Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Insights into Coronavirus Papain-like Protease Structure, Function and Inhibitors

Author(s): Shujuan Jin* and Mengjiao Zhang

Volume 29, Issue 7, 2022

Published on: 21 July, 2022

Page: [574 - 583] Pages: 10

DOI: 10.2174/0929866529666220602094016

Price: $65

Abstract

The coronavirus family consists of pathogens that seriously affect human and animal health. They mostly cause respiratory or enteric diseases, which can be severe and life-threatening, such as coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome (SARS), and Middle East Respiratory Syndrome (MERS) in humans. The conserved coronaviral papain-like protease is an attractive antiviral drug target because it is essential for coronaviral replication, and it also inhibits host innate immune responses. This review focuses on the latest research progress relating to the mechanism of coronavirus infection, the structural and functional characteristics of coronavirus papain-like protease, and the potent inhibitors of the protease.

Keywords: Coronavirus, papain-like protease, structure, deubiquitination, inhibitor, pathogens.

Graphical Abstract

[1]
Awadasseid, A.; Wu, Y.; Tanaka, Y.; Zhang, W. Current advances in the development of SARS-CoV-2 vaccines. Int. J. Biol. Sci., 2021, 17(1), 8-19.
[http://dx.doi.org/10.7150/ijbs.52569] [PMID: 33390829]
[2]
Liu, Y.C.; Kuo, R.L.; Shih, S.R. COVID-19: The first documented coronavirus pandemic in history. Biomed. J., 2020, 43(4), 328-333.
[http://dx.doi.org/10.1016/j.bj.2020.04.007] [PMID: 32387617]
[3]
Woo, P.C.; Lau, S.K.; Lam, C.S.; Lau, C.C.; Tsang, A.K.; Lau, J.H.; Bai, R.; Teng, J.L.; Tsang, C.C.; Wang, M.; Zheng, B.J.; Chan, K.H.; Yuen, K.Y. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol., 2012, 86(7), 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[4]
Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; Zhang, X.; Zhang, M.; Wu, S.; Song, J.; Chen, T.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130(5), 2620-2629.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[5]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[6]
Liu, D.X.; Fung, T.S.; Chong, K.K.; Shukla, A.; Hilgenfeld, R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res., 2014, 109, 97-109.
[http://dx.doi.org/10.1016/j.antiviral.2014.06.013] [PMID: 24995382]
[7]
Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 2021, 10(4), 821.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[8]
Rohaim, M.A.; El Naggar, R.F.; Clayton, E.; Munir, M. Structural and functional insights into non-structural proteins of coronaviruses. Microb. Pathog., 2021, 150, 104641.
[http://dx.doi.org/10.1016/j.micpath.2020.104641] [PMID: 33242646]
[9]
Narayanan, K.; Huang, C.; Makino, S. SARS coronavirus accessory proteins. Virus Res., 2008, 133(1), 113-121.
[http://dx.doi.org/10.1016/j.virusres.2007.10.009] [PMID: 18045721]
[10]
Kopecky-Bromberg, S.A.; Martínez-Sobrido, L.; Frieman, M.; Baric, R.A.; Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol., 2007, 81(2), 548-557.
[http://dx.doi.org/10.1128/JVI.01782-06] [PMID: 17108024]
[11]
Nieto-Torres, J.L.; Dediego, M.L.; Alvarez, E.; Jiménez-Guardeño, J.M.; Regla-Nava, J.A.; Llorente, M.; Kremer, L.; Shuo, S.; Enjuanes, L. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology, 2011, 415(2), 69-82.
[http://dx.doi.org/10.1016/j.virol.2011.03.029] [PMID: 21524776]
[12]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[13]
Neuman, B.W.; Kiss, G.; Kunding, A.H.; Bhella, D.; Baksh, M.F.; Connelly, S.; Droese, B.; Klaus, J.P.; Makino, S.; Sawicki, S.G.; Siddell, S.G.; Stamou, D.G.; Wilson, I.A.; Kuhn, P.; Buchmeier, M.J. A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol., 2011, 174(1), 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[14]
Xu, Y.; Lou, Z.; Liu, Y.; Pang, H.; Tien, P.; Gao, G.F.; Rao, Z. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J. Biol. Chem., 2004, 279(47), 49414-49419.
[http://dx.doi.org/10.1074/jbc.M408782200] [PMID: 15345712]
[15]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[16]
Millet, J.K.; Jaimes, J.A.; Whittaker, G.R. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol. Rev., 2021, 45(3), fuaa057.
[http://dx.doi.org/10.1093/femsre/fuaa057] [PMID: 33118022]
[17]
Senapati, S.; Banerjee, P.; Bhagavatula, S.; Kushwaha, P.P.; Kumar, S. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. J. Genet., 2021, 100(1), 100.
[http://dx.doi.org/10.1007/s12041-021-01262-w] [PMID: 33707363]
[18]
Millet, J.K.; Whittaker, G.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. USA, 2014, 111(42), 15214-15219.
[http://dx.doi.org/10.1073/pnas.1407087111] [PMID: 25288733]
[19]
Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol., 2011, 85(2), 873-882.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[20]
Romano, M.; Ruggiero, A.; Squeglia, F.; Maga, G.; Berisio, R. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells, 2020, 9(5), E1267.
[http://dx.doi.org/10.3390/cells9051267] [PMID: 32443810]
[21]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(10), 2249.
[http://dx.doi.org/10.1002/jmv.26234] [PMID: 32881013]
[22]
Ratia, K.; Kilianski, A.; Baez-Santos, Y.M.; Baker, S.C.; Mesecar, A. Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog., 2014, 10(5), e1004113.
[http://dx.doi.org/10.1371/journal.ppat.1004113] [PMID: 24854014]
[23]
Clasman, J.R.; Everett, R.K.; Srinivasan, K.; Mesecar, A.D. Decoupling deISGylating and deubiquitinating activities of the MERS virus papain-like protease. Antiviral Res., 2020, 174, 104661.
[http://dx.doi.org/10.1016/j.antiviral.2019.104661] [PMID: 31765674]
[24]
Speer, S.D.; Li, Z.; Buta, S.; Payelle-Brogard, B.; Qian, L.; Vigant, F.; Rubino, E.; Gardner, T.J.; Wedeking, T.; Hermann, M.; Duehr, J.; Sanal, O.; Tezcan, I.; Mansouri, N.; Tabarsi, P.; Mansouri, D.; Francois-Newton, V.; Daussy, C.F.; Rodriguez, M.R.; Lenschow, D.J.; Freiberg, A.N.; Tortorella, D.; Piehler, J.; Lee, B.; García-Sastre, A.; Pellegrini, S.; Bogunovic, D. ISG15 deficiency and increased viral resistance in humans but not mice. Nat. Commun., 2016, 7(1), 11496.
[http://dx.doi.org/10.1038/ncomms11496] [PMID: 27193971]
[25]
Lenschow, D.J. Antiviral properties of ISG15. Viruses, 2010, 2(10), 2154-2168.
[http://dx.doi.org/10.3390/v2102154] [PMID: 21994614]
[26]
Morales, D.J.; Lenschow, D.J. The antiviral activities of ISG15. J. Mol. Biol., 2013, 425(24), 4995-5008.
[http://dx.doi.org/10.1016/j.jmb.2013.09.041] [PMID: 24095857]
[27]
Perng, Y.C.; Lenschow, D.J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol., 2018, 16(7), 423-439.
[http://dx.doi.org/10.1038/s41579-018-0020-5] [PMID: 29769653]
[28]
Skaug, B.; Chen, Z.J. Emerging role of ISG15 in antiviral immunity. Cell, 2010, 143(2), 187-190.
[http://dx.doi.org/10.1016/j.cell.2010.09.033] [PMID: 20946978]
[29]
Tang, Y.; Zhong, G.; Zhu, L.; Liu, X.; Shan, Y.; Feng, H.; Bu, Z.; Chen, H.; Wang, C. Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J. Immunol., 2010, 184(10), 5777-5790.
[http://dx.doi.org/10.4049/jimmunol.0903588] [PMID: 20385878]
[30]
Frieman, M.; Ratia, K.; Johnston, R.E.; Mesecar, A.D.; Baric, R.S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol., 2009, 83(13), 6689-6705.
[http://dx.doi.org/10.1128/JVI.02220-08] [PMID: 19369340]
[31]
Chen, Z.; Wang, Y.; Ratia, K.; Mesecar, A.D.; Wilkinson, K.D.; Baker, S.C. Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63. J. Virol., 2007, 81(11), 6007-6018.
[http://dx.doi.org/10.1128/JVI.02747-06] [PMID: 17392370]
[32]
Harcourt, B.H.; Jukneliene, D.; Kanjanahaluethai, A.; Bechill, J.; Severson, K.M.; Smith, C.M.; Rota, P.A.; Baker, S.C. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J. Virol., 2004, 78(24), 13600-13612.
[http://dx.doi.org/10.1128/JVI.78.24.13600-13612.2004] [PMID: 15564471]
[33]
Xing, Y.; Chen, J.; Tu, J.; Zhang, B.; Chen, X.; Shi, H.; Baker, S.C.; Feng, L.; Chen, Z. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase. J. Gen. Virol., 2013, 94(Pt 7), 1554-1567.
[http://dx.doi.org/10.1099/vir.0.051169-0] [PMID: 23596270]
[34]
Mielech, A.M.; Chen, Y.; Mesecar, A.D.; Baker, S.C. Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res., 2014, 194, 184-190.
[http://dx.doi.org/10.1016/j.virusres.2014.01.025] [PMID: 24512893]
[35]
Freitas, B.T.; Durie, I.A.; Murray, J.; Longo, J.E.; Miller, H.C.; Crich, D.; Hogan, R.J.; Tripp, R.A.; Pegan, S.D. Characterization and noncovalent inhibition of the deubiquitinase and deISGylase Activity of SARS-CoV-2 papain-like protease. ACS Infect. Dis., 2020, 6(8), 2099-2109.
[http://dx.doi.org/10.1021/acsinfecdis.0c00168] [PMID: 32428392]
[36]
Mielech, A.M.; Kilianski, A.; Baez-Santos, Y.M.; Mesecar, A.D.; Baker, S.C. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology, 2014, 450-451, 64-70.
[http://dx.doi.org/10.1016/j.virol.2013.11.040] [PMID: 24503068]
[37]
Devaraj, S.G.; Wang, N.; Chen, Z.; Chen, Z.; Tseng, M.; Barretto, N.; Lin, R.; Peters, C.J.; Tseng, C.T.; Baker, S.C.; Li, K. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem., 2007, 282(44), 32208-32221.
[http://dx.doi.org/10.1074/jbc.M704870200] [PMID: 17761676]
[38]
Clementz, M.A.; Chen, Z.; Banach, B.S.; Wang, Y.; Sun, L.; Ratia, K.; Baez-Santos, Y.M.; Wang, J.; Takayama, J.; Ghosh, A.K.; Li, K.; Mesecar, A.D.; Baker, S.C. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol., 2010, 84(9), 4619-4629.
[http://dx.doi.org/10.1128/JVI.02406-09] [PMID: 20181693]
[39]
Yang, X.; Chen, X.; Bian, G.; Tu, J.; Xing, Y.; Wang, Y.; Chen, Z. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J. Gen. Virol., 2014, 95(Pt 3), 614-626.
[http://dx.doi.org/10.1099/vir.0.059014-0] [PMID: 24362959]
[40]
Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[41]
Ratia, K.; Saikatendu, K.S.; Santarsiero, B.D.; Barretto, N.; Baker, S.C.; Stevens, R.C.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA, 2006, 103(15), 5717-5722.
[http://dx.doi.org/10.1073/pnas.0510851103] [PMID: 16581910]
[42]
Yuen, C.K.; Lam, J.Y.; Wong, W.M.; Mak, L.F.; Wang, X.; Chu, H.; Cai, J.P.; Jin, D.Y.; To, K.K.; Chan, J.F.; Yuen, K.Y.; Kok, K.H. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect., 2020, 9(1), 1418-1428.
[http://dx.doi.org/10.1080/22221751.2020.1780953] [PMID: 32529952]
[43]
Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.; Tascher, G.; Geurink, P.P.; Wilhelm, A.; van der Heden van Noort, G.J.; Ovaa, H.; Müller, S.; Knobeloch, K.P.; Rajalingam, K.; Schulman, B.A.; Cinatl, J.; Hummer, G.; Ciesek, S.; Dikic, I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587(7835), 657-662.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[44]
Klemm, T.; Ebert, G.; Calleja, D.J.; Allison, C.C.; Richardson, L.W.; Bernardini, J.P.; Lu, B.G.; Kuchel, N.W.; Grohmann, C.; Shibata, Y.; Gan, Z.Y.; Cooney, J.P.; Doerflinger, M.; Au, A.E.; Blackmore, T.R.; van der Heden van Noort, G.J.; Geurink, P.P.; Ovaa, H.; Newman, J.; Riboldi-Tunnicliffe, A.; Czabotar, P.E.; Mitchell, J.P.; Feltham, R.; Lechtenberg, B.C.; Lowes, K.N.; Dewson, G.; Pellegrini, M.; Lessene, G.; Komander, D. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J., 2020, 39(18), e106275.
[http://dx.doi.org/10.15252/embj.2020106275] [PMID: 32845033]
[45]
Nelemans, T.; Kikkert, M. Viral innate immune evasion and the pathogenesis of emerging RNA virus infections. Viruses, 2019, 11(10), E961.
[http://dx.doi.org/10.3390/v11100961] [PMID: 31635238]
[46]
Maniatis, T.; Falvo, J.V.; Kim, T.H.; Kim, T.K.; Lin, C.H.; Parekh, B.S.; Wathelet, M.G. Structure and function of the interferon-beta enhanceosome. Cold Spring Harb. Symp. Quant. Biol., 1998, 63(0), 609-620.
[http://dx.doi.org/10.1101/sqb.1998.63.609] [PMID: 10384326]
[47]
Lamb, Y.N. Nirmatrelvir Plus Ritonavir: First approval. Drugs, 2022, 82, 585-591.
[http://dx.doi.org/10.1007/s40265-022-01692-5] [PMID: 35305258]
[48]
Wallace, K.B.; Bjork, J.A. Molnupiravir; molecular and functional descriptors of mitochondrial safety. Toxicol. Appl. Pharmacol., 2022, 442, 116003.
[http://dx.doi.org/10.1016/j.taap.2022.116003] [PMID: 35358570]
[49]
Ghosh, A.K.; Osswald, H.L.; Prato, G. Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J. Med. Chem., 2016, 59(11), 5172-5208.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01697] [PMID: 26799988]
[50]
Cannalire, R.; Barreca, M.L.; Manfroni, G.; Cecchetti, V. A journey around the medicinal chemistry of hepatitis C virus inhibitors targeting NS4B: From target to preclinical drug candidates. J. Med. Chem., 2016, 59(1), 16-41.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00825] [PMID: 26241789]
[51]
Frias-Staheli, N.; Giannakopoulos, N.V.; Kikkert, M.; Taylor, S.L.; Bridgen, A.; Paragas, J.; Richt, J.A.; Rowland, R.R.; Schmaljohn, C.S.; Lenschow, D.J.; Snijder, E.J.; García-Sastre, A.; Virgin, H.W. IV Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe, 2007, 2(6), 404-416.
[http://dx.doi.org/10.1016/j.chom.2007.09.014] [PMID: 18078692]
[52]
Swatek, K.N.; Aumayr, M.; Pruneda, J.N.; Visser, L.J.; Berryman, S.; Kueck, A.F.; Geurink, P.P.; Ovaa, H.; van Kuppeveld, F.J.M.; Tuthill, T.J.; Skern, T.; Komander, D. Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies. Proc. Natl. Acad. Sci. USA, 2018, 115(10), 2371-2376.
[http://dx.doi.org/10.1073/pnas.1710617115] [PMID: 29463763]
[53]
Ratia, K.; Pegan, S.; Takayama, J.; Sleeman, K.; Coughlin, M.; Baliji, S.; Chaudhuri, R.; Fu, W.; Prabhakar, B.S.; Johnson, M.E.; Baker, S.C.; Ghosh, A.K.; Mesecar, A.D. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA, 2008, 105(42), 16119-16124.
[http://dx.doi.org/10.1073/pnas.0805240105] [PMID: 18852458]
[54]
Fu, Z.; Huang, B.; Tang, J.; Liu, S.; Liu, M.; Ye, Y.; Liu, Z.; Xiong, Y.; Zhu, W.; Cao, D.; Li, J.; Niu, X.; Zhou, H.; Zhao, Y.J.; Zhang, G.; Huang, H. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat. Commun., 2021, 12(1), 488.
[http://dx.doi.org/10.1038/s41467-020-20718-8] [PMID: 33473130]
[55]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[56]
Sanders, B.; Pohkrel, S.; Labbe, A. Potent and selective covalent inhibitors of the papain-like Protease from SARS-CoV-2; Res. Sq, 2021. [Epub ahead of print].
[http://dx.doi.org/10.21203/rs.3.rs-906621/v1]
[57]
Bayoumy, A.B.; Simsek, M.; Seinen, M.L.; Mulder, C.J.J.; Ansari, A.; Peters, G.J.; De Boer, N.K. The continuous rediscovery and the benefit-risk ratio of thioguanine, a comprehensive review. Expert Opin. Drug Metab. Toxicol., 2020, 16(2), 111-123.
[http://dx.doi.org/10.1080/17425255.2020.1719996] [PMID: 32090622]
[58]
Swaim, C.D.; Perng, Y.C.; Zhao, X. 6-Thioguanine blocks SARS-CoV-2 replication by inhibition of PLpro protease activities. bioRxiv, 2020, 2020., 183020.
[http://dx.doi.org/10.1101/2020.07.01.183020]
[59]
Cheng, K.W.; Cheng, S.C.; Chen, W.Y.; Lin, M.H.; Chuang, S.J.; Cheng, I.H.; Sun, C.Y.; Chou, C.Y. Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res., 2015, 115, 9-16.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.011] [PMID: 25542975]
[60]
Chou, C.Y.; Chien, C.H.; Han, Y.S.; Prebanda, M.T.; Hsieh, H.P.; Turk, B.; Chang, G.G.; Chen, X. Thiopurine analogues inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biochem. Pharmacol., 2008, 75(8), 1601-1609.
[http://dx.doi.org/10.1016/j.bcp.2008.01.005] [PMID: 18313035]
[61]
Moore, S.A.; Baker, H.M.; Blythe, T.J.; Kitson, K.E.; Kitson, T.M.; Baker, E.N. Sheep liver cytosolic aldehyde dehydrogenase: The structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Structure, 1998, 6(12), 1541-1551.
[http://dx.doi.org/10.1016/S0969-2126(98)00152-X] [PMID: 9862807]
[62]
Ma, C.; Hu, Y.; Townsend, J.A. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are non-specific promiscuous SARS-CoV-2 main protease inhibitors. bioRxiv, 2020, 2020., 299164.
[http://dx.doi.org/10.1101/2020.09.15.299164]
[63]
Lin, M.H.; Moses, D.C.; Hsieh, C.H.; Cheng, S.C.; Chen, Y.H.; Sun, C.Y.; Chou, C.Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Res., 2018, 150, 155-163.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.015] [PMID: 29289665]
[64]
Mukherjee, S.; Weiner, W.S.; Schroeder, C.E.; Simpson, D.S.; Hanson, A.M.; Sweeney, N.L.; Marvin, R.K.; Ndjomou, J.; Kolli, R.; Isailovic, D.; Schoenen, F.J.; Frick, D.N. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chem. Biol., 2014, 9(10), 2393-2403.
[http://dx.doi.org/10.1021/cb500512z] [PMID: 25126694]
[65]
Weglarz-Tomczak, E.; Tomczak, J.M.; Talma, M.; Burda-Grabowska, M.; Giurg, M.; Brul, S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci. Rep., 2021, 11(1), 3640.
[http://dx.doi.org/10.1038/s41598-021-83229-6] [PMID: 33574416]
[66]
Agbowuro, A.A.; Huston, W.M.; Gamble, A.B.; Tyndall, J.D.A. Proteases and protease inhibitors in infectious diseases. Med. Res. Rev., 2018, 38(4), 1295-1331.
[http://dx.doi.org/10.1002/med.21475] [PMID: 29149530]
[67]
Hossain, M.U.; Bhattacharjee, A.; Emon, M.T.H.; Chowdhury, Z.M.; Ahammad, I.; Mosaib, M.G.; Moniruzzaman, M.; Rahman, M.H.; Islam, M.N.; Ahmed, I.; Amin, M.R.; Rashed, A.; Das, K.C.; Keya, C.A.; Salimullah, M. Novel mutations in NSP-1 and PLPro of SARS-CoV-2 NIB-1 genome mount for effective therapeutics. J. Genet. Eng. Biotechnol., 2021, 19(1), 52.
[http://dx.doi.org/10.1186/s43141-021-00152-z] [PMID: 33797663]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy