Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Temozolomide: An Overview of Biological Properties, Drug Delivery Nanosystems, and Analytical Methods

Author(s): Jessyca Aparecida Paes Dutra, Marcela Tavares Luiz, Alberto Gomes Tavares Junior, Leonardo Delello Di Filippo, Suzana Gonçalves Carvalho and Marlus Chorilli*

Volume 28, Issue 25, 2022

Published on: 28 July, 2022

Page: [2073 - 2088] Pages: 16

DOI: 10.2174/1381612828666220603152918

Price: $65

Abstract

Temozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical properties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death. TMZ is more stable in acidic media (pH ≤ 5.0) than in basic media (pH ≥ 7.0) due to the protonated form that minimizes the catalytic process. Due to this, TMZ has high oral bioavailability, but it has a half-life of 1.8 h and low brain distribution (17.8%), requiring a repeated dosing regimen that limits its efficacy and increases adverse events. Drug delivery Nanosystems (DDNs) improve the physicochemical properties of TMZ and may provide controlled and targeted delivery. Therefore, DDNs can increase the efficacy and safety of TMZ. In this context, to ensure the efficiency of DDNs, analytical methods are used to evaluate TMZ pharmacokinetic parameters, encapsulation efficiency, and the release profile of DDNs. Among the methods, high-performance liquid chromatography is the most used due to its detection sensitivity in complex matrices such as tissues and plasma. Micellar electrokinetic chromatography features fast analysis and no sample pretreatment. Spectrophotometric methods are still used to determine encapsulation efficiency due to their low cost, despite their low sensitivity. This review summarizes the physicochemical and pharmacological properties of free TMZ and TMZ-loaded DDNs. In addition, this review addresses the main analytical methods employed to characterize TMZ in different matrices.

Keywords: Temozolomide metabolites, physicochemical properties, drug delivery, nanomedicines, chromatography, spectroscopy, electrophoresis.

[1]
Moody CL, Wheelhouse RT. The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals (Basel) 2014; 7(7): 797-838.
[http://dx.doi.org/10.3390/ph7070797] [PMID: 25014631]
[2]
FDA. Temodar for injection Food and drug administration United States 2009; 1-2. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022277_temodar_toc.cfm
[3]
FDA. Temodal Food and Drug Administration United States 1998. Available from https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/21029_Temodar_clinphrmr.pdf
[4]
Yung WKA, Prados MD, Yaya-Tur R, et al. Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. J Clin Oncol 1999; 17(9): 2762-71.
[http://dx.doi.org/10.1200/JCO.1999.17.9.2762] [PMID: 10561351]
[5]
Cohen MH, Johnson JR, Pazdur R. Food and drug administration drug approval summary: Temozolomide plus radiation therapy for the treatment of newly diagnosed glioblastoma multiforme. Clin Cancer Res 2005; 11(19): 6767-71.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0722] [PMID: 16203762]
[6]
Rao JU, Coman D, Walsh JJ, Ali MM, Huang Y, Hyder F. Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH. Sci Rep 2017; 7(1): 7865.
[http://dx.doi.org/10.1038/s41598-017-07609-7] [PMID: 28801587]
[7]
Delello Di Filippo L, Hofstätter Azambuja J, Paes Dutra JA, et al. Improving temozolomide biopharmaceutical properties in glioblastoma multiforme (GBM) treatment using GBM-targeting nanocarriers. Eur J Pharm Biopharm 2021; 168: 76-89.
[http://dx.doi.org/10.1016/j.ejpb.2021.08.011] [PMID: 34461214]
[8]
Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis 2016; 3(3): 198-210.
[http://dx.doi.org/10.1016/j.gendis.2016.04.007] [PMID: 30258889]
[9]
Yung WKA, Albright RE, Olson J, et al. A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 2000; 83(5): 588-93.
[http://dx.doi.org/10.1054/bjoc.2000.1316] [PMID: 10944597]
[10]
Ramalho MJ, Andrade S, Coelho MÁN, Loureiro JA, Pereira MC. Biophysical interaction of temozolomide and its active metabolite with biomembrane models: The relevance of drug-membrane interaction for glioblastoma multiforme therapy. Eur J Pharm Biopharm 2019; 136: 156-63.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.015] [PMID: 30682492]
[11]
Riganti C, Salaroglio IC, Pinzòn-Daza ML, et al. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling. Cell Mol Life Sci 2014; 71(3): 499-516.
[http://dx.doi.org/10.1007/s00018-013-1397-y] [PMID: 23771630]
[12]
Xiao Z-Z, Wang Z-F, Lan T, et al. Carmustine as a supplementary therapeutic option for glioblastoma: A systematic review and meta-analysis. Front Neurol 2020; 11: 1036.
[http://dx.doi.org/10.3389/fneur.2020.01036] [PMID: 33041980]
[13]
Enríquez Pérez J, Fritzell S, Kopecky J, Visse E, Darabi A, Siesjö P. The effect of locally delivered cisplatin is dependent on an intact immune function in an experimental glioma model. Sci Rep 2019; 9(1): 5632.
[http://dx.doi.org/10.1038/s41598-019-42001-7] [PMID: 30948731]
[14]
Tsang LLH, Quarterman CP, Gescher A, Slack JA. Comparison of the cytotoxicity in vitro of temozolomide and dacarbazine, prodrugs of 3-methyl-(triazen-1-yl)imidazole-4-carboxamide. Cancer Chemother Pharmacol 1991; 27(5): 342-6.
[http://dx.doi.org/10.1007/BF00688855] [PMID: 1998993]
[15]
Payne MJ, Pratap SE, Middleton MR. Temozolomide in the treatment of solid tumours: Current results and rationale for dosing/scheduling. Crit Rev Oncol Hematol 2005; 53(3): 241-52.
[http://dx.doi.org/10.1016/j.critrevonc.2004.10.004] [PMID: 15718149]
[16]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[17]
Demetzos C, Pippa N. Advanced drug delivery nanosystems (aDDnSs): A mini-review. Drug Deliv 2014; 21(4): 250-7.
[http://dx.doi.org/10.3109/10717544.2013.844745] [PMID: 24134707]
[18]
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2021; 269: 120492.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120492] [PMID: 33153757]
[19]
Ramalho M, Coelho MAN, Pereira MC. Nanocarriers for the delivery of temozolomide in the treatment of glioblastoma. In: Design and Development of New Nanocarriers. Elsevier 2018; pp. 687-722.
[20]
Calleja P, Irache JM, Zandueta C, Martínez-Oharriz C, Espuelas S. A combination of nanosystems for the delivery of cancer chemoimmunotherapeutic combinations: 1-Methyltryptophan nanocrystals and paclitaxel nanoparticles. Pharmacol Res 2017; 126: 77-83.
[http://dx.doi.org/10.1016/j.phrs.2017.09.004] [PMID: 28893628]
[21]
Ruiz-Gatón L, Espuelas S, Larrañeta E, Reviakine I, Yate LA, Irache JM. Pegylated poly(anhydride) nanoparticles for oral delivery of docetaxel. Eur J Pharm Sci 2018; 118: 165-75.
[http://dx.doi.org/10.1016/j.ejps.2018.03.028] [PMID: 29597043]
[22]
Betzer O, Shilo M, Opochinsky R, et al. The effect of nanoparticle size on the ability to cross the blood-brain barrier: An in vivo study. Nanomedicine (Lond) 2017; 12(13): 1533-46.
[http://dx.doi.org/10.2217/nnm-2017-0022] [PMID: 28621578]
[23]
Brown TD, Habibi N, Wu D, Lahann J, Mitragotri S. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood-brain barrier. ACS Biomater Sci Eng 2020; 6(9): 4916-28.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00743] [PMID: 33455287]
[24]
Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J Control Release 2016; 227: 23-37.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.026] [PMID: 26892752]
[25]
Ortiz R, Cabeza L, Perazzoli G, et al. Nanoformulations for glioblastoma multiforme: A new hope for treatment. Future Med Chem 2019; 11(18): 2459-80.
[http://dx.doi.org/10.4155/fmc-2018-0521] [PMID: 31544490]
[26]
Augustine R, Hasan A, Primavera R, Wilson RJ, Thakor AS, Kevadiya BD. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater Today Commun 2020; 25: 101692.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101692]
[27]
Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology 2014; 12(1): 5.
[http://dx.doi.org/10.1186/1477-3155-12-5] [PMID: 24491160]
[28]
Zhang T-T, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci 2016; 4(2): 219-29.
[http://dx.doi.org/10.1039/C5BM00383K] [PMID: 26646694]
[29]
Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater 2018; 3(10): 358-74.
[http://dx.doi.org/10.1038/s41578-018-0038-3]
[30]
Fu W, You C, Ma L, et al. Enhanced efficacy of temozolomide loaded by a tetrahedral framework DNA nanoparticle in the therapy for glioblastoma. ACS Appl Mater Interfaces 2019; 11(43): 39525-33.
[http://dx.doi.org/10.1021/acsami.9b13829] [PMID: 31601097]
[31]
Chu L, Wang A, Ni L, et al. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv 2018; 25(1): 1634-41.
[http://dx.doi.org/10.1080/10717544.2018.1494226] [PMID: 30176744]
[32]
Rabanel JM, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers. Curr Med Chem 2012.
[33]
Andrasi M, Bustos R, Gaspar A, Gomez FA, Klekner A. Analysis and stability study of temozolomide using capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878(21): 1801-8.
[http://dx.doi.org/10.1016/j.jchromb.2010.05.008] [PMID: 20627825]
[34]
Banstola A, Duwa R, Emami F, Jeong JH, Yook S. Enhanced caspase-mediated abrogation of autophagy by temozolomide-loaded and panitumumab-conjugated poly(lactic- co-glycolic acid) nanoparticles in epidermal growth factor receptor overexpressing glioblastoma cells. Mol Pharm 2020; 17(11): 4386-400.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00856] [PMID: 33079558]
[35]
Hu J, Wang J, Wang G, Yao Z, Dang X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int J Mol Med 2016; 37(3): 690-702.
[http://dx.doi.org/10.3892/ijmm.2016.2458] [PMID: 26782731]
[36]
Waghule T, Narayan Saha R, Singhvi G. UV spectroscopic method for estimation of temozolomide: Application in stability studies in simulated plasma pH, degradation rate kinetics, formulation design, and selection of dissolution media. Spectrochim Acta A Mol Biomol Spectrosc 2021; 258: 119848.
[http://dx.doi.org/10.1016/j.saa.2021.119848] [PMID: 33933945]
[37]
Ishaq M, Hindustan AA, Shaik M. S P, B F. Analytical method development and validation for the estimation of temozolomide in phosphate buffer pH 2.0 as a solvent by UV spectroscopy. Int J Pharm Pharm Res 2014; 4: 17-20.
[38]
Michels LR, Fachel FNS, Azambuja JH, Gelsleichter NE, Braganhol E, Teixeira HF. HPLC-UV method for temozolomide determination in complex biological matrices: Application for in vitro, ex vivo and in vivo studies. Biomed Chromatogr 2019; 33(10): e4615.
[http://dx.doi.org/10.1002/bmc.4615] [PMID: 31166608]
[39]
Jedynak Ł, Puchalska M, Zezula M, Łaszcz M, Łuniewski W, Zagrodzka J. Stability of sample solution as a crucial point during HPLC determination of chemical purity of temozolomide drug substance. J Pharm Biomed Anal 2013; 83: 19-27.
[http://dx.doi.org/10.1016/j.jpba.2013.04.032] [PMID: 23702563]
[40]
Goldwirt L, Zahr N, Farinotti R, Fernandez C. Development of a new UPLC-MSMS method for the determination of temozolomide in mice: Application to plasma pharmacokinetics and brain distribution study. Biomed Chromatogr 2013; 27(7): 889-93.
[http://dx.doi.org/10.1002/bmc.2877] [PMID: 23436249]
[41]
Kapçak E, Şatana Kara EH. Development and full validation of a stability-indicating RP-LC method for the determination of anticancer drug temozolomide in pharmaceutical forms. Turk J Pharm Sci 2018.
[http://dx.doi.org/10.4274/tjps.43265]
[42]
EMEA. Temodal European Medicines Agency 2004; 1-25. Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/temodal-epar-scientific-discussion_en.pdf
[43]
Mirzaei S, Khalilian MH, Taherpour AA. Mechanistic study of the hydrolytic degradation and protonation of temozolomide. RSC Advances. Royal Society of Chemistry 2015; 5: 41112-9.
[44]
Babu NJ, Reddy LS, Aitipamula S, Nangia A. Polymorphs and polymorphic cocrystals of temozolomide. Chem Asian J 2008; 3(7): 1122-33.
[http://dx.doi.org/10.1002/asia.200800070] [PMID: 18512823]
[45]
Łaszcz M, Kubiszewski M, Jedynak L, et al. Identification and physicochemical characteristics of temozolomide process-related impurities. Molecules 2013; 18(12): 15344-56.
[http://dx.doi.org/10.3390/molecules181215344] [PMID: 24335615]
[46]
Denny BJ, Wheelhouse RT, Stevens MFG, Tsang LLH, Slack JA. NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 1994; 33(31): 9045-51.
[http://dx.doi.org/10.1021/bi00197a003] [PMID: 8049205]
[47]
Newlands ES, Stevens MFG, Wedge SR, Wheelhouse RT, Brock C. Temozolomide: A review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 1997; 23(1): 35-61.
[http://dx.doi.org/10.1016/S0305-7372(97)90019-0] [PMID: 9189180]
[48]
Stéphanou A, Ballesta A. pH as a potential therapeutic target to improve temozolomide antitumor efficacy: A mechanistic modeling study. Pharmacol Res Perspect 2019; 7(1): e00454.
[http://dx.doi.org/10.1002/prp2.454] [PMID: 30705757]
[49]
Kim HK, Lin CC, Parker D, et al. High-performance liquid chromatographic determination and stability of 5-(3-methyltriazen-1-yl)-imidazo-4-carboximide, the biologically active product of the antitumor agent temozolomide, in human plasma. J Chromatogr B Biomed Sci Appl 1997; 703(1-2): 225-33.
[http://dx.doi.org/10.1016/S0378-4347(97)00431-3] [PMID: 9448080]
[50]
Panetta JC, Kirstein MN, Gajjar A, et al. Population pharmacokinetics of temozolomide and metabolites in infants and children with primary central nervous system tumors. Cancer Chemother Pharmacol 2003; 52(6): 435-41.
[http://dx.doi.org/10.1007/s00280-003-0670-4] [PMID: 13680158]
[51]
Khalilian MH, Mirzaei S, Taherpour AA. The simulation of UV spectroscopy and electronic analysis of temozolomide and dacarbazine chemical decomposition to their metabolites. J Mol Model 2016; 22(11): 270.
[http://dx.doi.org/10.1007/s00894-016-3133-7] [PMID: 27783227]
[52]
Daniel P, Sabri S, Chaddad A, et al. Temozolomide induced hypermutation in glioma: Evolutionary mechanisms and therapeutic opportunities. Front Oncol 2019; 9: 41.
[http://dx.doi.org/10.3389/fonc.2019.00041] [PMID: 30778375]
[53]
Tatar Z, Thivat E, Planchat E, et al. Temozolomide and unusual indications: Review of literature. Cancer Treat Rev 2013; 39(2): 125-35.
[http://dx.doi.org/10.1016/j.ctrv.2012.06.002] [PMID: 22818211]
[54]
Diez BD, Statkevich P, Zhu Y, et al. Evaluation of the exposure equivalence of oral versus intravenous temozolomide. Cancer Chemother Pharmacol 2010; 65(4): 727-34.
[http://dx.doi.org/10.1007/s00280-009-1078-6] [PMID: 19641919]
[55]
Baker SD, Wirth M, Statkevich P, et al. Absorption, metabolism, and excretion of 14 C-temozolomide following oral administration to patients with advanced cancer. Clin Cancer Res 1999; 5(2): 309-17.
[56]
Bower M, Newlands ES, Bleehen NM, et al. Multicentre CRC phase II trial of temozolomide in recurrent or progressive high-grade glioma. Cancer Chemother Pharmacol 1997; 40(6): 484-8.
[http://dx.doi.org/10.1007/s002800050691] [PMID: 9332462]
[57]
Riccardi A, Mazzarella G, Cefalo G, et al. Pharmacokinetics of temozolomide given three times a day in pediatric and adult patients. Cancer Chemother Pharmacol 2003; 52(6): 459-64.
[http://dx.doi.org/10.1007/s00280-003-0677-x] [PMID: 13680160]
[58]
Armstrong TS, Cao Y, Scheurer ME, et al. Risk analysis of severe myelotoxicity with temozolomide: The effects of clinical and genetic factors. Neuro-oncol 2009; 11(6): 825-32.
[http://dx.doi.org/10.1215/15228517-2008-120] [PMID: 19179423]
[59]
Brada M, Judson I, Beale P, et al. Phase I dose-escalation and pharmacokinetic study of temozolomide (SCH 52365) for refractory or relapsing malignancies. Br J Cancer 1999; 81(6): 1022-30.
[http://dx.doi.org/10.1038/sj.bjc.6690802] [PMID: 10576660]
[60]
Meany HJ, Warren KE, Fox E, Cole DE, Aikin AA, Balis FM. Pharmacokinetics of temozolomide administered in combination with O6-benzylguanine in children and adolescents with refractory solid tumors. Cancer Chemother Pharmacol 2009; 65(1): 137-42.
[http://dx.doi.org/10.1007/s00280-009-1015-8] [PMID: 19430790]
[61]
Hammond LA, Eckardt JR, Baker SD, et al. Phase I and pharmacokinetic study of temozolomide on a daily-for-5-days schedule in patients with advanced solid malignancies. J Clin Oncol 1999; 17(8): 2604-13.
[http://dx.doi.org/10.1200/JCO.1999.17.8.2604] [PMID: 10561328]
[62]
Ansari L, Jaafari MR, Bastami TR, Malaekeh-Nikouei B. Improved anticancer efficacy of epirubicin by magnetic mesoporous silica nanoparticles: In vitro and in vivo studies. Artif Cells Nanomed Biotechnol 2018; 46(sup2): 594-606.
[http://dx.doi.org/10.1080/21691401.2018.1464461] [PMID: 29688064]
[63]
Kim H, Likhari P, Parker D, et al. High-performance liquid chromatographic analysis and stability of anti-tumor agent temozolomide in human plasma. J Pharm Biomed Anal 2001; 24(3): 461-8.
[http://dx.doi.org/10.1016/S0731-7085(00)00466-0] [PMID: 11199225]
[64]
Khosa A, Krishna KV, Saha RN, Dubey SK, Reddi S. Krishna K v., Saha RN, Dubey SK, Reddi S. A simplified and sensitive validated RP-HPLC method for determination of temozolomide in rat plasma and its application to a pharmacokinetic study. J Liq Chromatogr Relat Technol 2018; 41(10): 692-7.
[http://dx.doi.org/10.1080/10826076.2018.1511803]
[65]
Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: Potential implications for the current approach to chemoradiation. Clin Cancer Res 2009; 15(22): 7092-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1349] [PMID: 19861433]
[66]
Patel M, McCully C, Godwin K, Balis FM. Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J Neurooncol 2003; 61(3): 203-7.
[http://dx.doi.org/10.1023/A:1022592913323] [PMID: 12675312]
[67]
Ananta JS, Paulmurugan R, Massoud TF. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: A biophysical and cell culture evaluation. Neurol Res 2016; 38(1): 51-9.
[http://dx.doi.org/10.1080/01616412.2015.1133025] [PMID: 26905383]
[68]
Gerson SL, Caimi PF, William BM, Creger RJ. Pharmacology and molecular mechanisms of antineoplastic agents for hematologic malignancies hematology. Elsevier 2018.
[69]
Tsang LLH, Farmer PB, Gescher A, Slack JA. Characterisation of urinary metabolites of temozolomide in humans and mice and evaluation of their cytotoxicity. Cancer Chemother Pharmacol 1990; 26(6): 429-36.
[http://dx.doi.org/10.1007/BF02994094] [PMID: 2225314]
[70]
Lewis BC, Mackenzie PI, Miners JO. Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine. Mol Pharmacol 2011; 80(5): 879-88.
[http://dx.doi.org/10.1124/mol.111.072124] [PMID: 21816953]
[71]
Alonso MM, Gomez-Manzano C, Bekele BN, Yung WKA, Fueyo J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 2007; 67(24): 11499-504.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5312] [PMID: 18089777]
[72]
Wyatt MD, Pittman DL. Methylating agents and DNA repair responses: Methylated bases and sources of strand breaks. Chem Res Toxicol 2006; 19(12): 1580-94.
[http://dx.doi.org/10.1021/tx060164e] [PMID: 17173371]
[73]
Baer JC, Freeman AA, Newlands ES, Watson AJ, Rafferty JA, Margison GP. Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumour cells. Br J Cancer 1993; 67(6): 1299-302.
[http://dx.doi.org/10.1038/bjc.1993.241] [PMID: 8512814]
[74]
Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[75]
Duwa R, Banstola A, Emami F, Jeong J-H, Lee S, Yook S. Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells. J Drug Deliv Sci Technol 2020; 60: 101928.
[http://dx.doi.org/10.1016/j.jddst.2020.101928]
[76]
Vanza J, Jani P, Pandya N, Tandel H. Formulation and statistical optimization of intravenous temozolomide-loaded PEGylated liposomes to treat glioblastoma multiforme by three-level factorial design. Drug Dev Ind Pharm 2018; 44(6): 923-33.
[http://dx.doi.org/10.1080/03639045.2017.1421661] [PMID: 29280385]
[77]
Song S, Mao G, Du J, Zhu X. Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv 2016; 23(4): 1404-8.
[http://dx.doi.org/10.3109/10717544.2015.1064186] [PMID: 26203687]
[78]
Khan A, Aqil M, Imam SS, et al. Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: Characterization, nasal absorption, histopathology and cell line study. Int J Biol Macromol 2018; 116: 1260-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.079] [PMID: 29775717]
[79]
Peng Y, Huang J, Xiao H, Wu T, Shuai X. Codelivery of temozolomide and siRNA with polymeric nanocarrier for effective glioma treatment. Int J Nanomedicine 2018; 13: 3467-80.
[http://dx.doi.org/10.2147/IJN.S164611] [PMID: 29942129]
[80]
Tang Z, He C, Tian H, et al. Polymeric nanostructured materials for biomedical applications. Prog Polym Sci 2016; 60: 86-128.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[81]
Almeida Furquim de Camargo B, Soares Silva DE, Noronha da Silva A, et al. New silver(I) coordination compound loaded into polymeric nanoparticles as a strategy to improve in vitro anti-helicobacter pylori activity. Mol Pharm 2020; 17(7): 2287-98.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01264] [PMID: 32515970]
[82]
Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003; 20(5): 357-403.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20] [PMID: 14959789]
[83]
Ubrich N, Bouillot P, Pellerin C, Hoffman M, Maincent P. Preparation and characterization of propranolol hydrochloride nanoparticles: A comparative study. J Control Release 2004; 97(2): 291-300.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.023] [PMID: 15196756]
[84]
Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006; 3(1): 139-62.
[http://dx.doi.org/10.1517/17425247.3.1.139] [PMID: 16370946]
[85]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[86]
Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 2012; 41(7): 2545-61.
[http://dx.doi.org/10.1039/c2cs15327k] [PMID: 22334259]
[87]
Ramalho MJ, Pereira MC. Preparation and characterization of polymeric nanoparticles: An interdisciplinary experiment. J Chem Educ 2016; 93(8): 1446-51.
[http://dx.doi.org/10.1021/acs.jchemed.5b00837]
[88]
Aires Fernandes M. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids Surf A Physicochem Eng Asp Elsevier BV 2021; 611: 125806.
[89]
Ramalho MJ, Sevin E, Gosselet F, et al. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int J Pharm 2018; 545(1-2): 84-92.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.062] [PMID: 29715532]
[90]
Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332: 312-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[91]
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014; 5: 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[92]
Samad A, Alam MI, Saxena K. Dendrimers: A class of polymers in the nanotechnology for the delivery of active pharmaceuticals. Curr Pharm Des 2009; 15(25): 2958-69.
[http://dx.doi.org/10.2174/138161209789058200] [PMID: 19754372]
[93]
Jiang G, Li R, Tang J, et al. Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells. Oncol Rep 2017; 37(2): 995-1001.
[http://dx.doi.org/10.3892/or.2016.5342] [PMID: 28035395]
[94]
Micheli MR, Bova R, Magini A, Polidoro M, Emiliani C. Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Patents CNS Drug Discov 2012; 7(1): 71-86.
[http://dx.doi.org/10.2174/157488912798842241] [PMID: 22283231]
[95]
Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[96]
Lim SB, Banerjee A, Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 2012; 163(1): 34-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.002] [PMID: 22698939]
[97]
Waterhouse RN. Determination of lipophilicity and its use as a predictor of blood-brain barrier penetration of molecular imaging agents. Mol Imaging Biol 2003; 5(6): 376-89.
[http://dx.doi.org/10.1016/j.mibio.2003.09.014] [PMID: 14667492]
[98]
Paliwal R, Paliwal SR, Kenwat R, Das Kurmi B, Sahu MK. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30(3): 179-94.
[99]
Jansook P, Fülöp Z, Ritthidej GC. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): Physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm 2019; 45(4): 560-7.
[http://dx.doi.org/10.1080/03639045.2019.1569023] [PMID: 30632399]
[100]
Oshiro-Junior JA, Sato MR, Boni FI, et al. Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater Sci Eng C 2020; 108: 110462.
[http://dx.doi.org/10.1016/j.msec.2019.110462] [PMID: 31923986]
[101]
Mihranyan A, Ferraz N, Strømme M. Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci 2012; 57(5): 875-910.
[http://dx.doi.org/10.1016/j.pmatsci.2011.10.001]
[102]
Orza A, Soriţău O, Tomuleasa C, et al. Reversing chemoresistance of malignant glioma stem cells using gold nanoparticles. Int J Nanomedicine 2013; 8: 689-702.
[http://dx.doi.org/10.2147/IJN.S37481] [PMID: 23467447]
[103]
Wu S-H, Mou C-Y, Lin H-P. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 2013; 42(9): 3862-75.
[http://dx.doi.org/10.1039/c3cs35405a] [PMID: 23403864]
[104]
Xu C, Lei C, Yu C. Mesoporous silica nanoparticles for protein protection and delivery. Front Chem 2019; 7: 290.
[http://dx.doi.org/10.3389/fchem.2019.00290] [PMID: 31119124]
[105]
Jiang C. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep 2011.
[http://dx.doi.org/10.3892/or.2011.1535] [PMID: 22075712]
[106]
Bertucci A, Prasetyanto EA, Septiadi D, et al. Combined delivery of temozolomide and Anti-miR221 PNA using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small 2015; 11(42): 5687-95.
[http://dx.doi.org/10.1002/smll.201500540] [PMID: 26395266]
[107]
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid nanosystems for biomedical applications. ACS Nano 2021; 15(2): 2099-142.
[http://dx.doi.org/10.1021/acsnano.0c09382] [PMID: 33497197]
[108]
Wang L, Tang S, Yu Y, et al. Intranasal delivery of temozolomide-conjugated gold nanoparticles functionalized with Anti-EphA3 for glioblastoma targeting. Mol Pharm 2021; 18(3): 915-27.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00911] [PMID: 33417456]
[109]
Sahli F, Courcelle M, Palama T, Djaker N, Savarin P, Spadavecchia J. Temozolomide, gemcitabine, and decitabine hybrid nanoconjugates: From design to proof-of-concept (PoC) of synergies toward the understanding of drug impact on human glioblastoma cells. J Med Chem 2020; 63(13): 7410-21.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00694] [PMID: 32524814]
[110]
Ling Y, Wei K, Zou F, Zhong S. Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Int J Pharm 2012; 430(1-2): 266-75.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.047] [PMID: 22486964]
[111]
Zhang J, Ning L, Huang J, Zhang C, Pu K. Activatable molecular agents for cancer theranostics. Chemical Science. Royal Society of Chemistry 2020; 11: 618-30.
[112]
Tavares Junior AG, de Araújo JTC, Meneguin AB, Chorilli M. Characteristics, properties and analytical/bioanalytical methods of 5-Aminosalicylic acid: A review. Crit Rev Anal Chem 2020; 1-15.
[http://dx.doi.org/10.1080/10408347.2020.1848516] [PMID: 33258695]
[113]
Xu K, Zhang L, Gu Y, et al. Increased the TMZ concentration in brain by poly(2-ethyl-2-oxazoline) conjugated temozolomide prodrug micelles for glioblastoma treatment. Eur Polym J 2021; 145: 110232.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110232]
[114]
Di Martino A, Kucharczyk P, Capakova Z, Humpolicek P, Sedlarik V. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles. J Nanopart Res 2017; 19(2): 71.
[http://dx.doi.org/10.1007/s11051-017-3756-3] [PMID: 28260965]
[115]
Lee CY, Ooi IH. Preparation of temozolomide-loaded nanoparticles for glioblastoma multiforme targeting—ideal versus reality. Pharmaceuticals (Basel) 2016; 9(3): 9.
[http://dx.doi.org/10.3390/ph9030054] [PMID: 27618068]
[116]
Fang C, Wang K, Stephen ZR, et al. Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl Mater Interfaces 2015; 7(12): 6674-82.
[http://dx.doi.org/10.1021/am5092165] [PMID: 25751368]
[117]
Shamsipour M, Mansouri AM, Moradipour P. Temozolomide conjugated carbon quantum dots embedded in core/shell nanofibers prepared by coaxial electrospinning as an implantable delivery system for cell imaging and sustained drug release. AAPS PharmSciTech 2019; 20(7): 259.
[http://dx.doi.org/10.1208/s12249-019-1466-0] [PMID: 31332574]
[118]
Miller K, Dixit S, Bredlau AL, Moore A, McKinnon E, Broome AM. Delivery of a drug cache to glioma cells overexpressing platelet-derived growth factor receptor using lipid nanocarriers. Nanomedicine (Lond) 2016; 11(6): 581-95.
[http://dx.doi.org/10.2217/nnm.15.218] [PMID: 27003178]
[119]
Kwon YM, Je JY, Cha SH, Oh Y, Cho WH. Synergistic combination of chemo-phototherapy based on temozolomide/ICG-loaded iron oxide nanoparticles for brain cancer treatment. Oncol Rep 2019; 42(5): 1709-24.
[http://dx.doi.org/10.3892/or.2019.7289] [PMID: 31436296]
[120]
Dendisová M, Jeništová A, Parchaňská-Kokaislová A, Matějka P, Prokopec V, Švecová M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal Chim Acta 2018; 1031: 1-14.
[http://dx.doi.org/10.1016/j.aca.2018.05.046] [PMID: 30119727]
[121]
Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Analyt Chem 2015; 80: 30-40.
[http://dx.doi.org/10.1016/j.trac.2015.06.014]
[122]
Bhat SA, Ahmad S. Quantum chemical calculations and analysis of FTIR, FT-Raman and UV-Vis spectra of temozolomide molecule. J Mol Struct 2015; 1099: 453-62.
[http://dx.doi.org/10.1016/j.molstruc.2015.07.002]
[123]
Kudarha RR, Sawant KK. Hyaluronic acid conjugated albumin nanoparticles for efficient receptor mediated brain targeted delivery of temozolomide. J Drug Deliv Sci Technol 2021; 61: 102129.
[http://dx.doi.org/10.1016/j.jddst.2020.102129]
[124]
Irani M, Mir Mohamad Sadeghi G, Haririan I. Gold coated poly (ε-caprolactonediol) based polyurethane nanofibers for controlled release of temozolomide. Biomed Pharmacother 2017; 88: 667-76.
[http://dx.doi.org/10.1016/j.biopha.2017.01.097] [PMID: 28152475]
[125]
Sayiner O, Arisoy S, Comoglu T, Ozbay FG, Esendagli G. Development and in vitro evaluation of temozolomide-loaded PLGA nanoparticles in a thermoreversible hydrogel system for local administration in glioblastoma multiforme. J Drug Deliv Sci Technol 2020; 57: 101627.
[http://dx.doi.org/10.1016/j.jddst.2020.101627]
[126]
Auner GW, Koya SK, Huang C, et al. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev 2018; 37(4): 691-717.
[http://dx.doi.org/10.1007/s10555-018-9770-9] [PMID: 30569241]
[127]
Zavaleta CL, Kircher MF, Gambhir SS. Raman’s “effect” on molecular imaging. J Nucl Med 2011; 52(12): 1839-44.
[http://dx.doi.org/10.2967/jnumed.111.087775] [PMID: 21868625]
[128]
Petry R, Schmitt M, Popp J. Raman spectroscopy-a prospective tool in the life sciences. ChemPhysChem 2003; 4(1): 14-30.
[http://dx.doi.org/10.1002/cphc.200390004] [PMID: 12596463]
[129]
Kaur E, Sahu A, Hole AR, et al. Unique spectral markers discern recurrent Glioblastoma cells from heterogeneous parent population. Sci Rep 2016; 6(1): 26538.
[http://dx.doi.org/10.1038/srep26538] [PMID: 27221528]
[130]
Morrison KA, Clowers BH. Fundamentals and applications of incorporating chromatographic separations with ion mobility-mass spectrometry. Trends Analyt Chem 2019; 119: 115625.
[http://dx.doi.org/10.1016/j.trac.2019.115625]
[131]
League-Pascual JC, Lester-McCully CM, Shandilya S, et al. Plasma and cerebrospinal fluid pharmacokinetics of select chemotherapeutic agents following intranasal delivery in a non-human primate model. J Neurooncol 2017; 132(3): 401-7.
[http://dx.doi.org/10.1007/s11060-017-2388-x] [PMID: 28290002]
[132]
Peer CJ, Ronner L, Rodgers L, Lester McCully CM, Warren KE, Figg WD. Quantification of temozolomide in nonhuman primate fluids by isocratic ultra-high performance liquid chromatography-tandem mass spectrometry to study brain tissue penetration following intranasal or intravenous delivery. Separations 2016; 3(1): 3.
[http://dx.doi.org/10.3390/chromatography3010004] [PMID: 33313078]
[133]
El Mubarak MA, Stylos EK, Chatziathanasiadou MV, et al. Development and validation of simple step protein precipitation UHPLC-MS/MS methods for quantitation of temozolomide in cancer patient plasma samples. J Pharm Biomed Anal 2019; 162: 164-70.
[http://dx.doi.org/10.1016/j.jpba.2018.09.019] [PMID: 30243056]
[134]
Jain D, Athawale R, Bajaj A, Shrikhande S. Double-salting out assisted liquid-liquid extraction (SALLE) HPLC method for estimation of temozolomide from biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 970: 86-94.
[http://dx.doi.org/10.1016/j.jchromb.2014.02.031] [PMID: 25240926]
[135]
Attari Z, Kumar L, Mallikarjuna Rao C, Koteshwara KB. Reversed-Phase HPLC method for determination of temozolomide in rat plasma and brain: Simple, sensitive and robust method. Pharm Chem J 2018; 52(3): 266-70.
[http://dx.doi.org/10.1007/s11094-018-1804-7]
[136]
Gilant E, Kaza M, Szlagowska A, Serafin-Byczak K, Rudzki PJ. Validated HPLC method for determination of temozolomide in human plasma. Acta Pol Pharm 2012; 69(6): 1347-55.
[PMID: 23285701]
[137]
Ishaq M, Ishaq BM, Prakash KV, Krishnamohan G. Development and validation of a reverse-phase HPLC method for analysis of temozolomide in a capsule formulation. Int J Chem Sci 2013.
[138]
Hu S, Li PCH. Micellar electrokinetic capillary chromatographic separation and fluorescent detection of amino acids derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole. J Chromatogr A 2000; 876(1-2): 183-91.
[http://dx.doi.org/10.1016/S0021-9673(00)00163-1] [PMID: 10823513]
[139]
Hancu G, Simon B, Rusu A, Mircia E, Gyéresi Á. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis. In: Advanced Pharmaceutical Bulletin Tabriz University of Medical Sciences. 2013; 3: pp. 1-8.
[140]
Brandes AA, Tosoni A, Cavallo G, et al. Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent glioblastoma: Phase II study from gruppo italiano cooperativo di neuro-oncologia (GICNO). Br J Cancer 2006; 95(9): 1155-60.
[http://dx.doi.org/10.1038/sj.bjc.6603376] [PMID: 17024124]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy