Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

A Review on Green Synthesis of Silver Nanoparticles and its Role against Cancer

Author(s): Neeraj Rani, Rajeev K. Singla*, Rakesh Redhu, Sonia Narwal, Sonia and Alok Bhatt

Volume 22, Issue 18, 2022

Published on: 21 July, 2022

Page: [1460 - 1471] Pages: 12

DOI: 10.2174/1568026622666220601165005

Price: $65

Abstract

Cancer is a fatal disease with a collection of related diseases in various body parts. The conventional therapies cannot show the desired results of treatment due to their imprecise targeting, deprived drug delivery, and side effects. Therefore, it is required to make the drug engineered so that it can target only cancerous cells and inhibit its growth and proliferation. Nanotechnology is a technology that can target and differentiate between cancerous cells and the body's normal cells. Silver itself is a good anticancer and antibacterial agent and employing it with phytochemicals with anticancer properties, and nanotechnology can give the best approach for the treatment. The synthesis of silver nanoparticles using plant extracts is an economical, energy-efficient, low-cost approach, and it doesn’t need any hazardous chemicals. In the present review, we discussed different methods of synthesis of silver nanoparticles using herbal extracts and their role against cancer therapy along with the synergistic role of silver and plant extracts against cancer in the formulation.

Keywords: Nanoparticles, Cancer, Targeted drug delivery, Biosynthesis, Plant extract, Silver.

Graphical Abstract

[1]
[2]
National Cancer Institute. Cancer treatment; , 2021. Available from : [https://www.cancer.gov/about-cancer/treatment]
[3]
Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res., 2010, 62(2), 90-99.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005 ] [PMID: 20380880]
[4]
Nanowerk. Nanotechnology to fight and cure cancer 2021. Available from: https://www.nanowerk.com/nanotechnology_to_fight_and_cure_cancer.php
[5]
Damyanov, C.A.; Maslev, I.K.; Pavlov, V.S.; Avramov, L. Conventional treatment of cancer realities and problems. Ann. Complement. Altern. Med, 2018, 1(1), 1002.
[6]
Mousa, S.A.; Bharali, D.J. Nanotechnology-based detection and targeted therapy in cancer: Nano-bio paradigms and applications. Cancers (Basel), 2011, 3(3), 2888-2903.
[http://dx.doi.org/10.3390/cancers3032888 ] [PMID: 24212938]
[7]
Deep, A.; Rani, N.; Kumar, A.; Nandal, R.; Sharma, P.C.; Sharma, A.K. Prospective of natural gum nanoparticulate against cardiovascular disorders. Curr. Chem. Biol., 2019, 13(3), 197-211.
[http://dx.doi.org/10.2174/2212796813666190328194825]
[8]
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumour cells and neo-vasculature with a nanoscale delivery system. Nature, 2005, 436(7050), 568-572.
[http://dx.doi.org/10.1038/nature03794 ] [PMID: 16049491]
[9]
Russell, A.D.; Hugo, W.B. Antimicrobial activity and action of silver. Prog. Med. Chem., 1994, 31, 351-370.
[http://dx.doi.org/10.1016/S0079-6468(08)70024-9 ] [PMID: 8029478]
[10]
Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett., 2008, 176(1), 1-12.
[http://dx.doi.org/10.1016/j.toxlet.2007.10.004 ] [PMID: 18022772]
[11]
Aziz, N.; Faraz, M.; Sherwani, M.A.; Fatma, T.; Prasad, R. Illuminating the anticancerous efficacy of a new fungal chassis for silver na-noparticle synthesis. Front Chem., 2019, 7, 65.
[http://dx.doi.org/10.3389/fchem.2019.00065 ] [PMID: 30800654]
[12]
Sukirtha, R.; Priyanka, K.M.; Antony, J.J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S. Cytotoxic effect of green synthesized silver nanoparticles using Melia azedarach against in vitro hela cell lines and lymphoma mice model. Process Biochem., 2012, 47(2), 273-279.
[http://dx.doi.org/10.1016/j.procbio.2011.11.003]
[13]
Melaiye, A.; Sun, Z.; Hindi, K.; Milsted, A.; Ely, D.; Reneker, D.H.; Tessier, C.A.; Youngs, W.J. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: Formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc., 2005, 127(7), 2285-2291.
[http://dx.doi.org/10.1021/ja040226s ] [PMID: 15713108]
[14]
Gupta, S.; Kumar, P. Drug delivery using nanocarriers: Indian perspective. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2012, 82(1), 167-206.
[http://dx.doi.org/10.1007/s40011-012-0080-7]
[15]
Kuncic, Z.; Lacombe, S. Nanoparticle radio-enhancement: Principles, progress and application to cancer treatment. Phys. Med. Biol., 2018, 63(2), 02TR01.
[http://dx.doi.org/10.1088/1361-6560/aa99ce ] [PMID: 29125831]
[16]
Khan, Y.; Numan, M.; Ali, M.; Khali, A.T.; Ali, T.; Abbas, N.; Shinwari, Z.K. Bio-synthesized silver nanoparticles using different plant extracts as anti-cancer agent. J. Nanomed. Biother. Discov., 2017, 7(154), 2.
[17]
Asharani, P.V.; Hande, M.P.; Valiyaveettil, S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol., 2009, 10(1), 65.
[http://dx.doi.org/10.1186/1471-2121-10-65 ] [PMID: 19761582]
[18]
Moutin, M.J.; Abramson, J.J.; Salama, G.; Dupont, Y. Rapid Ag+-induced release of Ca2+ from sarcoplasmic reticulum vesicles of skele-tal muscle: A rapid filtration study. Biochim. Biophys. Acta, 1989, 984(3), 289-292.
[http://dx.doi.org/10.1016/0005-2736(89)90295-2 ] [PMID: 2476183]
[19]
Ahamed, M.; Posgai, R.; Gorey, T.J.; Nielsen, M.; Hussain, S.M.; Rowe, J.J. Silver nanoparticles induced heat shock protein 70, oxida-tive stress and apoptosis in Drosophila melanogaster. Toxicol. Appl. Pharmacol., 2010, 242(3), 263-269.
[http://dx.doi.org/10.1016/j.taap.2009.10.016 ] [PMID: 19874832]
[20]
Almeida, A.S.; Figueiredo-Pereira, C.; Vieira, H.L. Carbon monoxide and mitochondria-modulation of cell metabolism, redox response and cell death. Front. Physiol., 2015, 6, 33.
[http://dx.doi.org/10.3389/fphys.2015.00033 ] [PMID: 25709582]
[21]
Akhtar, M.S.; Swamy, M.K. Anticancer plants: Properties and application; Springer, 2018.
[http://dx.doi.org/10.1007/978-981-10-8548-2]
[22]
Gomathi, A.C.; Rajarathinam, S.X.; Sadiq, A.M.; Rajeshkumar, S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J. Drug Deliv. Sci. Technol., 2020, 55, 101376.
[http://dx.doi.org/10.1016/j.jddst.2019.101376]
[23]
Skonieczna, M.; Hudy, D. Biological activity of silver nanoparticles and their applications in anticancer therapy; IntechOpen, 2018.
[http://dx.doi.org/10.5772/intechopen.77075]
[24]
Buttacavoli, M.; Albanese, N.N.; Di Cara, G.; Alduina, R.; Faleri, C.; Gallo, M.; Pizzolanti, G.; Gallo, G.; Feo, S.; Baldi, F.; Cancemi, P. Anticancer activity of biogenerated silver nanoparticles: An integrated proteomic investigation. Oncotarget, 2017, 9(11), 9685-9705.
[http://dx.doi.org/10.18632/oncotarget.23859 ] [PMID: 29515763]
[25]
Rajiri, M.S.; Aminsalehi, M.; Shahbandeh, M.; Maleki, A.; Jonoubi, P.; Rad, A.C. Anticancer and therapeutic potential of Delonix regia extract and silver nanoparticles (AgNPs) against pancreatic (Panc-1) and breast (MCF-7) cancer cell. Toxicol. Environ. Health Sci., 2021, 13(1), 45-56.
[http://dx.doi.org/10.1007/s13530-020-00067-1]
[26]
Al-Tawarah, N.M.; Qaralleh, H.; Khlaifat, A.M.; Nofal, M.N.; Alqaraleh, M.; Khleifat, K.M. Anticancer and antibacterial properties of verthemia iphionides essential oil/silver nanoparticles. Biomed. Pharmacol. J., 2020, 13(3), 1175-1185.
[http://dx.doi.org/10.13005/bpj/1985]
[27]
Zhou, J.; Lu, G.D.; Ong, C.S.; Ong, C.N.; Shen, H.M. Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation. Mol. Cancer Ther., 2008, 7(7), 2170-2180.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0071 ] [PMID: 18645026]
[28]
Zhou, J.; Ong, C.N.; Hur, G.M.; Shen, H.M. Inhibition of the JAK-STAT3 pathway by andrographolide enhances chemosensitivity of cancer cells to doxorubicin. Biochem. Pharmacol., 2010, 79(9), 1242-1250.
[http://dx.doi.org/10.1016/j.bcp.2009.12.014 ] [PMID: 20026083]
[29]
Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer, 2017, 17(2), 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138 ] [PMID: 28127048]
[30]
Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci., 2015, 457, 329-338.
[http://dx.doi.org/10.1016/j.jcis.2015.07.012 ] [PMID: 26196716]
[31]
Salehi, S.; Shandiz, S.A.S.; Ghanbar, F.; Darvish, M.R.; Ardestani, M.S.; Mirzaie, A.; Jafari, M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomedicine, 2016, 11, 1835-1846.
[PMID: 27199558]
[32]
Pandian, A.M.K.; Karthikeyan, C.; Rajasimman, M.; Dinesh, M.G. Synthesis of silver nanoparticle and its application. Ecotoxicol. Environ. Saf., 2015, 121, 211-217.
[http://dx.doi.org/10.1016/j.ecoenv.2015.03.039 ] [PMID: 25866204]
[33]
Rathi Sre, P.R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 1137-1144.
[http://dx.doi.org/10.1016/j.saa.2014.08.019 ] [PMID: 25189525]
[34]
Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanopar-ticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C, 2015, 53, 298-309.
[http://dx.doi.org/10.1016/j.msec.2015.04.048 ] [PMID: 26042718]
[35]
Castro-Aceituno, V.; Ahn, S.; Simu, S.Y.; Singh, P.; Mathiyalagan, R.; Lee, H.A.; Yang, D.C. Anticancer activity of silver nanoparticles from Panax ginseng fresh leaves in human cancer cells. Biomed. Pharmacother., 2016, 84, 158-165.
[http://dx.doi.org/10.1016/j.biopha.2016.09.016 ] [PMID: 27643558]
[36]
Kumar, B.; Smita, K.; Seqqat, R.; Benalcazar, K.; Grijalva, M.; Cumbal, L. In vitro evaluation of silver nanoparticles cytotoxicity on He-patic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. J. Photochem. Photobiol. B, 2016, 159, 8-13.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.011 ] [PMID: 27010841]
[37]
Xia, Q.H.; Ma, Y.J.; Wang, J.W. Biosynthesis of silver nanoparticles using Taxus yunnanensis callus and their antibacterial activity and cytotoxicity in human cancer cells. Nanomaterials (Basel), 2016, 6(9), 160.
[http://dx.doi.org/10.3390/nano6090160 ] [PMID: 28335288]
[38]
Mittal, A.K.; Thanki, K.; Jain, S.; Banerjee, U.C. Comparative studies of anticancer and antimicrobial potential of bioinspired silver and silver-selenium nanoparticles. Applied Nanomedicine, 2016, 1(1), 1-6.
[PMID: 27438911]
[39]
Ramar, M.; Manikandan, B.; Marimuthu, P.N.; Raman, T.; Mahalingam, A.; Subramanian, P.; Karthick, S.; Munusamy, A. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 140, 223-228.
[http://dx.doi.org/10.1016/j.saa.2014.12.060 ] [PMID: 25613692]
[40]
Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.). Schrad. J. Nanobiotechnology, 2011, 9(1), 43.
[http://dx.doi.org/10.1186/1477-3155-9-43 ] [PMID: 21943321]
[41]
Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T. Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line. Avicenna J. Med. Biotechnol., 2012, 4(1), 35-39.
[PMID: 23407847]
[42]
Devi, J.S.; Bhimba, B.V. Anticancer activity of silver nanoparticles synthesized by the Seaweed ulva lactuca in vitro. Devi Bhimba, 2012, 4(1), 242.
[43]
He, Y.; Du, Z.; Ma, S.; Cheng, S.; Jiang, S.; Liu, Y.; Li, D.; Huang, H.; Zhang, K.; Zheng, X. Biosynthesis, antibacterial activity and anti-cancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus longan Lour. peel extract. Nanoscale Res. Lett., 2016, 11(1), 300.
[http://dx.doi.org/10.1186/s11671-016-1511-9 ] [PMID: 27316741]
[44]
Govindaraju, K.; Krishnamoorthy, K.; Alsagaby, S.A.; Singaravelu, G.; Premanathan, M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol., 2015, 9(6), 325-330.
[http://dx.doi.org/10.1049/iet-nbt.2015.0001 ] [PMID: 26647807]
[45]
Baharara, J.; Namvar, F.; Ramezani, T.; Mousavi, M.; Mohamad, R. Silver nanoparticles biosynthesized using Achillea biebersteinii flow-er extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules, 2015, 20(2), 2693-2706.
[http://dx.doi.org/10.3390/molecules20022693 ] [PMID: 25665064]
[46]
Firdhouse, J.M.; Lalitha, P. Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Prog. Biomater., 2015, 4(2-4), 113-121.
[http://dx.doi.org/10.1007/s40204-015-0042-2 ] [PMID: 26566469]
[47]
Sathishkumar, P.; Vennila, K.; Jayakumar, R.; Yusoff, A.R.M.; Hadibarata, T.; Palvannan, T. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: An effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells. Bioprocess Biosyst. Eng., 2016, 39(4), 651-659.
[http://dx.doi.org/10.1007/s00449-016-1546-4 ] [PMID: 26801668]
[48]
Elangovan, K.; Elumalai, D.; Anupriya, S.; Shenbhagaraman, R.; Kaleena, P.K.; Murugesan, K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J. Photochem. Photobiol. B, 2015, 151, 118-124.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.015 ] [PMID: 26233711]
[49]
Shawkey, A.M.; Rabeh, M.A.; Abdulall, A.K.; Abdellatif, A.O. Green nanotechnology: Anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv. Life Sci. Technol., 2013, 13, 60-70.
[50]
Sathishkumar, G.; Gobinath, C.; Wilson, A.; Sivaramakrishna, N.S. Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 128, 285-290.
[http://dx.doi.org/10.1016/j.saa.2014.02.096 ] [PMID: 24681313]
[51]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o ] [PMID: 16608261]
[52]
Mukherjee, S.; Chowdhury, D.; Kotcherlakota, R.; Patra, S.B.V.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Potential theranostics applica-tion of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics, 2014, 4(3), 316-335.
[http://dx.doi.org/10.7150/thno.7819 ] [PMID: 24505239]
[53]
Reddy, N.J.; Nagoor Vali, D.; Rani, M.; Rani, S.S. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized sil-ver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C, 2014, 34, 115-122.
[http://dx.doi.org/10.1016/j.msec.2013.08.039 ] [PMID: 24268240]
[54]
Heydari, R.; Rashidipour, M. Green synthesis of silver nanoparticles using extract of oak fruit hull (jaft): synthesis and in vitro cytotoxic effect on mcf-7 cells. Int. J. Breast Cancer, 2015, 2015, 846743.
[http://dx.doi.org/10.1155/2015/846743 ] [PMID: 25685560]
[55]
Sharma, D.; Ledwani, L.; Bhatnagar, N. Antimicrobial and cytotoxic potential of silver nanoparticles synthesized using Rheum emodi roots extract. New Front. Chem., 2015, 24(2), 121.
[56]
Venugopal, K.; Rather, H.A.; Rajagopal, K.; Shanthi, M.P.; Sheriff, K.; Illiyas, M.; Rather, R.A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; Maaza, M. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J. Photochem. Photobiol. B, 2017, 167, 282-289.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.013 ] [PMID: 28110253]
[57]
Devaraj, P.; Aarti, C.; Kumari, P. Synthesis and characterization of silver nanoparticles using Tabernae montana divaricata and its cyto-toxic activity against MCF7 cell line. Int. J. Pharm. Pharm. Sci., 2014, 6(8), 86-90.
[58]
Kajani, A.A.; Bordbar, A.K.; Esfahani, S.H.Z.; Khosropour, A.R.; Razmjou, A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Advances, 2014, 4(106), 61394-61403.
[http://dx.doi.org/10.1039/C4RA08758E]
[59]
Mishra, A.; Mehdi, S.J.; Irshad, M.; Ali, A.; Sardar, M.; Moshahid, M.; Rizvi, A. Effect of biologically synthesized silver nanoparticles on human cancer cells. Sci. Adv. Mater., 2012, 4(12), 1200-1206.
[http://dx.doi.org/10.1166/sam.2012.1414]
[60]
Nakkala, J.R.; Mata, R.; Gupta, A.K.; Sadras, S.R. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur. J. Med. Chem., 2014, 85, 784-794.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.024 ] [PMID: 25147142]
[61]
Rajkuberan, C.; Sudha, K.; Sathishkumar, G.; Sivaramakrishnan, S. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L. Spectrochim Acta A Mol. Biomol. Spectrosc, 2015, 136(Pt B), 924-930.
[http://dx.doi.org/10.1016/j.saa.2014.09.115] [PMID: 25459618]
[62]
Chanthini, A.B.; Balasubramani, G.; Ramkumar, R.; Sowmiya, R.; Balakumaran, M.D.; Kalaichelvan, P.T.; Perumal, P. Structural charac-terization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus mediated silver nano-particles. J. Photochem. Photobiol. B, 2015, 153, 145-152.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.09.014 ] [PMID: 26409094]
[63]
Vijistella Bai, G. Green synthesis of silver nanostructures against human cancer cell lines and certain pathogens. Int. J. Pharm. Chem. Biol. Sci., 2014, 4, 1.
[64]
Vasanth, K.; Ilango, K. MohanKumar, R.; Agrawal, A.; Dubey, G.P. Anticancer activity of Moringa oleifera mediated silver nanoparti-cles on human cervical carcinoma cells by apoptosis induction. Colloids Surf. B Biointerfaces, 2014, 117, 354-359.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.052 ] [PMID: 24681047]
[65]
Jeyaraj, M.; Rajesh, M.; Arun, R. MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; Ganapathi, A. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf. B Biointerfaces, 2013, 102, 708-717.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.042 ] [PMID: 23117153]
[66]
Mata, R.; Reddy Nakkala, J.; Rani Sadras, S. Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater. Sci. Eng. C, 2015, 51, 216-225.
[http://dx.doi.org/10.1016/j.msec.2015.02.053 ] [PMID: 25842128]
[67]
Manikandan, R.; Manikandan, B.; Raman, T.; Arunagirinathan, K.; Prabhu, N.M.; Jothi Basu, M.; Perumal, M.; Palanisamy, S.; Munusamy, A. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 120-129.
[http://dx.doi.org/10.1016/j.saa.2014.10.043 ] [PMID: 25481491]
[68]
Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem., 2013, 48(2), 317-324.
[http://dx.doi.org/10.1016/j.procbio.2012.12.013]
[69]
Kuppusamy, P.; Ichwan, S.J.; Al-Zikri, P.N.H.; Suriyah, W.H.; Soundharrajan, I.; Govindan, N.; Maniam, G.P.; Yusoff, M.M. In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biol. Trace Elem. Res., 2016, 173(2), 297-305.
[http://dx.doi.org/10.1007/s12011-016-0666-7 ] [PMID: 26961292]
[70]
Arunachalam, K.D.; Arun, L.B.; Annamalai, S.K.; Arunachalam, A.M. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. Int. J. Nanomedicine, 2014, 10, 31-41.
[http://dx.doi.org/10.2147/IJN.S71182 ] [PMID: 25565802]
[71]
Gurunathan, S.; Jeong, J.K.; Han, J.W.; Zhang, X.F.; Park, J.H.; Kim, J.H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett., 2015, 10(1), 35.
[http://dx.doi.org/10.1186/s11671-015-0747-0 ] [PMID: 25852332]
[72]
Khanra, K.; Panja, S.; Choudhuri, I.; Chakraborty, A.; Bhattacharyya, N. Antimicrobial and cytotoxicity effect of silver nanoparticle syn-thesized by Croton bonplandianum Baill. leaves. Nanomed. J., 2016, 3(1), 15-22.
[73]
Palaniappan, P.; Sathishkumar, G.; Sankar, R. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 885-890.
[http://dx.doi.org/10.1016/j.saa.2014.10.072 ] [PMID: 25467657]
[74]
Kanipandian, N.; Thirumurugan, R. A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossy-pium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind. Crops Prod., 2014, 55, 1-10.
[http://dx.doi.org/10.1016/j.indcrop.2014.01.042]
[75]
Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf. B Biointerfaces, 2013, 108, 80-84.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.033 ] [PMID: 23537829]
[76]
Majeed, S.; Abdullah, M.S.; Dash, G.K.; Ansari, M.T.; Nanda, A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin. J. Nat. Med., 2016, 14(8), 615-620.
[http://dx.doi.org/10.1016/S1875-5364(16)30072-3 ] [PMID: 27608951]
[77]
Venkatesan, B.; Subramanian, V.; Tumala, A.; Vellaichamy, E. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pac. J. Trop. Med, 2014, 7S1, S294-S300.
[http://dx.doi.org/10.1016/S1995-7645(14)60249-2] [PMID: 25312140]
[78]
Khanra, K.; Panja, S.; Choudhuri, I.; Chakraborty, A.; Bhattacharyya, N. Evaluation of antibacterial activity and cytotoxicity of green synthesized silver nanoparticles using Scoparia dulcis. Nano Biomed. Eng., 2015, 7(3), 128-133.
[http://dx.doi.org/10.5101/nbe.v7i3.p128-133]
[79]
Mollick, M.M.R.; Rana, D.; Dash, S.K.; Chattopadhyay, S.; Bhowmick, B.; Maity, D.; Mondal, D.; Pattanayak, S.; Roy, S.; Chakraborty, M.; Chattopadhyay, D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anti-cancer (in vitro) and antimicrobial applications. Arab. J. Chem., 2019, 12(8), 2572-2584.
[http://dx.doi.org/10.1016/j.arabjc.2015.04.033]
[80]
Banerjee, K.; Das, S.; Choudhury, P.; Ghosh, S.; Baral, R.; Choudhuri, S.K. A novel approach of synthesizing and evaluating the anti-cancer potential of silver oxide nanoparticles in vitro. Chemotherapy, 2017, 62(5), 279-289.
[http://dx.doi.org/10.1159/000453446 ] [PMID: 28490010]
[81]
Inbakandan, D.; Kumar, C.; Bavanilatha, M.; Ravindra, D.N.; Kirubagaran, R.; Khan, S.A. Ultrasonic-assisted green synthesis of flower like silver nanocolloids using marine sponge extract and its effect on oral biofilm bacteria and oral cancer cell lines. Microb. Pathog., 2016, 99, 135-141.
[http://dx.doi.org/10.1016/j.micpath.2016.08.018 ] [PMID: 27554277]
[82]
He, Y.; Du, Z.; Ma, S.; Liu, Y.; Li, D.; Huang, H.; Jiang, S.; Cheng, S.; Wu, W.; Zhang, K.; Zheng, X. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomedicine, 2016, 11, 1879-1887.
[http://dx.doi.org/10.2147/IJN.S103695 ] [PMID: 27217750]
[83]
Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis-antiproliferative effect against prostate cancer cells. Cancer Nanotechnol., 2013, 4(6), 137-143.
[http://dx.doi.org/10.1007/s12645-013-0045-4 ] [PMID: 26069509]
[84]
Priyadharshini, R.I.; Prasannaraj, G.; Geetha, N.; Venkatachalam, P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl. Biochem. Biotechnol., 2014, 174(8), 2777-2790.
[http://dx.doi.org/10.1007/s12010-014-1225-3 ] [PMID: 25380639]
[85]
Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci., 2006, 51(4), 427-556.
[http://dx.doi.org/10.1016/j.pmatsci.2005.08.003]
[86]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine, 2010, 6(2), 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002 ] [PMID: 19616126]
[87]
Kulkarni, N.; Muddapur, U. Biosynthesis of metal nanoparticles: A review. J. Nanotechnol., 2014, 2014, 510246.
[88]
Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; Hong, J.; Chen, C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007, 18(10), 105104.
[http://dx.doi.org/10.1088/0957-4484/18/10/105104]
[89]
Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 2004, 275(2), 496-502.
[http://dx.doi.org/10.1016/j.jcis.2004.03.003 ] [PMID: 15178278]
[90]
Singh, A.V.; Bandgar, B.M.; Kasture, M.; Prasad, B.L.V.; Sastry, M. Synthesis of gold, silver and their alloy nanoparticles using bovine serum albumin as foaming and stabilizing agent. J. Mater. Chem., 2005, 15(48), 5115-5121.
[http://dx.doi.org/10.1039/b510398c]
[91]
Li, Y.; Chen, S.M. The electrochemical properties of acetaminophen on bare glassy carbon electrode. Int. J. Electrochem. Sci., 2012, 7(3), 2175-2187.
[92]
He, R.; Qian, X.; Yin, J.; Zhu, Z. Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem., 2002, 12(12), 3783-3786.
[http://dx.doi.org/10.1039/b205214h]
[93]
Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles - A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact., 2017, 273, 219-227.
[http://dx.doi.org/10.1016/j.cbi.2017.06.019 ] [PMID: 28647323]
[94]
Cabral, M.; Pedrosa, F.; Margarido, F.; Nogueira, C.A. End-of-life Zn-MnO2 batteries: Electrode materials characterization. Environ. Technol., 2013, 34(9-12), 1283-1295.
[http://dx.doi.org/10.1080/09593330.2012.745621 ] [PMID: 24191461]
[95]
Ajitha, B.; Reddy, Y.A.K.; Reddy, P.S. Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimi-crobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121, 164-172.
[http://dx.doi.org/10.1016/j.saa.2013.10.077 ] [PMID: 24239759]
[96]
Buhr, E.; Senftleben, N.; Klein, T.; Bergmann, D.; Gnieser, D.; Frase, C.G.; Bosse, H. Characterization of nanoparticles by scanning elec-tron microscopy in transmission mode. Meas. Sci. Technol., 2009, 20(8), 084025.
[http://dx.doi.org/10.1088/0957-0233/20/8/084025]
[97]
Pyrz, W.D.; Buttrey, D.J. Particle size determination using TEM: A discussion of image acquisition and analysis for the novice micros-copist. Langmuir, 2008, 24(20), 11350-11360.
[http://dx.doi.org/10.1021/la801367j ] [PMID: 18729338]
[98]
Asoro, M.A.; Kovar, D.; Ferreira, P.J. In situ transmission electron microscopy observations of sublimation in silver nanoparticles. ACS Nano, 2013, 7(9), 7844-7852.
[http://dx.doi.org/10.1021/nn402771j ] [PMID: 23941466]
[99]
Baraton, M.I. Surface analysis of semiconducting nanoparticles by FTIR spectroscopy. In: Nanocrystalline Metals and Oxides; Springer: Boston, MA, 2002; pp. 165-187.
[http://dx.doi.org/10.1007/0-306-47609-6_6]
[100]
Gurunathan, S.; Han, J.W.; Kwon, D.N.; Kim, J.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett., 2014, 9(1), 373.
[http://dx.doi.org/10.1186/1556-276X-9-373 ] [PMID: 25136281]
[101]
Zhang, Y.; Kohler, N.; Zhang, M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 2002, 23(7), 1553-1561.
[http://dx.doi.org/10.1016/S0142-9612(01)00267-8 ] [PMID: 11922461]
[102]
Tantra, R.; Schulze, P.; Quincey, P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology, 2010, 8(3), 279-285.
[http://dx.doi.org/10.1016/j.partic.2010.01.003]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy