Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Phyllanthus emblica L. Regulates BDNF/PI3K Pathway to Modulate Glutathione for Mitoprotection and Neuroprotection in a Rodent Model of Ischemic Stroke

Author(s): Deepaneeta Sarmah, Geetesh Verma, Aishika Datta, Namrata Vadak, Antra Chaudhary, Kiran Kalia and Pallab Bhattacharya*

Volume 22, Issue 3, 2022

Published on: 20 August, 2022

Page: [175 - 187] Pages: 13

DOI: 10.2174/1871524922666220607093400

Price: $65

Abstract

Introduction: Ischemic stroke remains the leading cause of death worldwide and is the primary cause of disability globally. Numerous studies have shown that plant-origin medicines are promising and can influence the treatment of neurological disorders. Phyllanthus embilica L. (P. emblica or Amla) is one of the herbal plants whose medicinal properties are widely studied. The objective of the present study is to determine the neuroprotective effects of an aqueous extract of the fruit of P. emblica (hereinafter referred to as just P. emblica) on cerebral ischemia-reperfusion injury and explore if it can regulate BDNF/PI3K pathway to modulate glutathione for mitoprotection and neuroprotection.

Methods: In vivo studies were conducted on male Sprague Dawley rats, where rats were prophylactically administered 100 mg/kg P. emblica for 30 days. In the treatment group, rats were given 100 mg/kg P. emblica, 1 h post middle cerebral artery occlusion (MCAo). Rats were evaluated for neuro deficit and motor function tests. Brains were further harvested for infarct size evaluation, biochemical analysis, protein expression studies, and mitochondrial studies.

Results: Prophylaxis and treatment with P. emblica demonstrated significant improvement in functional outcome with a reduction in infarct size. Normalization of glutathione, nitrite, and malondialdehyde levels was also observed. Improvement in mitochondrial complex I and IV activities was also reported. Expressions of BDNF, PI3K, SDF1 and VEGF increased while that of ROCK2 decreased following P. emblica administration.

Conclusion: P. emblica regulates BDNF/PI3K pathway to modulate glutathione in ischemic stroke to confer mitoprotection and neuroprotection.

Keywords: Ischemia, mitochondria, Phyllanthus emblica, neuroprotection, natural products, stroke.

Graphical Abstract

[1]
Sarmah, D.; Kaur, H.; Saraf, J.; Vats, K.; Pravalika, K.; Wanve, M.; Kalia, K.; Borah, A.; Kumar, A.; Wang, X.; Yavagal, D.R.; Dave, K.R.; Bhattacharya, P. Mitochondrial dysfunction in stroke: Implications of stem cell therapy. Transl. Stroke Res., 2018, 10(2), 121-136.
[http://dx.doi.org/10.1007/s12975-018-0642-y] [PMID: 29926383]
[2]
Sarmah, D.; Kaur, H.; Saraf, J.; Pravalika, K.; Goswami, A.; Kalia, K.; Borah, A.; Wang, X.; Dave, K.R.; Yavagal, D.R.; Bhattacharya, P. Getting closer to an effective intervention of ischemic stroke: The big promise of stem cell. Transl. Stroke Res., 2018, 9(4), 356-374.
[http://dx.doi.org/10.1007/s12975-017-0580-0] [PMID: 29075984]
[3]
Sarmah, D.; Saraf, J.; Kaur, H.; Pravalika, K.; Tekade, R.K.; Borah, A.; Kalia, K.; Dave, K.R.; Bhattacharya, P. Stroke management: An emerging role of nanotechnology. Micromachines (Basel), 2017, 8(9), E262.
[http://dx.doi.org/10.3390/mi8090262] [PMID: 30400452]
[4]
Pravalika, K.; Sarmah, D.; Kaur, H.; Vats, K.; Saraf, J.; Wanve, M.; Kalia, K.; Borah, A.; Yavagal, D.R.; Dave, K.R.; Bhattacharya, P. Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life Sci., 2019, 216, 49-58.
[http://dx.doi.org/10.1016/j.lfs.2018.11.014] [PMID: 30414429]
[5]
Thirunavukkarasu, M.; Selvaraju, V.; Tapias, L.; Sanchez, J.A.; Palesty, J.A.; Maulik, N. Protective effects of Phyllanthus emblica against myocardial ischemia-reperfusion injury: The role of PI3-kinase/glycogen synthase kinase 3β/β-catenin pathway. J. Physiol. Biochem., 2015, 71(4), 623-633.
[http://dx.doi.org/10.1007/s13105-015-0426-8] [PMID: 26342597]
[7]
Zhang, J.; Miao, D.; Zhu, W.F.; Xu, J.; Liu, W.Y.; Kitdamrongtham, W.; Manosroi, J.; Abe, M.; Akihisa, T.; Feng, F. Biological activities of phenolics from the fruits of Phyllanthus emblica L.(Euphorbiaceae). Chem. Biodivers., 2017, 14(12), e1700404.
[http://dx.doi.org/10.1002/cbdv.201700404] [PMID: 28960771]
[8]
Usharani, P.; Merugu, P.L.; Nutalapati, C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: A randomised, double blind, placebo controlled clinical study. BMC Complement. Altern. Med., 2019, 19(1), 97.
[http://dx.doi.org/10.1186/s12906-019-2509-5] [PMID: 31060549]
[9]
Tasanarong, A.; Kongkham, S.; Itharat, A. Antioxidant effect of Phyllanthus emblica extract prevents contrast-induced acute kidney inju-ry. BMC Complement. Altern. Med., 2014, 14(1), 138.
[http://dx.doi.org/10.1186/1472-6882-14-138] [PMID: 24755233]
[10]
Yahayo, W.; Supabphol, A.; Supabphol, R. Suppression of human fibrosarcoma cell metastasis by Phyllanthus emblica extract in vitro. Asian Pac. J. Cancer Prev., 2013, 14(11), 6863-6867.
[http://dx.doi.org/10.7314/APJCP.2013.14.11.6863] [PMID: 24377618]
[11]
D’souza, J.J.; D’souza, P.P.; Fazal, F.; Kumar, A.; Bhat, H.P.; Baliga, M.S. Anti-diabetic effects of the Indian indigenous fruit Emblica officinalis gaertn: Active constituents and modes of action. Food Funct., 2014, 5(4), 635-644.
[http://dx.doi.org/10.1039/c3fo60366k] [PMID: 24577384]
[12]
Zhao, T; Sun, Q; Marques, M; Witcher, M. Anticancer properties of Phyllanthus emblica (Indian gooseberry) Oxidative medicine and cellular longevity, 2015 2015.
[13]
Karkon Varnosfaderani, S.; Hashem-Dabaghian, F.; Amin, G.; Bozorgi, M.; Heydarirad, G.; Nazem, E.; Nasiri Toosi, M.; Mosavat, S.H. Efficacy and safety of Amla (Phyllanthus emblica L.) in non-erosive reflux disease: A double-blind, randomized, placebo-controlled clin-ical trial. J. Integr. Med., 2018, 16(2), 126-131.
[http://dx.doi.org/10.1016/j.joim.2018.02.008] [PMID: 29526236]
[14]
Rajak, S.; Banerjee, S.K.; Sood, S.; Dinda, A.K.; Gupta, Y.K.; Gupta, S.K.; Maulik, S.K. Emblica officinalis causes myocardial adaptation and protects against oxidative stress in ischemic-reperfusion injury in rats. Phytother. Res., 2004, 18(1), 54-60.
[http://dx.doi.org/10.1002/ptr.1367] [PMID: 14750202]
[15]
Uddin, M.S.; Mamun, A.A.; Hossain, M.S.; Akter, F.; Iqbal, M.A.; Asaduzzaman, M. Exploring the effect of phyllanthus emblica l. on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: Promising natural gift for the mitigation of alz-heimer’s disease. Ann. Neurosci., 2016, 23(4), 218-229.
[http://dx.doi.org/10.1159/000449482] [PMID: 27780989]
[16]
Jordan, J. ; W.J.; de Groot P.; F, Galindo M. Mitochondria: The headquarters in ischemia-induced neuronal death Cent. Nerv. Sys. Agents Medi. Chem. (Formerly Current Medicinal ChemistryCentral Nervous System Agents), 2011, 11(2), 98-106.
[17]
Perez-Pinzon, M.A.; Stetler, R.A.; Fiskum, G. Novel mitochondrial targets for neuroprotection. J. Cereb. Blood Flow Metab., 2012, 32(7), 1362-1376.
[http://dx.doi.org/10.1038/jcbfm.2012.32] [PMID: 22453628]
[18]
Guo, X.; Sesaki, H.; Qi, X. Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. Biochem. J., 2014, 461(1), 137-146.
[http://dx.doi.org/10.1042/BJ20131438] [PMID: 24758576]
[19]
Konar, A.; Shah, N.; Singh, R.; Saxena, N.; Kaul, S.C.; Wadhwa, R.; Thakur, M.K. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One, 2011, 6(11), e27265.
[http://dx.doi.org/10.1371/journal.pone.0027265] [PMID: 22096544]
[20]
Liu, W.; Wang, X.; O’Connor, M.; Wang, G.; Han, F. Brain-derived neurotrophic factor and its potential therapeutic role in stroke comor-bidities. Neural Plast., 2020, 2020, 1969482.
[http://dx.doi.org/10.1155/2020/1969482] [PMID: 32399020]
[21]
Chen, A.; Xiong, L-J.; Tong, Y.; Mao, M. Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway. Mol. Med. Rep., 2013, 8(4), 1011-1016.
[http://dx.doi.org/10.3892/mmr.2013.1628] [PMID: 23942837]
[22]
Chang, J.; Yao, X.; Zou, H.; Wang, L.; Lu, Y.; Zhang, Q.; Zhao, H. BDNF/PI3K/Akt and Nogo-A/RhoA/ROCK signaling pathways contrib-ute to neurorestorative effect of Houshiheisan against cerebral ischemia injury in rats. J. Ethnopharmacol., 2016, 194, 1032-1042.
[http://dx.doi.org/10.1016/j.jep.2016.11.005] [PMID: 27833029]
[23]
Zhang, HB; Tu, XK; Chen, Q; Shi, SS Propofol reduces inflammatory brain injury after subarachnoid hemorrhage: Involvement of PI3K/Akt Pathway Journal of stroke and cerebrovascular diseases : The official journal of National Stroke Association 2019, 28(12)
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2019.104375]
[24]
Lien, E.C.; Lyssiotis, C.A.; Juvekar, A.; Hu, H.; Asara, J.M.; Cantley, L.C.; Toker, A. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. Nat. Cell Biol., 2016, 18(5), 572-578.
[http://dx.doi.org/10.1038/ncb3341] [PMID: 27088857]
[25]
Dringen, R.; Hirrlinger, J. Glutathione pathways in the brain. Biol. Chem., 2003, 384(4), 505-516.
[http://dx.doi.org/10.1515/BC.2003.059] [PMID: 12751781]
[26]
Wilkins, H.M.; Kirchhof, D.; Manning, E.; Joseph, J.W.; Linseman, D.A. Mitochondrial glutathione transport is a key determinant of neu-ronal susceptibility to oxidative and nitrosative stress. J. Biol. Chem., 2013, 288(7), 5091-5101.
[http://dx.doi.org/10.1074/jbc.M112.405738] [PMID: 23283974]
[27]
Busto, R.; Dietrich, W.D.; Globus, M.Y-T.; Valdés, I.; Scheinberg, P.; Ginsberg, M.D. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab., 1987, 7(6), 729-738.
[http://dx.doi.org/10.1038/jcbfm.1987.127] [PMID: 3693428]
[28]
Yavagal, D.R.; Lin, B.; Raval, A.P.; Garza, P.S.; Dong, C.; Zhao, W.; Rangel, E.B.; McNiece, I.; Rundek, T.; Sacco, R.L.; Perez-Pinzon, M.; Hare, J.M. Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PLoS One, 2014, 9(5), e93735.
[http://dx.doi.org/10.1371/journal.pone.0093735] [PMID: 24807059]
[29]
Belayev, L.; Busto, R.; Zhao, W.; Fernandez, G.; Ginsberg, M.D. Middle cerebral artery occlusion in the mouse by intraluminal suture coated with poly-L-lysine: Neurological and histological validation. Brain Res., 1999, 833(2), 181-190.
[http://dx.doi.org/10.1016/S0006-8993(99)01528-0] [PMID: 10375693]
[30]
Lin, B.; Ginsberg, M.D. Quantitative assessment of the normal cerebral microvasculature by endothelial barrier antigen (EBA) immuno-histochemistry: Application to focal cerebral ischemia. Brain Res., 2000, 865(2), 237-244.
[http://dx.doi.org/10.1016/S0006-8993(00)02228-9] [PMID: 10821926]
[31]
Longa, EZ; Weinstein, PR; Carlson, S; Cummins, R Reversible middle cerebral artery occlusion without craniectomy in rats stroke, 1989, 20(1), 84-91.
[32]
Ley, J.J.; Vigdorchik, A.; Belayev, L.; Zhao, W.; Busto, R.; Khoutorova, L.; Becker, D.A.; Ginsberg, M.D. Stilbazulenyl nitrone, a second-generation azulenyl nitrone antioxidant, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat: Neurobehav-ior, histopathology, and pharmacokinetics. J. Pharmacol. Exp. Ther., 2005, 313(3), 1090-1100.
[http://dx.doi.org/10.1124/jpet.105.083386] [PMID: 15716383]
[33]
Shen, C-C.; Yang, Y-C.; Chiao, M-T.; Cheng, W-Y.; Tsuei, Y-S.; Ko, J-L. Characterization of endogenous neural progenitor cells after experimental ischemic stroke. Curr. Neurovasc. Res., 2010, 7(1), 6-14.
[http://dx.doi.org/10.2174/156720210790820208] [PMID: 20158467]
[34]
Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc., 2006, 1(6), 3159-3165.
[http://dx.doi.org/10.1038/nprot.2006.378] [PMID: 17406579]
[35]
Granger, D.L.; Taintor, R.R.; Boockvar, K.S.; Hibbs, J.B., Jr Measurement of nitrate and nitrite in biological samples using nitrate reduc-tase and Griess reaction. Methods Enzymol., 1996, 268, 142-151.
[http://dx.doi.org/10.1016/S0076-6879(96)68016-1] [PMID: 8782580]
[36]
Amigo, I.; Traba, J.; Rueda Diez, C. Isolating brain mitochondria by differential centrifugation. Bio Protoc., 2016, 6, e1810.
[37]
King, T.E.; Howard, R.L. Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. Methods in enzymology; Elsevier, 1967, pp. 275-294.
[38]
King, T.E. Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. Methods in enzymology; Elsevier, 1967, pp. 322-331.
[39]
Lash, L.H.; Jones, D.P. Mitochondrial Dysfunction: Methods in Toxicology; Elsevier, 2013, p. 2.
[40]
Long, Q.; Huang, L.; Huang, K.; Yang, Q. Assessing mitochondrial bioenergetics in isolated mitochondria from mouse heart tissues using oroboros 2k-oxygraph. In: Nuclear Receptors; Springer, 2019; pp. 237-246.
[41]
Saraf, J.; Sarmah, D.; Vats, K.; Kaur, H.; Pravalika, K.; Wanve, M.; Kalia, K.; Borah, A.; Dave, K.R.; Yavagal, D.R.; Bhattacharya, P. Intra-arterial stem cell therapy modulates neuronal calcineurin and confers neuroprotection after ischemic stroke. Int. J. Neurosci., 2019, 129(10), 1039-1044.
[http://dx.doi.org/10.1080/00207454.2019.1633315] [PMID: 31203689]
[42]
Patel, R.A.G.; McMullen, P.W. Neuroprotection in the treatment of acute ischemic stroke. Prog. Cardiovasc. Dis., 2017, 59(6), 542-548.
[http://dx.doi.org/10.1016/j.pcad.2017.04.005] [PMID: 28465001]
[43]
Vats, K.; Sarmah, D.; Datta, A.; Saraf, J.; Kaur, H.; Pravalika, K. Intra-arterial stem cell therapy diminishes inflammasome activation after ischemic stroke: A possible role of acid sensing ion channel 1a. J. Mol. Neurosci., 2019, 1-8.
[PMID: 31820348]
[44]
Saini, R.; Sharma, N.; Oladeji, O.S.; Sourirajan, A.; Dev, K.; Zengin, G.; El-Shazly, M.; Kumar, V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J. Ethnopharmacol., 2022, 282, 114570.
[http://dx.doi.org/10.1016/j.jep.2021.114570] [PMID: 34480995]
[45]
Koh, S-H.; Lo, E.H. The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. J. Clin. Neurol., 2015, 11(4), 297-304.
[http://dx.doi.org/10.3988/jcn.2015.11.4.297] [PMID: 26320845]
[46]
Kisoh, K.; Hayashi, H.; Itoh, T.; Asada, M.; Arai, M.; Yuan, B.; Tanonaka, K.; Takagi, N. Involvement of GSK-3β phosphorylation through PI3-K/Akt in cerebral ischemia-induced neurogenesis in rats. Mol. Neurobiol., 2017, 54(10), 7917-7927.
[http://dx.doi.org/10.1007/s12035-016-0290-8] [PMID: 27866373]
[47]
Lan, R; Xiang, J; Zhang, Y; Wang, G-H; Bao, J; Li, W-W PI3K/Akt pathway contributes to neurovascular unit protection of Xiao-Xu-Ming decoction against focal cerebral ischemia and reperfusion injury in rats Evidence-Based Complementary and Alternative Medicine, 2013, 2013.
[48]
Dave, K.R.; DeFazio, R.A.; Raval, A.P.; Torraco, A.; Saul, I.; Barrientos, A.; Perez-Pinzon, M.A. Ischemic preconditioning targets the res-piration of synaptic mitochondria via protein kinase C ε. J. Neurosci., 2008, 28(16), 4172-4182.
[http://dx.doi.org/10.1523/JNEUROSCI.5471-07.2008] [PMID: 18417696]
[49]
Kaur, H.; Sarmah, D.; Veeresh, P.; Datta, A.; Kalia, K.; Borah, A.; Yavagal, D.R.; Bhattacharya, P. Endovascular stem cell therapy post stroke rescues neurons from endoplasmic reticulum stress-induced apoptosis by modulating brain-derived neurotrophic fac-tor/tropomyosin receptor kinase b signaling. ACS Chem. Neurosci., 2021, 12(19), 3745-3759.
[http://dx.doi.org/10.1021/acschemneuro.1c00506] [PMID: 34553602]
[50]
Gutiérrez-Fernández, M.; Fuentes, B.; Rodríguez-Frutos, B.; Ramos-Cejudo, J.; Vallejo-Cremades, M.T.; Díez-Tejedor, E. Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J. Cell. Mol. Med., 2012, 16(10), 2280-2290.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01575.x] [PMID: 22452968]
[51]
Wang, L.; Chen, Y.; Sternberg, P.; Cai, J. Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE. Invest. Ophthalmol. Vis. Sci., 2008, 49(4), 1671-1678.
[http://dx.doi.org/10.1167/iovs.07-1099] [PMID: 18385090]
[52]
Fournier, A.E.; Beer, J.; Arregui, C.O.; Essagian, C.; Aguayo, A.J.; McKerracher, L. Brain-derived neurotrophic factor modulates GAP-43 but not T α1 expression in injured retinal ganglion cells of adult rats. J. Neurosci. Res., 1997, 47(6), 561-572.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19970315)47:6<561::AID-JNR1>3.0.CO;2-B] [PMID: 9089204]
[53]
Greenberg, D.A.; Jin, K. Vascular endothelial growth factors (VEGFs) and stroke. Cell. Mol. Life Sci., 2013, 70(10), 1753-1761.
[http://dx.doi.org/10.1007/s00018-013-1282-8] [PMID: 23475070]
[54]
Niego, B.; Lee, N.; Larsson, P.; De Silva, T.M.; Au, A.E-L.; McCutcheon, F.; Medcalf, R.L. Selective inhibition of brain endothelial Rho-kinase-2 provides optimal protection of an in vitro blood-brain barrier from tissue-type plasminogen activator and plasmin. PLoS One, 2017, 12(5), e0177332.
[http://dx.doi.org/10.1371/journal.pone.0177332] [PMID: 28510599]
[55]
Lee, J.H.; Zheng, Y.; von Bornstadt, D.; Wei, Y.; Balcioglu, A.; Daneshmand, A.; Yalcin, N.; Yu, E.; Herisson, F.; Atalay, Y.B.; Kim, M.H.; Ahn, Y.J.; Balkaya, M.; Sweetnam, P.; Schueller, O.; Poyurovsky, M.V.; Kim, H.H.; Lo, E.H.; Furie, K.L.; Ayata, C. Selective rock 2 inhibition in focal cerebral ischemia. Ann. Clin. Transl. Neurol., 2014, 1(1), 2-14.
[http://dx.doi.org/10.1002/acn3.19] [PMID: 24466563]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy