Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Materials Science

The Electrical Characteristics and the Interface State Densities of Al/p-Si Structures with and Without the GO Insulator Layer

Author(s): Yaşar Aslan, Halil Seymen, Niyazi Berk and Şükrü Karataş*

Volume 2, Issue 6, 2022

Published on: 17 August, 2022

Page: [472 - 478] Pages: 7

DOI: 10.2174/2210298102666220607150102

Price: $65

Abstract

Introduction: The current-voltage (I-V) characteristics of the Al/p-type Si Metal- Semiconductor (MS) and Al/GO/p-type Si Metal-Oxide-Semiconductor (MOS) structure were investigated at room temperature (300 K).

Methods: The main electrical characteristics such as ideality factor (n), zero-bias barrier height (Φbo), and Series Resistance (RS) of Al/p-Si and Al/GO/p-type Si semiconductor structures were obtained from different methods using I-V measurements.

Results: Experimental results show that the electrical properties obtained from Al/GO/p-type Si structure are I-V measurements generally slightly greater than those obtained from Al/p-type Si structure.

Conclusion: However, the interface state densities resistance values obtained from the Al/GO/p-Si structure are generally slightly smaller than those obtained from Al/p-type Si structure. The interface states (NSS) as energy distribution functions (ESS-EV) were obtained by using I-V measurements for both Al/p-type Si and Al/GO/p-type Si structures.

Keywords: Electrical properties, Graphene oxide, Interface states, I-V., Al/p-Si

Graphical Abstract

[1]
Sze, S.M. Physics of Semiconductor Devices, 2nd ed; Wiley: New York, 1981.
[2]
Rhoderick, E.H.; Williams, R.H. Metal-Semiconductor Contacts, 2nd ed; Clarendon: Oxford, 1988.
[3]
Berk, N.; Seymen, H.; Orak, I. Karataş, Ş. The electrical characteristics of metal-semiconductor hetero-structures with graphene oxide and perylenetetracarboxylic dianhydride interface. J. Mater. Sci. Mater. Electron., 2021, 32(13), 17500-17511.
[http://dx.doi.org/10.1007/s10854-021-06283-w]
[4]
Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent advances in graphene-based humidity sensors. Nanomaterials (Basel), 2019, 9(3), 422-464.
[http://dx.doi.org/10.3390/nano9030422] [PMID: 30871077]
[5]
Kalandaragh, Y.A.; Farazin, J. Altindal, Ş.; ShahediAsl, M.; Givi, G.P.; Delbari, S.A.; Namini, A.S. Electrical and dielectric properties of Al/(PVP: Zn-TeO2)/p-Si heterojunction structures using current–voltage (I–V) and impedance-frequency (Z–f) measurements. Appl. Phys., A Mater. Sci. Process., 2020, 126(8), 635-646.
[http://dx.doi.org/10.1007/s00339-020-03804-y]
[6]
Rehman, S.; Kim, H.; Khan, M.F.; Hur, J.H.; Eom, J.; Kim, D. D- kee Kim. Tunable resistive switching of vertical ReSe2/graphene hetero-structure enabled by Schottky barrier height and DUV light. J. Alloys Compd., 2021, 855, 157310-157318.
[http://dx.doi.org/10.1016/j.jallcom.2020.157310]
[7]
Özerli, H.; Bekereci, A.; Türüt, A. Karataş, Ş. Electrical and photovoltaic properties of Ag/p-Si structure with GO doped NiO interlayer in dark and under light illumination. J. Alloys Compd., 2017, 718, 75-84.
[http://dx.doi.org/10.1016/j.jallcom.2017.05.121]
[8]
Karataş, Ş.; Aydin, M.G.; Özerli, H. Illumination impact on electrical properties of Ag/0.6 wt% nanographene oxide doped poly(vinyl alcohol) nanocomposite/p-Si heterojunction. J. Alloys Compd., 2016, 689, 1068-1075.
[http://dx.doi.org/10.1016/j.jallcom.2016.08.083]
[9]
Kılçık, A.; Berk, N.; Seymen, H.; Karataş, Ş. Study on preparation of graphene oxide thin film layers: The electrical and dielectric characteristics of Au/GO/n-type Si junction structures. J. Mater. Sci. Mater. Electron., 2021, 32(6), 7913-7925.
[http://dx.doi.org/10.1007/s10854-021-05515-3]
[10]
Seymen, H. Karataş, Ş. Analysis of main electrical characteristics of Al/GO-PTCDA/p-Si structure at room temperature. J. Mater. Electron. Devices, 2021, 6, 28-32.
[11]
Türüt, A. On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turk. J. Phys., 2021, 44(4), 302-347.
[http://dx.doi.org/10.3906/fiz-2007-11]
[12]
Cheung, S.K.; Cheung, N.W. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Appl. Phys. Lett., 1986, 49(2), 85-87.
[http://dx.doi.org/10.1063/1.97359]
[13]
Ilhan, M. Electrical characterization of Al/fluorescein sodium salt organic semiconductor/Au diode by current-voltage and capacitance-voltage methods. J. Mater. Electron. Devices, 2015, 1, 11-16.
[14]
Dere, A. Low-value polymeric thin-film capacitor. J. Mater. Electron. Devices, 2020, 6, 26-28.
[15]
Norde, H. A modified forward I‐V plot for Schottky diodes with high series resistance. J. Appl. Phys., 1979, 50(7), 5052-5053.
[http://dx.doi.org/10.1063/1.325607]
[16]
He, Z.; Shaik, S.; Bi, S.; Chen, J.; Li, D. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology. Appl. Phys. Lett., 2015, 106(18), 183301-183305.
[http://dx.doi.org/10.1063/1.4919677]
[17]
He, Z.; Zhang, Z.; Bi, S. Tailoring the molecular weight of polymer additives for organic semiconductors. Mater. Adv., 2022, 3(4), 1953-1973.
[http://dx.doi.org/10.1039/D1MA00964H]
[18]
He, Z.; Yeboah, K.A.; Zhang, Z.; Bi, S. Manipulate organic crystal morphology and charge transport. Org. Electron., 2022, 103, 106448-110662.
[http://dx.doi.org/10.1016/j.orgel.2022.106448]
[19]
Card, H.C.; Rhoderick, E.H. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys., 1971, 3(10), 1589-1601.
[http://dx.doi.org/10.1088/0022-3727/4/10/319]
[20]
Duman, S.; Ozcelik, F.S.; Gürbulak, B.; Gülnahar, M.; Turut, A. Current–Voltage and Capacitance–Conductance–Voltage Characteristics of Al/SiO2/p-Si and al/methyl green (MG)/p-Si structures. Metall. Mater. Trans., A Phys. Metall. Mater. Sci., 2015, 46(1), 347-353.
[http://dx.doi.org/10.1007/s11661-014-2621-6]
[21]
Pakma, O.; Serin, N.; Serin, T. Altındal, Ş. The effects of preparation temperature on the main electrical parameters of Al/TiO 2/p-Si (MIS) structures by using sol–gel method. J. Sol-Gel Sci. Technol., 2009, 50(1), 28-34.
[http://dx.doi.org/10.1007/s10971-009-1895-4]
[22]
Soylu, M.; Ocaya, R.; Tuncer, H.; Ahmed, A. Al-Ghamdi; Dere, A.; Sari, C.; Yakuphanoğlu, F. Analysis of photovoltaic behavior of Si-based junctions containing novel graphene oxide/nickel(II) phthalocyanine composite films. Microelectron. Eng., 2016, 154, 53-61.
[http://dx.doi.org/10.1016/j.mee.2016.01.022]
[23]
Berk, N.; Seymen, H.; Orak, I. Karataş, Ş. The structural and optical properties of GO: Temperature-dependent analysis of the electrical properties of Al/GO/p-type Si semiconductor structures. J. Phys. Chem. Solids, 2022, 160, 110348-110356.
[http://dx.doi.org/10.1016/j.jpcs.2021.110348]
[24]
Karadeniz, S. Barış; B.; Yüksel, Ö.F.; Tuğluoğlu, N. Analysis of electrical properties of Al/p-Si Schottky contacts with and without rubrene layer. Synth. Met., 2013, 168, 16-22.
[http://dx.doi.org/10.1016/j.synthmet.2013.01.012]
[25]
Güler, G. Ömer Güllü, Ş. Karatas; Bakkaloğlu, Ö.F. Electrical characteristics of Co/n-Si schottky barrier diodes using I – V and C – V measurements electrical characteristics of Co/n-Si schottky barrier diodes using I – V and C – V measurements. J. Phys. Conf. Ser., 2009, 153, 067301-067305.
[26]
Gupta, R.K.; Yakuphanoglu, F.; Hasar, H.; Abdulaziz, A. Al-Khedhairy. p-Si/DNA photoconductive diode for optical sensor applications. Synth. Met., 2011, 161(17-18), 2011-2016.
[http://dx.doi.org/10.1016/j.synthmet.2011.07.016]
[27]
Tataroğlu, A.; Altındal, Ş.; Bülbül, M.M. 60Co γ irradiation effects on the current–voltage (I–V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes. Nucl. Instrum. Methods Phys. Res. A, 2006, 568(2), 863-868.
[http://dx.doi.org/10.1016/j.nima.2006.08.047]
[28]
Aydoğan, Ş.; İncekara, Ü.; Deniz, A.R.; Türüt, A. Extraction of electronic parameters of Schottky diode based on an organic Indigotindisulfonate Sodium (IS). Solid State Commun., 2010, 150(33-34), 1592-1596.
[http://dx.doi.org/10.1016/j.ssc.2010.05.043]
[29]
Karataş, Ş.; Yakuphanoğlu, F. Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction. J. Alloys Compd., 2012, 537, 6-11.
[http://dx.doi.org/10.1016/j.jallcom.2012.05.025]
[30]
Cifci, O.S.; Kocyigit, A.; Sun, P. Perovskite/p-Si photodiode with ultra-thin metal cathode. Superlattices Microstruct., 2018, 120, 492-500.
[http://dx.doi.org/10.1016/j.spmi.2018.06.009]
[31]
Karataş, Ş.; Altındal, Ş; Çakar, M. Current transport in Zn/p-Si(1 0 0) Schottky barrier diodes at high temperatures. Physica B, 2005, 357, 386-397.
[http://dx.doi.org/10.1016/j.physb.2004.12.003]
[32]
Karataş, Ş.; Türüt, A.; Altındal, Ş. Effects of 60Co γ-ray irradiation on the electrical characteristics of Au/n-GaAs (MS) structures. Nucl. Instrum. Methods Phys. Res. A, 2005, 555(1-2), 260-265.
[http://dx.doi.org/10.1016/j.nima.2005.09.017]
[33]
Pakma, O.; Özdemir, C.; Kariper, I.A. Özaydın, C.; Güllü, Ö. Wet chemical methods for producing mixing crystalline phase ZrO2 thin film. Appl. Surf. Sci., 2016, 377, 159-166.
[http://dx.doi.org/10.1016/j.apsusc.2016.03.107]
[34]
Djeghlouf, A.; Hamri, D.; Teffahi, A.; Saidane, A.; Al Mashary, F.S.; Al Huwayz, M.M.; Henini, M.; Orak, I.; Albadri, A.M.; Alyamani, A.Y. Effect of indium doping on the electrical and structural properties of TiO2 thin films used in MOS devices. J. Alloys Compd., 2019, 775, 202-213.
[http://dx.doi.org/10.1016/j.jallcom.2018.10.048]
[35]
Akhlaghi, E.A.; Badali, Y. Altindal, Ş; Kalandaragh, Y.A. Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures. Physica B, 2018, 546, 93-98.
[http://dx.doi.org/10.1016/j.physb.2018.06.019]
[36]
Ocak, S.B.; Selçuk, A.B.; Kahraman, G.; Selçuk, A.H. Characterization of electrical properties of Al/maleic anhydride (MA)/p-Si structures by well-known methods. Synth. Met., 2014, 191, 83-88.
[http://dx.doi.org/10.1016/j.synthmet.2014.02.024]
[37]
Karataş, Ş. Frequency and voltage dependent electrical and dielectric properties of Ag/nGO doped PVA/p-Si sandwich structure at room temperature. J. Sandw. Struct. Mater., 2019, 23(3), 739-759.
[http://dx.doi.org/10.1177/1099636219840605]
[38]
Şenarslan, E.; Güzeldir, B.; Sağlam, M. Investigation of the electrical characteristics of Al/p-Si/Al schottky diode. J. Phys. Conf. Ser., 2016, 707, 012013.
[http://dx.doi.org/10.1088/1742-6596/707/1/012013]
[39]
Imer, A.G.; Ocak, Y.S. Effect of light intensity and temperature on the current voltage characteristics of Al/SY/p-Si organic–inorganic heterojunction. J. Electron. Mater., 2016, 45(10), 5347-5355.
[http://dx.doi.org/10.1007/s11664-016-4649-4]
[40]
Fırat, M.E.; Taştan, M.A.; Karataş, Ş. Comparison of electrical characteristics of Sn/p-type Si structure at different temperatures and under irradiation. Mater. Today, 2019, 18, 1946-1954.
[41]
Özdemir, A.F.; Aydin, S.G.; Aldemir, D.A. Gürsoy, Ş. Electrical and optical properties of p-type silicon based on polypyrrole-derivative polymer. Synth. Met., 2011, 161(9-10), 692-697.
[http://dx.doi.org/10.1016/j.synthmet.2011.01.016]
[42]
Padma, R.; Nagaraju, R.G.; Reddy, V.R.; Choi, C.J. Effect of annealing temperature on the electrical and structural properties of V/p-GaN Schottky structures. Thin Solid Films, 2016, 598, 236-242.
[http://dx.doi.org/10.1016/j.tsf.2015.12.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy