., 2014, 34(1), 26-37.
[http://dx.doi.org/10.3109/10799893.2013.848891] [PMID: 24188406]
[66]
Patil, S.P.; Tran, N.; Geekiyanage, H.; Liu, L.; Chan, C. Curcumin-induced upregulation of the anti-tau cochaperone BAG2 in primary rat cortical neurons. Neurosci. Lett., 2013, 554, 121-125.
[http://dx.doi.org/10.1016/j.neulet.2013.09.008] [PMID: 24035895]
[67]
Carrettiero, D.C.; Hernandez, I.; Neveu, P.; Papagiannakopoulos, T.; Kosik, K.S. The cochaperone BAG2 sweeps paired helical filament-insoluble tau from the microtubule. J. Neurosci., 2009, 29(7), 2151-2161.
[http://dx.doi.org/10.1523/JNEUROSCI.4660-08.2009] [PMID: 19228967]
[68]
Miyasaka, T.; Xie, C.; Yoshimura, S.; Shinzaki, Y.; Yoshina, S.; Kage-Nakadai, E.; Mitani, S.; Ihara, Y. Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiol. Aging, 2016, 39, 69-81.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.11.004] [PMID: 26923403]
[69]
Villaflores, O.B.; Chen, Y-J.; Chen, C-P.; Yeh, J-M.; Wu, T-Y. Effects of curcumin and demethoxycurcumin on amyloid-β precursor and tau proteins through the internal ribosome entry sites: A potential therapeutic for Alzheimer’s disease. Taiwan. J. Obstet. Gynecol., 2012, 51(4), 554-564.
[http://dx.doi.org/10.1016/j.tjog.2012.09.010] [PMID: 23276558]
[70]
Lin, R.; Chen, X.; Li, W.; Han, Y.; Liu, P.; Pi, R. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: Blockage by curcumin. Neurosci. Lett., 2008, 440(3), 344-347.
[http://dx.doi.org/10.1016/j.neulet.2008.05.070] [PMID: 18583042]
[71]
Rogers, J.T.; Bush, A.I.; Cho, H-H.; Smith, D.H.; Thomson, A.M.; Friedlich, A.L.; Lahiri, D.K.; Leedman, P.J.; Huang, X.; Cahill, C.M. Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem. Soc. Trans., 2008, 36(Pt 6), 1282-1287.
[http://dx.doi.org/10.1042/BST0361282] [PMID: 19021541]
[72]
Yugay, D.; Goronzy, D.P.; Kawakami, L.M.; Claridge, S.A.; Song, T-B.; Yan, Z.; Xie, Y.H.; Gilles, J.; Yang, Y.; Weiss, P.S. Copper ion binding site in β-amyloid peptide. Nano Lett., 2016, 16(10), 6282-6289.
[http://dx.doi.org/10.1021/acs.nanolett.6b02590] [PMID: 27616333]
[73]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[74]
Dai, X.; Sun, Y. Copper (2+) potentiation of Alzheimers A-(beta) 1-40 cytotoxicity and transition on its secondary structure. Acta Biochim. Biophys. Sin. (Shanghai), 1938, 11, 765-772.
[75]
Liu, G.; Huang, W.; Moir, R.D.; Vanderburg, C.R.; Lai, B.; Peng, Z.; Tanzi, R.E.; Rogers, J.T.; Huang, X. Metal exposure and Alzheimer’s pathogenesis. J. Struct. Biol., 2006, 155(1), 45-51.
[http://dx.doi.org/10.1016/j.jsb.2005.12.011] [PMID: 16503166]
[76]
Daniel, S.; Limson, J.L.; Dairam, A.; Watkins, G.M.; Daya, S. Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain. J. Inorg. Biochem., 2004, 98(2), 266-275.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.10.014] [PMID: 14729307]
[77]
Baum, L.; Ng, A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J. Alzheimers Dis., 2004, 6(4), 367-377.
[http://dx.doi.org/10.3233/JAD-2004-6403] [PMID: 15345806]
[78]
Shukla, P.K.; Khanna, V.K.; Khan, M.Y.; Srimal, R.C. Protective effect of curcumin against lead neurotoxicity in rat. Hum. Exp. Toxicol., 2003, 22(12), 653-658.
[http://dx.doi.org/10.1191/0960327103ht411oa] [PMID: 14992327]
[79]
Liu, J.; Yu, P.; Qian, W.; Li, Y.; Zhao, J.; Huan, F.; Wang, J.; Xiao, H. Perinatal bisphenol A exposure and adult glucose homeostasis: Identifying critical windows of exposure. PLoS One, 2013, 8(5), e64143.
[http://dx.doi.org/10.1371/journal.pone.0064143] [PMID: 23675523]
[80]
Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep., 2016, 4(5), 519-522.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[81]
Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative stress: The mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol., 2013, 87(7), 1157-1180.
[http://dx.doi.org/10.1007/s00204-013-1034-4] [PMID: 23543009]
[82]
Beal, M.F. Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol., 2005, 58(4), 495-505.
[http://dx.doi.org/10.1002/ana.20624] [PMID: 16178023]
[83]
Kim, G-Y.; Kim, K-H.; Lee, S-H.; Yoon, M-S.; Lee, H-J.; Moon, D-O.; Lee, C.M.; Ahn, S.C.; Park, Y.C.; Park, Y.M. Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-κ B as potential targets. J. Immunol., 2005, 174(12), 8116-8124.
[http://dx.doi.org/10.4049/jimmunol.174.12.8116] [PMID: 15944320]
[84]
Mythri, R.B.; Jagatha, B.; Pradhan, N.; Andersen, J.; Bharath, M.M. Mitochondrial complex I inhibition in Parkinson’s disease: How can curcumin protect mitochondria? Antioxid. Redox Signal., 2007, 9(3), 399-408.
[http://dx.doi.org/10.1089/ars.2006.1479] [PMID: 17184173]
[85]
Dall’Acqua, S.; Stocchero, M.; Boschiero, I.; Schiavon, M.; Golob, S.; Uddin, J.; Voinovich, D.; Mammi, S.; Schievano, E. New findings on the in vivo antioxidant activity of Curcuma longa extract by an integrated (1)H NMR and HPLC-MS metabolomic approach. Fitoterapia, 2016, 109, 125-131.
[http://dx.doi.org/10.1016/j.fitote.2015.12.013] [PMID: 26712080]
[86]
Ak, T.; Gülçin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact., 2008, 174(1), 27-37.
[http://dx.doi.org/10.1016/j.cbi.2008.05.003] [PMID: 18547552]
[87]
Gibellini, L; Bianchini, E; De Biasi, S; Nasi, M; Cossarizza, A; Pinti, M. Natural compounds modulating mitochondrial functions. Evid. Based Complementary Altern. Med., 2015, 2015, 527209.
[88]
He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 2015, 20(5), 9183-9213.
[http://dx.doi.org/10.3390/molecules20059183] [PMID: 26007179]
[89]
Fiala, M.; Liu, P.T.; Espinosa-Jeffrey, A.; Rosenthal, M.J.; Bernard, G.; Ringman, J.M.; Sayre, J.; Zhang, L.; Zaghi, J.; Dejbakhsh, S.; Chiang, B.; Hui, J.; Mahanian, M.; Baghaee, A.; Hong, P.; Cashman, J. Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12849-12854.
[http://dx.doi.org/10.1073/pnas.0701267104] [PMID: 17652175]
[90]
Zhang, L.; Fiala, M.; Cashman, J.; Sayre, J.; Espinosa, A.; Mahanian, M.; Zaghi, J.; Badmaev, V.; Graves, M.C.; Bernard, G.; Rosenthal, M. Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J. Alzheimers Dis., 2006, 10(1), 1-7.
[http://dx.doi.org/10.3233/JAD-2006-10101] [PMID: 16988474]
[91]
Solito, E.; Sastre, M. Microglia function in Alzheimer’s disease. Front. Pharmacol., 2012, 3, 14.
[http://dx.doi.org/10.3389/fphar.2012.00014] [PMID: 22363284]
[92]
Walker, D.G.; Lue, L-F. Immune phenotypes of microglia in human neurodegenerative disease: Challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther., 2015, 7(1), 56.
[http://dx.doi.org/10.1186/s13195-015-0139-9] [PMID: 26286145]
[93]
Cai, Z.; Hussain, M.D.; Yan, L-J. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int. J. Neurosci., 2014, 124(5), 307-321.
[http://dx.doi.org/10.3109/00207454.2013.833510] [PMID: 23930978]
[94]
Guo, Q.; Robinson, N.; Mattson, M.P. Secreted β-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-kappaB and stabilization of calcium homeostasis. J. Biol. Chem., 1998, 273(20), 12341-12351.
[http://dx.doi.org/10.1074/jbc.273.20.12341] [PMID: 9575187]
[95]
Barger, S.W.; Mattson, M.P. Induction of neuroprotective κ B-dependent transcription by secreted forms of the Alzheimer’s β-amyloid precursor. Brain Res. Mol. Brain Res., 1996, 40(1), 116-126.
[http://dx.doi.org/10.1016/0169-328X(96)00036-8] [PMID: 8840019]
[96]
Cianciulli, A.; Calvello, R.; Porro, C.; Trotta, T.; Salvatore, R.; Panaro, M.A. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int. Immunopharmacol., 2016, 36, 282-290.
[http://dx.doi.org/10.1016/j.intimp.2016.05.007] [PMID: 27208432]
[97]
Szczuciński, A.; Losy, J. Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol. Scand., 2007, 115(3), 137-146.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00749.x] [PMID: 17295707]
[98]
Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O’Banion, K.; Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain, 2005, 128(Pt 6), 1442-1453.
[http://dx.doi.org/10.1093/brain/awh452] [PMID: 15817521]
[99]
Innamorato, N.G.; Rojo, A.I.; García-Yagüe, Á.J.; Yamamoto, M.; de Ceballos, M.L.; Cuadrado, A. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol., 2008, 181(1), 680-689.
[http://dx.doi.org/10.4049/jimmunol.181.1.680] [PMID: 18566435]
[100]
Wang, H-M.; Zhao, Y-X.; Zhang, S.; Liu, G-D.; Kang, W-Y.; Tang, H-D.; Ding, J.Q.; Chen, S.D. PPARgamma agonist curcumin reduces the amyloid-β-stimulated inflammatory responses in primary astrocytes. J. Alzheimers Dis., 2010, 20(4), 1189-1199.
[http://dx.doi.org/10.3233/JAD-2010-091336] [PMID: 20413894]
[101]
Liu, Z-J.; Li, Z-H.; Liu, L.; Tang, W-X.; Wang, Y.; Dong, M-R.; Xiao, C. Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer’s disease. Front. Pharmacol., 2016, 7, 261.
[http://dx.doi.org/10.3389/fphar.2016.00261] [PMID: 27594837]
[102]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[103]
Akinyemi, A.J.; Okonkwo, P.K.; Faboya, O.A.; Onikanni, S.A.; Fadaka, A.; Olayide, I.; Akinyemi, E.O.; Oboh, G. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model. Metab. Brain Dis., 2017, 32(1), 87-95.
[http://dx.doi.org/10.1007/s11011-016-9887-x] [PMID: 27491636]
[104]
da Costa, P.; Gonçalves, J.F.; Baldissarelli, J.; Mann, T.R.; Abdalla, F.H.; Fiorenza, A.M.; da Rosa, M.M.; Carvalho, F.B.; Gutierres, J.M.; de Andrade, C.M.; Rubin, M.A.; Schetinger, M.R.; Morsch, V.M. Curcumin attenuates memory deficits and the impairment of cholinergic and purinergic signaling in rats chronically exposed to cadmium. Environ. Toxicol., 2017, 32(1), 70-83.
[http://dx.doi.org/10.1002/tox.22213] [PMID: 26592365]
[105]
Tiwari, V.; Chopra, K. Protective effect of curcumin against chronic alcohol-induced cognitive deficits and neuroinflammation in the adult rat brain. Neuroscience, 2013, 244, 147-158.
[http://dx.doi.org/10.1016/j.neuroscience.2013.03.042] [PMID: 23583655]
[106]
Talbot, K. Brain insulin resistance in Alzheimer’s disease and its potential treatment with GLP-1 analogs. Neurodegener. Dis. Manag., 2014, 4(1), 31-40.
[http://dx.doi.org/10.2217/nmt.13.73] [PMID: 24640977]
[107]
Craft, S.; Cholerton, B.; Baker, L.D. Insulin and Alzheimer’s disease: Untangling the web. J. Alzheimers Dis., 2013, 33(Suppl. 1), S263-S275.
[http://dx.doi.org/10.3233/JAD-2012-129042] [PMID: 22936011]
[108]
Talbot, K.; Wang, H-Y.; Kazi, H.; Han, L-Y.; Bakshi, K.P.; Stucky, A.; Fuino, R.L.; Kawaguchi, K.R.; Samoyedny, A.J.; Wilson, R.S.; Arvanitakis, Z.; Schneider, J.A.; Wolf, B.A.; Bennett, D.A.; Trojanowski, J.Q.; Arnold, S.E. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest., 2012, 122(4), 1316-1338.
[http://dx.doi.org/10.1172/JCI59903] [PMID: 22476197]
[109]
Rivera, E.J.; Goldin, A.; Fulmer, N.; Tavares, R.; Wands, J.R.; de la Monte, S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: Link to brain reductions in acetylcholine. J. Alzheimers Dis., 2005, 8(3), 247-268.
[http://dx.doi.org/10.3233/JAD-2005-8304] [PMID: 16340083]
[110]
Steen, E.; Terry, B.M.J.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease--is this type 3 diabetes? J. Alzheimers Dis., 2005, 7(1), 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[111]
Feng, H.L.; Dang, H.Z.; Fan, H.; Chen, X.P.; Rao, Y.X.; Ren, Y.; Yang, J.D.; Shi, J.; Wang, P.W.; Tian, J.Z. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer’s disease transgenic mice. Int. J. Immunopathol. Pharmacol., 2016, 29(4), 734-741.
[http://dx.doi.org/10.1177/0394632016659494] [PMID: 27466310]
[112]
Isik, A.T.; Celik, T.; Ulusoy, G.; Ongoru, O.; Elibol, B.; Doruk, H.; Bozoglu, E.; Kayir, H.; Mas, M.R.; Akman, S. Curcumin ameliorates impaired insulin/IGF signalling and memory deficit in a streptozotocin-treated rat model. Age (Dordr.), 2009, 31(1), 39-49.
[http://dx.doi.org/10.1007/s11357-008-9078-8] [PMID: 19234767]
[113]
Kivipelto, M.; Helkala, E-L.; Laakso, M.P.; Hänninen, T.; Hallikainen, M.; Alhainen, K.; Iivonen, S.; Mannermaa, A.; Tuomilehto, J.; Nissinen, A.; Soininen, H. Apolipoprotein E ε4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann. Intern. Med., 2002, 137(3), 149-155.
[http://dx.doi.org/10.7326/0003-4819-137-3-200208060-00006] [PMID: 12160362]
[114]
Solomon, A.; Kåreholt, I.; Ngandu, T.; Winblad, B.; Nissinen, A.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Serum cholesterol changes after midlife and late-life cognition: Twenty-one-year follow-up study. Neurology, 2007, 68(10), 751-756.
[http://dx.doi.org/10.1212/01.wnl.0000256368.57375.b7] [PMID: 17339582]
[115]
Popp, J.; Meichsner, S.; Kölsch, H.; Lewczuk, P.; Maier, W.; Kornhuber, J.; Jessen, F.; Lütjohann, D. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s disease. Biochem. Pharmacol., 2013, 86(1), 37-42.
[http://dx.doi.org/10.1016/j.bcp.2012.12.007] [PMID: 23291240]
[116]
Xue-Shan, Z.; Juan, P.; Qi, W.; Zhong, R.; Li-Hong, P.; Zhi-Han, T.; Zhi-Sheng, J.; Gui-Xue, W.; Lu-Shan, L. Imbalanced cholesterol metabolism in Alzheimer’s disease. Clin. Chim. Acta, 2016, 456, 107-114.
[http://dx.doi.org/10.1016/j.cca.2016.02.024] [PMID: 26944571]
[117]
Soni, K.B.; Kuttan, R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J. Physiol. Pharmacol., 1992, 36(4), 273-275.
[PMID: 1291482]
[118]
Taghibiglou, C.; Martin, H.G.; Lai, T.W.; Cho, T.; Prasad, S.; Kojic, L.; Lu, J.; Liu, Y.; Lo, E.; Zhang, S.; Wu, J.Z.; Li, Y.P.; Wen, Y.H.; Imm, J.H.; Cynader, M.S.; Wang, Y.T. Role of NMDA receptor-dependent activation of SREBP1 in excitotoxic and ischemic neuronal injuries. Nat. Med., 2009, 15(12), 1399-1406.
[http://dx.doi.org/10.1038/nm.2064] [PMID: 19966780]
[119]
Kang, O.H.; Kim, S.B.; Seo, Y.S.; Joung, D.K.; Mun, S.H.; Choi, J.G.; Lee, Y.M.; Kang, D.G.; Lee, H.S.; Kwon, D.Y. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(19), 2578-2586.
[PMID: 24142602]
[120]
Ding, L.; Li, J.; Song, B.; Xiao, X.; Zhang, B.; Qi, M.; Huang, W.; Yang, L.; Wang, Z. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol. Appl. Pharmacol., 2016, 304, 99-109.
[http://dx.doi.org/10.1016/j.taap.2016.05.011] [PMID: 27208389]
[121]
Yuan, H.Y.; Kuang, S.Y.; Zheng, X.; Ling, H.Y.; Yang, Y-B.; Yan, P-K.; Li, K.; Liao, D.F. Curcumin inhibits cellular cholesterol accumulation by regulating SREBP-1/caveolin-1 signaling pathway in vascular smooth muscle cells. Acta Pharmacol. Sin., 2008, 29(5), 555-563.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00783.x] [PMID: 18430363]
[122]
Peschel, D.; Koerting, R.; Nass, N. Curcumin induces changes in expression of genes involved in cholesterol homeostasis. J. Nutr. Biochem., 2007, 18(2), 113-119.
[http://dx.doi.org/10.1016/j.jnutbio.2006.03.007] [PMID: 16713233]
[123]
Tai, M.H.; Chen, P.K.; Chen, P.Y.; Wu, M.J.; Ho, C.T.; Yen, J.H. Curcumin enhances cell-surface LDLR level and promotes LDL uptake through downregulation of PCSK9 gene expression in HepG2 cells. Mol. Nutr. Food Res., 2014, 58(11), 2133-2145.
[http://dx.doi.org/10.1002/mnfr.201400366] [PMID: 25164566]
[124]
Mancuso, C. Bilirubin and brain: A pharmacological approach. Neuropharmacology, 2017, 118, 113-123.
[http://dx.doi.org/10.1016/j.neuropharm.2017.03.013] [PMID: 28315352]
[125]
Jeong, G-S.; Oh, G-S.; Pae, H-O.; Jeong, S-O.; Kim, Y-C.; Shin, M-K.; Seo, B.Y.; Han, S.Y.; Lee, H.S.; Jeong, J.G.; Koh, J.S.; Chung, H.T. Comparative effects of curcuminoids on endothelial heme oxygenase-1 expression: Ortho-methoxy groups are essential to enhance heme oxygenase activity and protection. Exp. Mol. Med., 2006, 38(4), 393-400.
[http://dx.doi.org/10.1038/emm.2006.46] [PMID: 16953118]
[126]
Calabrese, V.; Butterfield, D.A.; Stella, A.M. Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: Novel targets for neuroprotection in Alzheimer’s disease. Ital. J. Biochem., 2003, 52(4), 177-181.
[PMID: 15141484]
[127]
Eckert, G.P.; Schiborr, C.; Hagl, S.; Abdel-Kader, R.; Müller, W.E.; Rimbach, G.; Frank, J. Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochem. Int., 2013, 62(5), 595-602.
[http://dx.doi.org/10.1016/j.neuint.2013.02.014] [PMID: 23422877]
[128]
Wahlström, B.; Blennow, G. A study on the fate of curcumin in the rat. Acta Pharmacol. Toxicol. (Copenh.), 1978, 43(2), 86-92.
[http://dx.doi.org/10.1111/j.1600-0773.1978.tb02240.x] [PMID: 696348]
[129]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov. Today. Technol., 2012, 17(1-2), 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009] [PMID: 21959306]
[130]
Chin, D.; Huebbe, P.; Pallauf, K.; Rimbach, G. Neuroprotective properties of curcumin in Alzheimer’s disease--merits and limitations. Curr. Med. Chem., 2013, 20(32), 3955-3985.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]
[131]
Kurita, T.; Makino, Y. Novel curcumin oral delivery systems. Anticancer Res., 2013, 33(7), 2807-2821.
[PMID: 23780965]
[132]
Quitschke, W.W. Differential solubility of curcuminoids in serum and albumin solutions: Implications for analytical and therapeutic applications. BMC Biotechnol., 2008, 8(1), 84.
[http://dx.doi.org/10.1186/1472-6750-8-84] [PMID: 18990234]
[133]
Vajragupta, O.; Boonchoong, P.; Watanabe, H.; Tohda, M.; Kummasud, N.; Sumanont, Y. Manganese complexes of curcumin and its derivatives: Evaluation for the radical scavenging ability and neuroprotective activity. Free Radic. Biol. Med., 2003, 35(12), 1632-1644.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.011] [PMID: 14680686]
[134]
Ferrari, E.; Benassi, R.; Sacchi, S.; Pignedoli, F.; Asti, M.; Saladini, M. Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications. J. Inorg. Biochem., 2014, 139, 38-48.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.06.002] [PMID: 24968097]
[135]
Mohammadi, K.; Thompson, K.H.; Patrick, B.O.; Storr, T.; Martins, C.; Polishchuk, E.; Yuen, V.G.; McNeill, J.H.; Orvig, C. Synthesis and characterization of dual function vanadyl, gallium and indium curcumin complexes for medicinal applications. J. Inorg. Biochem., 2005, 99(11), 2217-2225.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.08.001] [PMID: 16171869]
[136]
Barik, A.; Mishra, B.; Kunwar, A.; Kadam, R.M.; Shen, L.; Dutta, S.; Padhye, S.; Satpati, A.K.; Zhang, H.Y.; Indira Priyadarsini, K. Comparative study of copper(II)-curcumin complexes as superoxide dismutase mimics and free radical scavengers. Eur. J. Med. Chem., 2007, 42(4), 431-439.
[http://dx.doi.org/10.1016/j.ejmech.2006.11.012] [PMID: 17240482]
[137]
Wang, P.; Su, C.; Feng, H.; Chen, X.; Dong, Y.; Rao, Y.; Ren, Y.; Yang, J.; Shi, J.; Tian, J.; Jiang, S. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int. J. Immunopathol. Pharmacol., 2017, 30(1), 25-43.
[http://dx.doi.org/10.1177/0394632016688025] [PMID: 28124574]
[138]
Yin, H.L.; Wang, Y.L.; Li, J.F.; Han, B.; Zhang, X.X.; Wang, Y.T.; Geng, S. Effects of curcumin on hippocampal expression of NgR and axonal regeneration in Aβ-induced cognitive disorder rats. Genet. Mol. Res., 2014, 13(1), 2039-2047.
[http://dx.doi.org/10.4238/2014.March.24.8] [PMID: 24737429]
[139]
Parikh, A.; Kathawala, K.; Li, J.; Chen, C.; Shan, Z.; Cao, X.; Zhou, X.F.; Garg, S. Curcumin-loaded self-nanomicellizing solid dispersion system: Part II: In vivo safety and efficacy assessment against behavior deficit in Alzheimer disease. Drug Deliv. Transl. Res., 2018, 8(5), 1406-1420.
[http://dx.doi.org/10.1007/s13346-018-0570-0] [PMID: 30117120]
[140]
Bassani, T.B.; Turnes, J.M.; Moura, E.L.R.; Bonato, J.M.; Cóppola-Segovia, V.; Zanata, S.M.; Oliveira, R.M.M.W.; Vital, M.A.B.F. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav. Brain Res., 2017, 335, 41-54.
[http://dx.doi.org/10.1016/j.bbr.2017.08.014] [PMID: 28801114]
[141]
Yanagisawa, D.; Ibrahim, N.F.; Taguchi, H.; Morikawa, S.; Hirao, K.; Shirai, N.; Sogabe, T.; Tooyama, I. Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice. Neurobiol. Aging, 2015, 36(1), 201-210.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.041] [PMID: 25179227]
[142]
Hagl, S.; Heinrich, M.; Kocher, A.; Schiborr, C.; Frank, J.; Eckert, G.P. Curcumin micelles improve mitochondrial function in a mouse model of Alzheimer’s disease. J. Prev. Alzheimers Dis., 2014, 1(2), 80-83.
[PMID: 29255835]
[143]
Elmegeed, G.A.; Ahmed, H.H.; Hashash, M.A.; Abd-Elhalim, M.M.; El-kady, D.S. Synthesis of novel steroidal curcumin derivatives as anti-Alzheimer’s disease candidates: Evidences-based on in vivo study. Steroids, 2015, 101, 78-89.
[http://dx.doi.org/10.1016/j.steroids.2015.06.003] [PMID: 26079653]
[144]
McClure, R.; Ong, H.; Janve, V.; Barton, S.; Zhu, M.; Li, B.; Dawes, M.; Jerome, W.G.; Anderson, A.; Massion, P.; Gore, J.C.; Pham, W. Aerosol delivery of curcumin reduced amyloid-β deposition and improved cognitive performance in a transgenic model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 55(2), 797-811.
[http://dx.doi.org/10.3233/JAD-160289] [PMID: 27802223]
[145]
Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525.
[http://dx.doi.org/10.1371/journal.pone.0131525] [PMID: 26114940]
[146]
Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442.
[http://dx.doi.org/10.3233/JAD-170093] [PMID: 29036814]
[147]
Czekaj, P.; Wiaderkiewicz, A.; Florek, E.; Wiaderkiewicz, R. Tobacco smoke-dependent changes in cytochrome P450 1A1, 1A2, and 2E1 protein expressions in fetuses, newborns, pregnant rats, and human placenta. Arch. Toxicol., 2005, 79(1), 13-24.
[http://dx.doi.org/10.1007/s00204-004-0607-7] [PMID: 15448981]
[148]
Hishikawa, N.; Takahashi, Y.; Amakusa, Y.; Tanno, Y.; Tuji, Y.; Niwa, H.; Murakami, N.; Krishna, U.K. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu, 2012, 33(4), 499-504.
[http://dx.doi.org/10.4103/0974-8520.110524] [PMID: 23723666]
[149]
Lao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6(1), 10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[150]
Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43.
[http://dx.doi.org/10.1186/alzrt146] [PMID: 23107780]
[151]
Small, G.W.; Siddarth, P.; Li, Z.; Miller, K.J.; Ercoli, L.; Emerson, N.D.; Martinez, J.; Wong, K.P.; Liu, J.; Merrill, D.A.; Chen, S.T.; Henning, S.M.; Satyamurthy, N.; Huang, S.C.; Heber, D.; Barrio, J.R. Memory and brain amyloid and tau effects of a bioavailable form of curcumin in non-demented adults: A double-blind, placebo-controlled 18-month trial. Am. J. Geriatr. Psychiatry, 2018, 26(3), 266-277.
[http://dx.doi.org/10.1016/j.jagp.2017.10.010] [PMID: 29246725]
[152]
DiSilvestro, R.A.; Joseph, E.; Zhao, S.; Bomser, J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr. J., 2012, 11(1), 79.
[http://dx.doi.org/10.1186/1475-2891-11-79] [PMID: 23013352]
[153]
Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; Yu, H.S.; Jee, S.H.; Chen, G.S.; Chen, T.M.; Chen, C.A.; Lai, M.K.; Pu, Y.S.; Pan, M.H.; Wang, Y.J.; Tsai, C.C.; Hsieh, C.Y. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res., 2001, 21(4B), 2895-2900.
[PMID: 11712783]
[154]
Rainey-Smith, S.R.; Brown, B.M.; Sohrabi, H.R.; Shah, T.; Goozee, K.G.; Gupta, V.B.; Martins, R.N. Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br. J. Nutr., 2016, 115(12), 2106-2113.
[http://dx.doi.org/10.1017/S0007114516001203] [PMID: 27102361]
[155]
Cox, K.H.; Pipingas, A.; Scholey, A.B. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. Int. Immunopharmacol., 2015, 29(5), 642-651.
[http://dx.doi.org/10.1177/0269881114552744] [PMID: 25277322]
[156]
Baum, L.; Lam, C.W.K.; Cheung, S.K-K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.; Goggins, W.B.; Zee, B.C.; Cheng, K.F.; Fong, C.Y.; Wong, A.; Mok, H.; Chow, M.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.; Chan, M.H.; Szeto, S.; Chan, I.H.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28(1), 110-113.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy