Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

A Comprehensive Review on Therapeutic Potential of Chrysin in Brain Related Disorders

Author(s): Ahsas Goyal*, Geetanjali Singh and Aanchal Verma

Volume 22, Issue 6, 2023

Published on: 27 August, 2022

Page: [789 - 800] Pages: 12

DOI: 10.2174/1871527321666220602111935

open access plus

Abstract

Brain disorders are currently one of the world's most serious and difficult health issues. These brain disorders are accountable for a massive number of morbidities and mortalities around the world. The current treatments of these disorders are frequently accompanied by severe side effects and cause a detrimental effect on health. Recently, plant flavonoids have sparked a surge in public and scientific attention because of their alleged health-promoting impact and almost no adverse repercussions. Also, scientific research has shown that phytochemicals possess numerous neuroprotective properties under in vivo and in vitro conditions. Chrysin is a therapeutic phytochemical that falls under the class of flavonoids based on its structure. The biological activities and pharmacological effects of chrysin include anticancer, antioxidant, and anti-inflammatory activities as well as amyloidogenic and neurotrophic effects. These therapeutic abilities of chrysin are attributed to its structural diverseness arising in ring-A and lack of oxygenation in B and C rings. Several studies have highlighted the rising significance of chrysin in a variety of brain illnesses, like Alzheimer's disease, Parkinson's disease, depression, anxiety, brain tumours, epilepsy, multiple sclerosis, traumatic brain injury, spinal cord injury, and ischemic stroke. This study depicts the relationship of chrysin with different brain-related disorders and discusses the mechanisms responsible for the potential role of chrysin as a pharmacological agent for the treatment and management of different brain disorders based on the results of several preclinical studies and taking into account the therapeutic effects of the compound.

Keywords: Chrysin, flavonoid, Parkinson’s disease, Alzheimer’s disease, depression, epilepsy.

Graphical Abstract

[1]
Mishra A, Mishra PS, Bandopadhyay R, et al. Neuroprotective potential of chrysin: Mechanistic insights and therapeutic potential for neurological disorders. Molecules 2021; 26(21): 6456.
[http://dx.doi.org/10.3390/molecules26216456] [PMID: 34770864]
[2]
Collaborators IS-LDBIND. The burden of neurological disorders across the states of India: The global burden of disease study 1990-2019. Lancet Glob Health 2021; 9(8): e1129-44.
[http://dx.doi.org/10.1016/S2214-109X(21)00164-9] [PMID: 34273302]
[3]
Ray BK, Paul N, Hazra A, et al. Prevalence, burden, and risk factors of migraine: A community-based study from Eastern India. Neurol India 2017; 65(6): 1280-8.
[http://dx.doi.org/10.4103/0028-3886.217979] [PMID: 29133701]
[4]
Gupta B, Bala A. Parkinson’s disease in India: An analysis of publications output during 2002-2011. Int J Nutr Pharmacol Neurol Dis 2013; 3(3): 254-62.
[5]
Pandit L, Kundapur R. Prevalence and patterns of demyelinating central nervous system disorders in urban Mangalore, South India. Mult Scler 2014; 20(12): 1651-3.
[http://dx.doi.org/10.1177/1352458514521503] [PMID: 24493471]
[6]
Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N. Neuroinflammation in neurological disorders: Pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 2021; 36(7): 1591-626.
[http://dx.doi.org/10.1007/s11011-021-00806-4] [PMID: 34387831]
[7]
Goyal A, Verma A, Agrawal N. Dietary phytoestrogens: Neuroprotective role in Parkinson’s disease. Curr Neurovasc Res 2021; 18(2): 254-67.
[http://dx.doi.org/10.2174/1567202618666210604121233] [PMID: 34086550]
[8]
Ko YH, Kim SK, Lee SY, Jang CG. Flavonoids as therapeutic candidates for emotional disorders such as anxiety and depression. Arch Pharm Res 2020; 43(11): 1128-43.
[http://dx.doi.org/10.1007/s12272-020-01292-5] [PMID: 33225387]
[9]
Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020; 12(2): 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[10]
Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res 2021; 35(6): 3078-112.
[http://dx.doi.org/10.1002/ptr.7033] [PMID: 33569875]
[11]
Nabavi SF, Braidy N, Habtemariam S, et al. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem Int 2015; 90: 224-31.
[http://dx.doi.org/10.1016/j.neuint.2015.09.006] [PMID: 26386393]
[12]
Maher P. The potential of flavonoids for the treatment of neurodegenerative diseases. Int J Mol Sci 2019; 20(12): 3056.
[http://dx.doi.org/10.3390/ijms20123056] [PMID: 31234550]
[13]
Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018; 145: 187-96.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[14]
Talebi M, Talebi M, Farkhondeh T, et al. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int 2021; 21(1): 214.
[http://dx.doi.org/10.1186/s12935-021-01906-y] [PMID: 33858433]
[15]
Lim HK, Kim KM, Jeong SY, Choi EK, Jung J. Chrysin increases the therapeutic efficacy of docetaxel and mitigates docetaxel-induced edema. Integr Cancer Ther 2017; 16(4): 496-504.
[http://dx.doi.org/10.1177/1534735416645184] [PMID: 27151585]
[16]
Rashno M, Sarkaki A, Farbood Y, et al. Therapeutic effects of chrysin in a rat model of traumatic brain injury: A behavioral, biochemical, and histological study. Life Sci 2019; 228: 285-94.
[http://dx.doi.org/10.1016/j.lfs.2019.05.007] [PMID: 31063733]
[17]
Shooshtari MK, Sarkaki A, Mansouri SMT, et al. Protective effects of Chrysin against memory impairment, cerebral hyperemia and oxidative stress after cerebral hypoperfusion and reperfusion in rats. Metab Brain Dis 2020; 35(2): 401-12.
[http://dx.doi.org/10.1007/s11011-019-00527-9] [PMID: 31853830]
[18]
Zhang P, Hölscher C, Ma X. Therapeutic potential of flavonoids in spinal cord injury. Rev Neurosci 2017; 28(1): 87-101.
[http://dx.doi.org/10.1515/revneuro-2016-0053] [PMID: 28045676]
[19]
Zhu HL, Wan JB, Wang YT, et al. Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia 2014; 55(1): 3-16.
[http://dx.doi.org/10.1111/epi.12463] [PMID: 24299155]
[20]
Sanadgol N, Zahedani SS, Sharifzadeh M, Khalseh R, Barbari GR, Abdollahi M. Recent updates in imperative natural compounds for healthy brain and nerve function: A systematic review of implications for multiple sclerosis. Curr Drug Targets 2017; 18(13): 1499-517.
[http://dx.doi.org/10.2174/1389450118666161108124414] [PMID: 27829351]
[21]
Talebi M, Talebi M, Farkhondeh T, et al. An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomed Pharmacother 2021; 141: 111906.
[http://dx.doi.org/10.1016/j.biopha.2021.111906] [PMID: 34328092]
[22]
Li R, Zang A, Zhang L, et al. Chrysin ameliorates diabetes-associated cognitive deficits in wistar rats. Neurol Sci 2014; 35: 1527-35.
[23]
Durak MA, Öztanır MN, Başak Türkmen N, et al. Chrysin prevents brain damage caused by global cerebralischemia/reperfusion in a C57BL/J6 mouse model. Turk J Med Sci 2016; 46(6): 1926-33.
[http://dx.doi.org/10.3906/sag-1508-119] [PMID: 28081349]
[24]
He XL, Wang YH, Bi MG, Du GH. Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats. Eur J Pharmacol 2012; 680(1-3): 41-8.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.025] [PMID: 22314218]
[25]
Naz S, Imran M, Rauf A, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci 2019; 235: 116797.
[http://dx.doi.org/10.1016/j.lfs.2019.116797] [PMID: 31472146]
[26]
Sharma P, Kumar A, Singh D. Dietary flavonoids interaction with CREB-BDNF pathway: An unconventional approach for comprehensive management of epilepsy. Curr Neuropharmacol 2019; 17(12): 1158-75.
[http://dx.doi.org/10.2174/1570159X17666190809165549] [PMID: 31400269]
[27]
Zhang Y, Zhao J, Afzal O, et al. Neuroprotective role of chrysin-loaded poly(lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. J Biochem Mol Toxicol 2021; 35(2): e22634.
[http://dx.doi.org/10.1002/jbt.22634] [PMID: 32991785]
[28]
Singh B, Singh D, Goel RK. Dual protective effect of Passiflora incarnata in epilepsy and associated post-ictal depression. J Ethnopharmacol 2012; 139(1): 273-9.
[http://dx.doi.org/10.1016/j.jep.2011.11.011] [PMID: 22107833]
[29]
Wang X, Zhao F, Wang X, Niu Y, Niu L, Wang C. Recent advances in nutrition for the treatment of depressive disorder. Curr Pharm Des 2018; 24(22): 2583-90.
[http://dx.doi.org/10.2174/1381612824666180803113106] [PMID: 30073920]
[30]
Dubey VK, Ansari F, Vohora D, Khanam R. Possible involvement of corticosterone and serotonin in antidepressant and antianxiety effects of chromium picolinate in chronic unpredictable mild stress induced depression and anxiety in rats. J Trace Elem Med Biol 2015; 29: 222-6.
[31]
Filho CB, Jesse CR, Donato F, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+, K+-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin. Neuroscience 2015; 289: 367-80.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.048] [PMID: 25592430]
[32]
Bortolotto VC, Pinheiro FC, Araujo SM, et al. Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine. Eur J Pharmacol 2018; 822: 78-84.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.017] [PMID: 29355556]
[33]
Cueto-Escobedo J, Andrade-Soto J, Lima-Maximino M, Maximino C, Hernández-López F, Rodríguez-Landa JF. Involvement of GABAergic system in the antidepressant-like effects of chrysin (5,7-dihydroxyflavone) in ovariectomized rats in the forced swim test: Comparison with neurosteroids. Behav Brain Res 2020; 386: 112590.
[http://dx.doi.org/10.1016/j.bbr.2020.112590] [PMID: 32184157]
[34]
Rayiti RK, Munnangi SR, Bandarupalli R, et al. Effect of chrysin on mechanical hyperalgesia in chronic constriction injury-induced neuropathic pain in rat model. Int J Appl Basic Med Res 2020; 10(3): 189-93.
[http://dx.doi.org/10.4103/ijabmr.IJABMR_58_19] [PMID: 33088742]
[35]
Wu J, Wang Y, Cui W, Zhou W, Zhao X. 5-HT1A receptor-mediated attenuation of heat hyperalgesia and mechanical allodynia by chrysin in mice with experimental mononeuropathy. Reg Anesth Pain Med 2020; 45(8): 610-9.
[http://dx.doi.org/10.1136/rapm-2020-101472] [PMID: 32561651]
[36]
Jorge A, Taylor T, Agarwal N, Hamilton DK. Current agents and related therapeutic targets for inflammation after acute traumatic spinal cord injury. World Neurosurg 2019; 132: 138-47.
[http://dx.doi.org/10.1016/j.wneu.2019.08.108] [PMID: 31470153]
[37]
Kandhare AD, Shivakumar V, Rajmane A, Ghosh P, Bodhankar SL. Evaluation of the neuroprotective effect of chrysin via modulation of endogenous biomarkers in a rat model of spinal cord injury. J Nat Med 2014; 68(3): 586-603.
[http://dx.doi.org/10.1007/s11418-014-0840-1] [PMID: 24789169]
[38]
Jiang Y, Gong FL, Zhao GB, Li J. Chrysin suppressed inflammatory responses and the inducible nitric oxide synthase pathway after spinal cord injury in rats. Int J Mol Sci 2014; 15(7): 12270-9.
[http://dx.doi.org/10.3390/ijms150712270] [PMID: 25014398]
[39]
Li TF, Ma J, Han XW, et al. Chrysin ameliorates cerebral ischemia/reperfusion (I/R) injury in rats by regulating the PI3K/Akt/mTOR pathway. Neurochem Int 2019; 129: 104496.
[http://dx.doi.org/10.1016/j.neuint.2019.104496] [PMID: 31247243]
[40]
Khombi Shooshtari M, Farbood Y, Mansouri SMT, et al. Neuroprotective effects of chrysin mediated by estrogenic receptors following cerebral ischemia and reperfusion in male rats. Basic Clin Neurosci 2021; 12(1): 149-62.
[http://dx.doi.org/10.32598/bcn.12.1.2354.1] [PMID: 33995936]
[41]
Yao Y, Chen L, Xiao J, et al. Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation. Int J Mol Sci 2014; 15(11): 20913-26.
[http://dx.doi.org/10.3390/ijms151120913] [PMID: 25402649]
[42]
Del Fabbro L, de Gomes MG, Souza LC, et al. Chrysin suppress immune responses and protects from experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 2019; 335: 577007.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577007] [PMID: 31376787]
[43]
Lee BK, Lee WJ, Jung YS. Chrysin attenuates VCAM-1 expression and monocyte adhesion in lipopolysaccharide-stimulated brain endothelial cells by preventing NF-KB signaling. Int J Mol Sci 2017; 18(7): 1424.
[http://dx.doi.org/10.3390/ijms18071424]
[44]
Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol Neurodegener 2021; 16(1): 2.
[http://dx.doi.org/10.1186/s13024-021-00424-9] [PMID: 33441154]
[45]
Giacomeli R, de Gomes MG, Reolon JB, Haas SE, Colomé LM, Jesse CR. Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by β-amyloid1-42 in aged female mice. Behav Brain Res 2020; 390: 112696.
[http://dx.doi.org/10.1016/j.bbr.2020.112696] [PMID: 32417280]
[46]
Nday CM, Eleftheriadou D, Jackson G. Magnetic chrysin silica nanomaterials behavior in an amyloidogenic environment. Hell J Nucl Med 2019; 22 (Suppl.): 42-50.
[PMID: 30877722]
[47]
Prajit R, Sritawan N, Suwannakot K, et al. Chrysin protects against memory and hippocampal neurogenesis depletion in d-galactose-induced aging in rats. Nutrients 2020; 12(4): 1100.
[http://dx.doi.org/10.3390/nu12041100] [PMID: 32316121]
[48]
Bortolotto VC, Araujo SM, Pinheiro FC, et al. Modulation of glutamate levels and Na+,K+-ATPase activity contributes to the chrysin memory recovery in hypothyroidism mice. Physiol Behav 2020; 222: 112892.
[http://dx.doi.org/10.1016/j.physbeh.2020.112892] [PMID: 32302609]
[49]
Alkahtane AA, Alghamdi HA, Almutairi B, et al. Inhibition of human amylin aggregation by Flavonoid Chrysin: An in silico and in vitro approach. Int J Med Sci 2021; 18(1): 199-206.
[http://dx.doi.org/10.7150/ijms.51382] [PMID: 33390788]
[50]
Angelopoulou E, Nath Paudel Y, Piperi C, Mishra A. Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities. J Biochem Mol Toxicol 2021; 35(4): e22711.
[http://dx.doi.org/10.1002/jbt.22720] [PMID: 33587308]
[51]
Hirsch EC, Standaert DG. Ten unsolved questions about neuroinflammation in Parkinson’s disease. Mov Disord 2021; 36(1): 16-24.
[http://dx.doi.org/10.1002/mds.28075] [PMID: 32357266]
[52]
Krishnamoorthy A, Sevanan M, Mani S, Balu M, Balaji S. P R. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model. Neurosci Lett 2019; 709: 134382.
[http://dx.doi.org/10.1016/j.neulet.2019.134382] [PMID: 31325581]
[53]
Talebi M, Talebi M, Farkhondeh T, Samarghandian S. Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. Phytother Res 2021; 35(4): 1739-53.
[http://dx.doi.org/10.1002/ptr.6905] [PMID: 33051921]
[54]
Del Fabbro L, Rossito Goes A, Jesse CR, et al. Chrysin protects against behavioral, cognitive and neurochemical alterations in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett 2019; 706: 158-63.
[http://dx.doi.org/10.1016/j.neulet.2019.05.036] [PMID: 31121284]
[55]
Angelopoulou E, Pyrgelis ES, Piperi C. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochem Int 2020; 132: 104612.
[http://dx.doi.org/10.1016/j.neuint.2019.104612] [PMID: 31785348]
[56]
Zhang Z, Li G, Szeto SSW, et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 2015; 84: 331-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.030] [PMID: 25769424]
[57]
Goes ATR, Jesse CR, Antunes MS, et al. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem Biol Interact 2018; 279: 111-20.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[58]
Alabi AO, Ajayi AM, Ben-Azu B, Omorobge O, Umukoro S. Methyl jasmonate ameliorates rotenone-induced motor deficits in rats through its neuroprotective activity and increased expression of tyrosine hydroxylase immunopositive cells. Metab Brain Dis 2019; 34(6): 1723-36.
[http://dx.doi.org/10.1007/s11011-019-00478-1] [PMID: 31463866]
[59]
Caterino M, Squillaro T, Montesarchio D, Giordano A, Giancola C, Melone MAB. Huntingtin protein: A new option for fixing the Huntington’s disease countdown clock. Neuropharmacology 2018; 135: 126-38.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.009] [PMID: 29526547]
[60]
Thangarajan S, Ramachandran S, Krishnamurthy P. Chrysin exerts neuroprotective effects against 3-Nitropropionic acid induced behavioral despair-Mitochondrial dysfunction and striatal apoptosis via upregulating Bcl-2 gene and downregulating Bax-Bad genes in male wistar rats. Biomed Pharmacother 2016; 84: 514-25.
[http://dx.doi.org/10.1016/j.biopha.2016.09.070] [PMID: 27690136]
[61]
Haider M, Salman M, Kaushik P, et al. Chrysin ameliorates 3 nitropropinoic acid induced neurotoxicity targeting behavioural, biochemical and histological alterations. Int J Neurosci 2020; 2020: 1821677.
[http://dx.doi.org/10.1080/00207454.2020.1821677] [PMID: 32901525]
[62]
Rodríguez-Landa JF, Hernández-López F, Cueto-Escobedo J, et al. Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats. Biomed Pharmacother 2019; 109: 2387-95.
[http://dx.doi.org/10.1016/j.biopha.2018.11.111] [PMID: 30551498]
[63]
Xiao J, Zhai H, Yao Y, et al. Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neuroscience 2014; 262: 156-64.
[http://dx.doi.org/10.1016/j.neuroscience.2014.01.004] [PMID: 24412705]
[64]
Ha SK, Moon E, Kim SY. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 2010; 485(3): 143-7.
[http://dx.doi.org/10.1016/j.neulet.2010.08.064] [PMID: 20813161]
[65]
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural phytochemicals as novel therapeutic strategies to prevent and treat Parkinson’s disease: Current knowledge and future perspectives. Oxid Med Cell Longev 2021; 2021: 6680935.
[66]
Gao S, Siddiqui N, Etim I, Du T, Zhang Y, Liang D. Developing nutritional component chrysin as a therapeutic agent: Bioavailability and pharmacokinetics consideration, and ADME mechanisms. Biomed Pharmacother 2021; 142: 112080.
[http://dx.doi.org/10.1016/j.biopha.2021.112080] [PMID: 34449320]
[67]
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric restriction mimetics in nutrition and clinical trials. Front Nutr 2021; 8: 717343.
[http://dx.doi.org/10.3389/fnut.2021.717343] [PMID: 34552954]
[68]
Dong D, Quan E, Yuan X, Xie Q, Li Z, Wu B. Sodium oleate-based nanoemulsion enhances oral absorption of chrysin through inhibition of UGT-mediated metabolism. Mol Pharm 2017; 14(9): 2864-74.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00851] [PMID: 27983856]
[69]
Guo B, Zheng C, Cai W, et al. Multifunction of chrysin in Parkinson’s model: Anti-neuronal apoptosis, neuroprotection via activation of MEF2D, and inhibition of monoamine Oxidase-B. J Agric Food Chem 2016; 64(26): 5324-33.
[http://dx.doi.org/10.1021/acs.jafc.6b01707] [PMID: 27245668]
[70]
Ahmed MR, Shaikh MA, Ul Haq SHI, Nazir S. Neuroprotective role of chrysin in attenuating loss of dopaminergic neurons and improving motor, learning and memory functions in rats. Int J Health Sci (Qassim) 2018; 12(3): 35-43.
[PMID: 29896070]
[71]
Sharma P, Kumari A, Gulati A, Krishnamurthy S, Hemalatha S. Chrysin isolated from Pyrus pashia fruit ameliorates convulsions in experimental animals. Nutr Neurosci 2019; 22(8): 569-77.
[http://dx.doi.org/10.1080/1028415X.2017.1418786] [PMID: 29284373]
[72]
Rodríguez-Landa JF, Guillén-Ruiz G, Hernández-López F, et al. Chrysin reduces anxiety-like behavior through actions on GABAA receptors during metestrus-diestrus in the rat. Behav Brain Res 2021; 397: 112952.
[http://dx.doi.org/10.1016/j.bbr.2020.112952] [PMID: 33017640]
[73]
Rashno M, Ghaderi S, Nesari A, Khorsandi L, Farbood Y, Sarkaki A. Chrysin attenuates traumatic brain injury-induced recognition memory decline, and anxiety/depression-like behaviors in rats: Insights into underlying mechanisms. Psychopharmacology (Berl) 2020; 237(6): 1607-19.
[http://dx.doi.org/10.1007/s00213-020-05482-3] [PMID: 32088834]
[74]
Farkhondeh T, Jalali S, Ashrafizadeh M, Samarghandian S, Samini F. Effects of chrysin on serum corticosterone levels and brain oxidative damages induced by immobilization in Rat. Cardiovasc Hematol Disord Drug Targets 2020; 20(1): 47-53.
[http://dx.doi.org/10.2174/1871529X19666190618144440] [PMID: 31237217]
[75]
Filho CB, Jesse CR, Donato F, et al. Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice. Chem Biol Interact 2016; 260: 154-62.
[http://dx.doi.org/10.1016/j.cbi.2016.11.005] [PMID: 27818124]
[76]
Filho CB, Jesse CR, Donato F, et al. Neurochemical factors associated with the antidepressant-like effect of flavonoid chrysin in chronically stressed mice. Eur J Pharmacol 2016; 791: 284-96.
[http://dx.doi.org/10.1016/j.ejphar.2016.09.005] [PMID: 27609609]
[77]
El Khashab IH, Abdelsalam RM, Elbrairy AI, Attia AS. Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis. Biomed Pharmacother 2019; 112: 108619.
[http://dx.doi.org/10.1016/j.biopha.2019.108619] [PMID: 30797156]
[78]
Zhang K, Ge Z, Xue Z, et al. Chrysin suppresses human CD14(+) monocyte-derived dendritic cells and ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2015; 288: 13-20.
[http://dx.doi.org/10.1016/j.jneuroim.2015.08.017] [PMID: 26531689]
[79]
El-Marasy SA, El Awdan SA, Abd-Elsalam RM. Protective role of chrysin on thioacetamide-induced hepatic encephalopathy in rats. Chem Biol Interact 2019; 299: 111-9.
[http://dx.doi.org/10.1016/j.cbi.2018.11.021] [PMID: 30500344]

© 2024 Bentham Science Publishers | Privacy Policy