Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Biomarkers for Parkinson’s Disease and Neurodegenerative Disorders: A Role for Non-coding RNAs

Author(s): Kenneth Maiese

Volume 19, Issue 2, 2022

Published on: 02 June, 2022

Page: [127 - 130] Pages: 4

DOI: 10.2174/1567202619666220602125806

conference banner
Next »
[1]
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99(2): 128-48.
[2]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[3]
Maiese K. The Challenges for Drug Development: Cytokines, Genes, and Stem Cells. Curr Neurovasc Res 2012; 9(4): 231-2.
[4]
Maiese K. Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res 2014; 9(15): 1413-7.
[5]
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Badavath VN, et al. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer’s disease. Metab Brain Dis 2021.
[6]
Jarero-Basulto J, Rivera-Cervantes M, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current evidence on the protective effects of recombinant human erythropoietin and its molecular variants against pathological hallmarks of Alzheimer’s Disease. Pharmaceuticals (Basel, Switzerland) 2020; 13(424): 1-22.
[7]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[8]
Maiese K. Moving to the rhythm with clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[9]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Front Biosci (Landmark edition) 2021; 26(9): 614-27.
[10]
Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19(1): 51-60.
[11]
Li X, Feng Y, Wang XX, Truong D, Wu YC. The Critical Role of SIRT1 in Parkinson’s Disease: Mechanism and Therapeutic Considerations. Aging Dis 2020; 11(6): 1608-22.
[12]
Vallée A, Vallée JN, Lecarpentier Y. Parkinson’s Disease: Potential actions of lithium by targeting the WNT/β-Catenin Pathway, Oxidative Stress, Inflammation and Glutamatergic pathway. Cells 2021; 10(2)
[13]
Huse DM, Schulman K, Orsini L, Castelli-Haley J, Kennedy S, Lenhart G. Burden of illness in Parkinson’s disease. Mov Disord 2005; 20(11): 1449-54.
[14]
Liu Y, Niu L, Liu X, Cheng C, Le W. Recent progress in non-motor features of Parkinson’s Disease with a focus on circadian rhythm dysregulation. Neurosci Bull 2021.
[15]
Odnokoz O, Nakatsuka K, Wright C, et al. Mitochondrial redox signaling is critical to the normal functioning of the neuronal system. Front Cell Dev Biol 2021.
[16]
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116: 102012.
[17]
Rey F, Ottolenghi S, Giallongo T, et al. Mitochondrial metabolism as target of the neuroprotective role of erythropoietin in Parkinson’s Disease. Antioxidants (Basel, Switzerland). 2021; 10.(1)
[18]
Su LD, Wang N, Han J, Shen Y. Group 1 metabotropic glutamate receptors in neurological and psychiatric diseases: Mechanisms and prospective. Neuroscientist 2021; 10738584211021018.
[19]
Wang H, Yang F, Zhang S, Xin R, Sun Y. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis 2021; 7(1): 70.
[20]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[21]
Farmer K, Abd-Elrahman KS, Derksen A, et al. mGluR5 Allosteric modulation promotes neurorecovery in a 6-OHDA-Toxicant model of Parkinson’s Disease. Mol Neurobiol 2020; 57(3): 1418-31.
[22]
Jayaraj RL, Beiram R, Azimullah S, et al. Valeric acid protects dopaminergic neurons by suppressing oxidative stress, neuroinflammation and modulating autophagy pathways. Int J Mol Sci 2020; 21(20)
[23]
Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 2013; 13(11): 13830-66.
[24]
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol neurodegenerat 2021; 16(1): 442.
[25]
Zhou Q, Liu C, Liu W, et al. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci 2015; 143(1): 81-96.
[26]
Maiese K. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann Med 2014; 46(8): 587-96.
[27]
Maiese K. Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin. Curr Neurovasc Res 2017; 14(2): 184-9.
[28]
Maiese K. A common link in neurovascular regenerative pathways: Protein kinase B (Akt). Curr Neurovasc Res 2022.
[29]
Wu J, Zhu D, Zhang J, Li G, Liu Z, Sun J. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3beta/mTOR pathway. Biochem Biophys Res Commun 2015; 465(3): 368-73.
[30]
Xu Y, Liu C, Chen S, et al. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease. Cell Signal 2014; 26(8): 1680-9.
[31]
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal pathway as potential therapeutic target in Parkinson’s Disease. Cells 2021; 10(12)
[32]
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 154(4): e15002.
[33]
Maiese K, Fox O. Proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015: 569392.
[34]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. (4th ed.). Autophagy 2021; pp. 1-382.
[35]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Exp Opin Therapeut Targets 2012; 16(12): 1203-14.
[36]
Holling T, Bhavani GS, von Elsner L, et al. A homozygous hypomorphic BNIP1 variant causes an increase in autophagosomes and reduced autophagic flux and results in a spondylo-epiphyseal dysplasia. Hum Mutat 2022.
[37]
McCoin CS, Franczak E, Deng F, Pei D, Ding WX, Thyfault JP. Acute exercise rapidly activates hepatic mitophagic flux. J Appl Physiol 1985; 2022.
[38]
Qin C, Lu Y, Bai L, Wang K. The molecular regulation of autophagy in antimicrobial immunity. J Mol Cell Biol 2022.
[39]
Maiese K. Prospects and Perspectives for WISP1 (CCN4) in Diabetes Mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[40]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 2021; 16(3): 448-55.
[41]
Maiese K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr Neurovasc Res 2021.
[42]
Jeong JK, Moon MH, Bae BC, et al. Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 2012; 73(2): 99-105.
[43]
Williams AC, Hill LJ, Ramsden DB. Nicotinamide, NAD(P)(H), and Methyl-Group homeostasis evolved and became a determinant of ageing diseases: Hypotheses and lessons from pellagra. Curr Gerontol Geriatr Res 2012; 2012: 302875.
[44]
Choi KC, Kim SH, Ha JY, Kim ST, Son JH. A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. J Neurochem 2010; 112(2): 366-76.
[45]
Mishra AK. ur Rasheed MS, Shukla S, Tripathi MK, Dixit A, Singh MP. Aberrant autophagy and parkinsonism: Does correction rescue from disease progression? Mol Neurobiol 2015; 51(3): 893-908.
[46]
Zhang Y, Wu Q, Zhang L, et al. Caffeic acid reduces A53T alpha-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res 2019; 150: 104538.
[47]
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, et al. Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson’s disease progression (Review). Mol Med Rep 2021; 24(4)
[48]
Savitt D, Jankovic J. Targeting alpha-Synuclein in Parkinson’s Disease: Progress towards the development of disease-modifying therapeutics. Drugs 2019.
[49]
Chong ZZ, Shang YC, Wang S, Maiese K. SIRT1: New avenues of discovery for disorders of oxidative stress. Exp Opin Therapeut Targets 2012; 16(2): 167-78.
[50]
Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin Attenuates Huntington’s Disease through Activation of GLP-1 Receptor/PI3K/Akt/BDNF Pathway in 3-Nitropropionic Acid Rat Model. Neurotherapeutics : J Am Soc Experiment NeuroTherapeut 2020; 17(1): 252-68.
[51]
Maiese K. Cognitive impairment and dementia: Gaining insight through circadian clock gene pathways. Biomolecules 2021; 11(7): 1-18.
[52]
Maiese K. MicroRNAs and SIRT1: A strategy for stem cell renewal and clinical development? J Transl Sci 2015; 1(3): 55-7.
[53]
Maiese K. Harnessing the Power of SIRT1 and Non-coding RNAs in vascular disease. Curr Neurovasc Res 2017; 14(1): 82-8.
[54]
Shi X, Yan C, Liu B, et al. miR-381 Regulates neural stem cell proliferation and differentiation via Regulating Hes1 Expression. PLoS One 2015; 10(10): e0138973.
[55]
Wen Z, Zhang J, Tang P, Tu N, Wang K, Wu G. Overexpression of miR185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep 2018; 17(1): 131-7.
[56]
Maiese K. Disease onset and aging in the world of circular RNAs. J Transl Sci 2016; 2(6): 327-9.
[57]
Maiese K. A Sweeping Role for MicroRNAs in Neuronal Disease, Vascular Disorders, and as Prognostic Indicators. Curr Neurovasc Res 2018; 15(1)
[58]
Maiese K. Picking a bone with WISP1 (CCN4): New strategies against degenerative joint disease. J Transl Sci 2016; 1(3): 83-5.
[59]
Guo PW, Huang HT, Ma J, et al. Circular RNA-0007059 protects cell viability and reduces inflammation in a nephritis cell model by inhibiting microRNA-1278/SHP-1/STAT3 signaling. Mol Med 2021; 27(1): 113.
[60]
He Z, Zhao Y, Zhu Y, Wang W, Liu X, Lu F. Interfering TUG1 Attenuates Cerebrovascular Endothelial Apoptosis and Inflammatory injury After Cerebral Ischemia/Reperfusion via TUG1/miR-410/FOXO3 ceRNA Axis. Neurotox Res 2021.
[61]
Li S, Chen L, Li J, Liu J. Comparison of different protocols of RNA preparation from circulating blood for RNA sequencing. Biotechnol Lett 2021.
[62]
You H, Zhao Q, Dong M. The key genes underlying pathophysiology correlation between the acute myocardial infarction and COVID-19. Int J Gen Med 2022; 15: 2479-90.
[63]
Cai J, Qi H, Yao K, et al. Non-Coding RNAs steering the senescence-related progress, properties, and application of mesenchymal stem cells. Front Cell Dev Biol 2021; 9: 650431.
[64]
Li M, Yang Y, Wang Z, et al. Piwi-interacting RNAs (piRNAs) as potential biomarkers and therapeutic targets for cardiovascular diseases. Angiogenesis 2020.
[65]
Ma Y, Liu Y, Jiang Z. CircRNAs: A new perspective of biomarkers in the nervous system. Biomed Pharmacother 2020; 128: 110251.
[66]
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and functions of exosomal non-coding RNAs in vascular aging. Aging Dis 2020; 11(1): 164-78.
[67]
Xie C, Guo Y, Lou S. LncRNA ANCR promotes invasion and migration of gastric cancer by regulating FoxO1 expression to inhibit Macrophage M1 Polarization. Dig Dis Sci 2020; 65(10): 2863-72.
[68]
Zhang Z, Zhang HJ. Glycometabolic rearrangements-aerobic glycolysis in pancreatic ductal adenocarcinoma (PDAC): Roles, regulatory networks, and therapeutic potential. Exp Opin Therapeut Targets 2021.
[69]
Maiese K. Novel treatment strategies for the nervous system: Circadian clock genes, non-coding rnas, and forkhead transcription factors. Curr Neurovasc Res 2018; 15(1): 81-91.
[70]
Maiese K. Impacting dementia and cognitive loss with innovative strategies: Mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res 2019; 14(5): 773-4.
[71]
Ren L. Circular RNA PIP5K1A act as microRNA-552-3p sponge to regulates inflammation, oxidative damage in glucolipotoxicity-induced pancreatic INS-1 β-cells via Janus kinase 1. Bioengineered 2022; 13(3): 5724-36.
[72]
Lin Z, Li X, Zhan X, et al. Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in type 2 diabetes mellitus. J Cell Mol Med 2017.
[73]
Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci Bull 2019; 35(5): 877-88.
[74]
Ramalinga M, Roy A, Srivastava A, et al. MicroRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence. Oncotarget 2015.

© 2024 Bentham Science Publishers | Privacy Policy