Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Comprehensive Review of Soluble Epoxide Hyådrolase Inhibitors Evaluating their Structure-Activity Relationship

Author(s): Maryam Nazari, Elham Rezaee and Sayyed Abbas Tabatabai*

Volume 23, Issue 1, 2023

Published on: 22 August, 2022

Page: [99 - 117] Pages: 19

DOI: 10.2174/1389557522666220531152812

Price: $65

Abstract

Soluble epoxide hydrolase is a class of α/β-fold hydrolase enzymes that exist in numerous organs and tissues, including the liver, kidney, brain, and vasculature. This homodimer enzyme is responsible for degrading epoxyeicosatrienoic acids to the less active vicinal diols, dihydroxyeicosatrienoic acids by adding a molecule of water to an epoxide in the cytochrome P450 pathway. Soluble epoxide hydrolase was firstly assayed and characterized by Hammock and colleagues about 40 years ago. Upholding high epoxyeicosatrienoic acid blood levels by inhibiting soluble epoxide hydrolase has been proposed as a hopeful strategy to treat renal and cardiovascular diseases, inflammation, and pain. Therefore, developing novel soluble epoxide hydrolase inhibitors has been an attractive research topic for many years. Regarding this issue, some carbamates, heterocycles, amides, and ureas have been proposed; however, rapid metabolism, low solubility, high melting point, and weak pharmacokinetic characteristics are challenges posed to the researchers.

In this review, we have focused on the role of the soluble epoxide hydrolase in the metabolic pathway of arachidonic acid, and categorized the most representative soluble epoxide hydrolase inhibitors into two main classes of synthetic and natural compounds. The structures have been evaluated and an exemplary structure-activity relationship has been provided for further development of potent inhibitors at the end. According to our findings, urea-based inhibitors were preferred to the amide-based scaffolds due to the better fitting into the active site. An aromatic linker is a suitable bridge to connect primary and secondary pharmacophores compared with aliphatic linkers.

Keywords: Adamantyl amide-based inhibitors, Disubstituted urea, SAR, Soluble epoxide hydrolase.

Graphical Abstract

[1]
Arand, M.; Cronin, A.; Adamska, M.; Oesch, F. Epoxide hydrolases: Structure, function, mechanism, and assay. Methods Enzymol., 2005, 400, 569-588.
[http://dx.doi.org/10.1016/S0076-6879(05)00032-7] [PMID: 16399371]
[2]
Rezaee, E.; Hedayati, M.; Rad, L.H.; Shahhosseini, S.; Faizi, M.; Tabatabai, S.A. Novel soluble epoxide hydrolase inhibitors with a dihydropyrimidinone scaffold: Design, synthesis and biological evaluation. MedChemComm, 2016, 7(11), 2128-2135.
[http://dx.doi.org/10.1039/C6MD00395H]
[3]
Morisseau, C. Role of epoxide hydrolases in lipid metabolism. Biochimie, 2013, 95(1), 91-95.
[http://dx.doi.org/10.1016/j.biochi.2012.06.011] [PMID: 22722082]
[4]
Gill, S.S.; Hammock, B.D. Distribution and properties of a mammalian soluble epoxide hydrase. Biochem. Pharmacol., 1980, 29(3), 389-395.
[http://dx.doi.org/10.1016/0006-2952(80)90518-3] [PMID: 7362652]
[5]
Arand, M.; Knehr, M.; Thomas, H.; Zeller, H.D.; Oesch, F. An impaired peroxisomal targeting sequence leading to an unusual bicompart-mental distribution of cytosolic epoxide hydrolase. FEBS Lett., 1991, 294(1-2), 19-22.
[http://dx.doi.org/10.1016/0014-5793(91)81333-4] [PMID: 1743286]
[6]
Morisseau, C.; Hammock, B.D. Gerry Brooks and epoxide hydrolases: Four decades to a pharmaceutical. Pest Manag. Sci., 2008, 64(6), 594-609.
[http://dx.doi.org/10.1002/ps.1583] [PMID: 18383502]
[7]
Oesch, F.; Schladt, L.; Hartmann, R.; Timms, C.; Wörner, W. Rat cytosolic epoxide hydrolase. Adv. Exp. Med. Biol., 1986, 197, 195-201.
[http://dx.doi.org/10.1007/978-1-4684-5134-4_16] [PMID: 3766258]
[8]
Zhao, T.T.; Wasti, B.; Xu, D.Y.; Shen, L.; Du, J.Q.; Zhao, S.P. Soluble epoxide hydrolase and ischemic cardiomyopathy. Int. J. Cardiol., 2012, 155(2), 181-187.
[http://dx.doi.org/10.1016/j.ijcard.2011.05.067] [PMID: 21704394]
[9]
Mumby, S.M.; Hammock, B.D. A partition assay for epoxide hydrases acting on insect juvenile hormone and an epoxide-containing juve-noid. Anal. Biochem., 1979, 92(1), 16-21.
[http://dx.doi.org/10.1016/0003-2697(79)90619-5] [PMID: 426275]
[10]
Mumby, S.M.; Hammock, B.D. Substrate selectivity and stereochemistry of enzymatic epoxide hydration in the soluble fraction of mouse liver. Pestic. Biochem. Physiol., 1979, 11(1-3), 275-284.
[http://dx.doi.org/10.1016/0048-3575(79)90067-1]
[11]
Grant, D.F.; Spearow, J.L.; Storms, D.H.; Edelhoff, S.; Adler, D.A.; Disteche, C.M.; Taylor, B.A.; Hammock, B.D. Chromosomal mapping and expression levels of a mouse soluble epoxide hydrolase gene. Pharmacogenetics, 1994, 4(2), 64-72.
[http://dx.doi.org/10.1097/00008571-199404000-00003] [PMID: 7915936]
[12]
Gill, S.S.; Hammock, B.D. Hydration of cis- and trans-epoxymethyl stearates by the cytosolic epoxide hydrase of mouse liver. Biochem. Biophys. Res. Commun., 1979, 89(3), 965-971.
[http://dx.doi.org/10.1016/0006-291X(79)91872-2] [PMID: 486214]
[13]
Zavareh, E.; Hedayati, M.; Rad, L.; Kiani, A.; Shahhosseini, S.; Faizi, M.; Tabatabai, S. Design, synthesis and biological evaluation of some oxadiazole derivatives as novel amide-based inhibitors of soluble epoxide hydrolase. Lett. Drug Des. Discov., 2014, 11(6), 721-730.
[http://dx.doi.org/10.2174/1570180811666140220005530]
[14]
Spector, A.A.; Fang, X.; Snyder, G.D.; Weintraub, N.L. Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. Prog. Lipid Res., 2004, 43(1), 55-90.
[http://dx.doi.org/10.1016/S0163-7827(03)00049-3] [PMID: 14636671]
[15]
Fang, X.; Weintraub, N.L.; McCaw, R.B.; Hu, S.; Harmon, S.D.; Rice, J.B.; Hammock, B.D.; Spector, A.A. Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(6), H2412-H2420.
[http://dx.doi.org/10.1152/ajpheart.00527.2004] [PMID: 15284062]
[16]
Shen, H.C. Soluble epoxide hydrolase inhibitors: A patent review. Expert Opin. Ther. Pat., 2010, 20(7), 941-956.
[http://dx.doi.org/10.1517/13543776.2010.484804] [PMID: 20429668]
[17]
Yu, Z.; Xu, F.; Huse, L.M.; Morisseau, C.; Draper, A.J.; Newman, J.W.; Parker, C.; Graham, L.; Engler, M.M.; Hammock, B.D.; Zeldin, D.C.; Kroetz, D.L. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ. Res., 2000, 87(11), 992-998.
[http://dx.doi.org/10.1161/01.RES.87.11.992] [PMID: 11090543]
[18]
Imig, J.D.; Hammock, B.D. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat. Rev. Drug Discov., 2009, 8(10), 794-805.
[http://dx.doi.org/10.1038/nrd2875] [PMID: 19794443]
[19]
Zarriello, S.; Tuazon, J.P.; Corey, S.; Schimmel, S.; Rajani, M.; Gorsky, A.; Incontri, D.; Hammock, B.D.; Borlongan, C.V. Humble begin-nings with big goals: Small molecule soluble epoxide hydrolase inhibitors for treating CNS disorders. Prog. Neurobiol., 2019, 172, 23-39.
[http://dx.doi.org/10.1016/j.pneurobio.2018.11.001] [PMID: 30447256]
[20]
Jung, O.; Brandes, R.P.; Kim, I.H.; Schweda, F.; Schmidt, R.; Hammock, B.D.; Busse, R.; Fleming, I. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension, 2005, 45(4)(Suppl.), 759-765.
[http://dx.doi.org/10.1161/01.HYP.0000153792.29478.1d] [PMID: 15699457]
[21]
Wagner, K.M.; McReynolds, C.B.; Schmidt, W.K.; Hammock, B.D. Soluble epoxide hydrolase as a therapeutic target for pain, inflamma-tory and neurodegenerative diseases. Pharmacol. Ther., 2017, 180, 62-76.
[http://dx.doi.org/10.1016/j.pharmthera.2017.06.006] [PMID: 28642117]
[22]
Chiamvimonvat, N.; Ho, C.M.; Tsai, H.J.; Hammock, B.D. The soluble epoxide hydrolase as a pharmaceutical target for hypertension. J. Cardiovasc. Pharmacol., 2007, 50(3), 225-237.
[http://dx.doi.org/10.1097/FJC.0b013e3181506445] [PMID: 17878749]
[23]
Webb Hsu, H.K.; Wang, Y.; Zhang, L. Use of soluble epoxide hydrolase inhibitors in the treatment of smooth muscle disorders. U.S. Patent 20090270452A1, October 29, 2009.
[24]
Wang, Y.; Wagner, K.M.; Morisseau, C.; Hammock, B.D. Inhibition of the soluble epoxide hydrolase as an analgesic strategy: A review of preclinical evidence. J. Pain Res., 2021, 14, 61-72.
[http://dx.doi.org/10.2147/JPR.S241893] [PMID: 33488116]
[25]
Newman, J.W.; Morisseau, C.; Hammock, B.D. Epoxide hydrolases: Their roles and interactions with lipid metabolism. Prog. Lipid Res., 2005, 44(1), 1-51.
[http://dx.doi.org/10.1016/j.plipres.2004.10.001] [PMID: 15748653]
[26]
Arand, M.; Wagner, H.; Oesch, F. Asp333, Asp495, and His523 form the catalytic triad of rat soluble epoxide hydrolase. J. Biol. Chem., 1996, 271(8), 4223-4229.
[http://dx.doi.org/10.1074/jbc.271.8.4223] [PMID: 8626766]
[27]
Cronin, A.; Mowbray, S.; Dürk, H.; Homburg, S.; Fleming, I.; Fisslthaler, B.; Oesch, F.; Arand, M. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1552-1557.
[http://dx.doi.org/10.1073/pnas.0437829100] [PMID: 12574508]
[28]
Cronin, A.; Homburg, S.; Dürk, H.; Richter, I.; Adamska, M.; Frère, F.; Arand, M. Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis. J. Mol. Biol., 2008, 383(3), 627-640.
[http://dx.doi.org/10.1016/j.jmb.2008.08.049] [PMID: 18775727]
[29]
Pinot, F.; Grant, D.F.; Beetham, J.K.; Parker, A.G.; Borhan, B.; Landt, S.; Jones, A.D.; Hammock, B.D. Molecular and biochemical eviden-ce for the involvement of the Asp-333-His-523 pair in the catalytic mechanism of soluble epoxide hydrolase. J. Biol. Chem., 1995, 270(14), 7968-7974.
[http://dx.doi.org/10.1074/jbc.270.14.7968] [PMID: 7713895]
[30]
Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science, 2001, 294(5548), 1871-1875.
[http://dx.doi.org/10.1126/science.294.5548.1871] [PMID: 11729303]
[31]
Xu, X.; Li, R.; Chen, G.; Hoopes, S.L.; Zeldin, D.C.; Wang, D.W. The role of cytochrome P450 epoxygenases, soluble epoxide hydrolase, and epoxyeicosatrienoic acids in metabolic diseases. Adv. Nutr., 2016, 7(6), 1122-1128.
[http://dx.doi.org/10.3945/an.116.012245] [PMID: 28140329]
[32]
Imig, J.D.; Walsh, K.A.; Hye Khan, M.A.; Nagasawa, T.; Cherian-Shaw, M.; Shaw, S.M.; Hammock, B.D. Soluble epoxide hydrolase inhi-bition and peroxisome proliferator activated receptor γ agonist improve vascular function and decrease renal injury in hypertensive obese rats. Exp. Biol. Med. (Maywood), 2012, 237(12), 1402-1412.
[http://dx.doi.org/10.1258/ebm.2012.012225] [PMID: 23354399]
[33]
Spector, A.A.; Norris, A.W. Action of epoxyeicosatrienoic acids on cellular function. Am. J. Physiol. Cell Physiol., 2007, 292(3), C996-C1012.
[http://dx.doi.org/10.1152/ajpcell.00402.2006] [PMID: 16987999]
[34]
Harris, T.R.; Hammock, B.D. Soluble epoxide hydrolase: Gene structure, expression and deletion. Gene, 2013, 526(2), 61-74.
[http://dx.doi.org/10.1016/j.gene.2013.05.008] [PMID: 23701967]
[35]
Morisseau, C.; Inceoglu, B.; Schmelzer, K.; Tsai, H.J.; Jinks, S.L.; Hegedus, C.M.; Hammock, B.D. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J. Lipid Res., 2010, 51(12), 3481-3490.
[http://dx.doi.org/10.1194/jlr.M006007] [PMID: 20664072]
[36]
Manhiani, M.; Quigley, J.E.; Knight, S.F.; Tasoobshirazi, S.; Moore, T.; Brands, M.W.; Hammock, B.D.; Imig, J.D. Soluble epoxide hydro-lase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. Am. J. Physiol. Renal Physiol., 2009, 297(3), F740-F748.
[http://dx.doi.org/10.1152/ajprenal.00098.2009] [PMID: 19553349]
[37]
Thomson, S.J.; Askari, A.; Bishop-Bailey, D. Anti-inflammatory effects of epoxyeicosatrienoic acids. Int. J. Vasc. Med., 2012, 2012, 605101.
[http://dx.doi.org/10.1155/2012/605101] [PMID: 22848834]
[38]
Morisseau, C.; Hammock, B.D. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 37-58.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140244] [PMID: 23020295]
[39]
Wagner, K.; Inceoglu, B.; Hammock, B.D. Soluble epoxide hydrolase inhibition, epoxygenated fatty acids and nociception. Prostaglandins Other Lipid Mediat., 2011, 96(1-4), 76-83.
[http://dx.doi.org/10.1016/j.prostaglandins.2011.08.001] [PMID: 21854866]
[40]
Shen, H.C.; Hammock, B.D. Discovery of inhibitors of soluble epoxide hydrolase: A target with multiple potential therapeutic indications. J. Med. Chem., 2012, 55(5), 1789-1808.
[http://dx.doi.org/10.1021/jm201468j] [PMID: 22168898]
[41]
Gautheron, J.; Jéru, I. The multifaceted role of epoxide hydrolases in human health and disease. Int. J. Mol. Sci., 2020, 22(1), 1-17.
[http://dx.doi.org/10.3390/ijms22010013] [PMID: 33374956]
[42]
Nebert, D.W.; Dalton, T.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer, 2006, 6(12), 947-960.
[http://dx.doi.org/10.1038/nrc2015] [PMID: 17128211]
[43]
Coller, J.K.; Fritz, P.; Zanger, U.M.; Siegle, I.; Eichelbaum, M.; Kroemer, H.K.; Mürdter, T.E. Distribution of microsomal epoxide hydro-lase in humans: An immunohistochemical study in normal tissues, and benign and malignant tumours. Histochem. J., 2001, 33(6), 329-336.
[http://dx.doi.org/10.1023/A:1012414806166] [PMID: 11758809]
[44]
Hattori, N.; Fujiwara, H.; Maeda, M.; Fujii, S.; Ueda, M. Epoxide hydrolase affects estrogen production in the human ovary. Endocrinology, 2000, 141(9), 3353-3365.
[http://dx.doi.org/10.1210/endo.141.9.7682] [PMID: 10965908]
[45]
Miyamoto, T.; Silva, M.; Hammock, B.D. Inhibition of epoxide hydrolases and glutathione S-transferases by 2-, 3-, and 4-substituted derivatives of 4′-phenylchalcone and its oxide. Arch. Biochem. Biophys., 1987, 254(1), 203-213.
[http://dx.doi.org/10.1016/0003-9861(87)90096-8] [PMID: 3579298]
[46]
Dietze, E.C.; Kuwano, E.; Casas, J.; Hammock, B.D. Inhibition of cytosolic epoxide hydrolase by trans-3-phenylglycidols. Biochem. Pharmacol., 1991, 42(6), 1163-1175.
[http://dx.doi.org/10.1016/0006-2952(91)90250-9] [PMID: 1888328]
[47]
Dietze, E.C.; Casas, J.; Kuwano, E.; Hammock, B.D. Inhibition of epoxide hydrolase from human, monkey, bovine, rabbit and murine liver by trans-3-phenylglycidols. Comp. Biochem. Physiol. B, 1993, 104(2), 309-314.
[http://dx.doi.org/10.1016/0305-0491(93)90373-D] [PMID: 8462281]
[48]
Kerr, B.M.; Levy, R.H. Unsubstituted amides: New class of potent inhibitors of human microsomal epoxide hydrolase. Drug Metab. Dispos., 1990, 18(4), 540-542.
[PMID: 1976080]
[49]
Morisseau, C.; Goodrow, M.H.; Dowdy, D.; Zheng, J.; Greene, J.F.; Sanborn, J.R.; Hammock, B.D. Potent urea and carbamate inhibitors of soluble epoxide hydrolases. Proc. Natl. Acad. Sci. USA, 1999, 96(16), 8849-8854.
[http://dx.doi.org/10.1073/pnas.96.16.8849] [PMID: 10430859]
[50]
Morisseau, C.; Newman, J.W.; Dowdy, D.L.; Goodrow, M.H.; Hammock, B.D. Inhibition of microsomal epoxide hydrolases by ureas, amides, and amines. Chem. Res. Toxicol., 2001, 14(4), 409-415.
[http://dx.doi.org/10.1021/tx0001732] [PMID: 11304129]
[51]
Morisseau, C.; Goodrow, M.H.; Newman, J.W.; Wheelock, C.E.; Dowdy, D.L.; Hammock, B.D. Structural refinement of inhibitors of urea-based soluble epoxide hydrolases. Biochem. Pharmacol., 2002, 63(9), 1599-1608.
[http://dx.doi.org/10.1016/S0006-2952(02)00952-8] [PMID: 12007563]
[52]
Kim, I.H.; Morisseau, C.; Watanabe, T.; Hammock, B.D. Design, synthesis, and biological activity of 1,3-disubstituted ureas as potent inhibitors of the soluble epoxide hydrolase of increased water solubility. J. Med. Chem., 2004, 47(8), 2110-2122.
[http://dx.doi.org/10.1021/jm030514j] [PMID: 15056008]
[53]
Tsai, H.J.; Hwang, S.H.; Morisseau, C.; Yang, J.; Jones, P.D.; Kasagami, T.; Kim, I.H.; Hammock, B.D. Pharmacokinetic screening of so-luble epoxide hydrolase inhibitors in dogs. Eur. J. Pharm. Sci., 2010, 40(3), 222-238.
[http://dx.doi.org/10.1016/j.ejps.2010.03.018] [PMID: 20359531]
[54]
Kim, I.H.; Heirtzler, F.R.; Morisseau, C.; Nishi, K.; Tsai, H.J.; Hammock, B.D. Optimization of amide-based inhibitors of soluble epoxide hydrolase with improved water solubility. J. Med. Chem., 2005, 48(10), 3621-3629.
[http://dx.doi.org/10.1021/jm0500929] [PMID: 15887969]
[55]
Li, H.Y.; Jin, Y.; Morisseau, C.; Hammock, B.D.; Long, Y.Q. The 5-substituted piperazine as a novel secondary pharmacophore greatly improving the physical properties of urea-based inhibitors of soluble epoxide hydrolase. Bioorg. Med. Chem., 2006, 14(19), 6586-6592.
[http://dx.doi.org/10.1016/j.bmc.2006.06.005] [PMID: 16784862]
[56]
Kim, I.H.; Nishi, K.; Tsai, H.J.; Bradford, T.; Koda, Y.; Watanabe, T.; Morisseau, C.; Blanchfield, J.; Toth, I.; Hammock, B.D. Design of bioavailable derivatives of 12-(3-adamantan-1-yl-ureido)dodecanoic acid, a potent inhibitor of the soluble epoxide hydrolase. Bioorg. Med. Chem., 2007, 15(1), 312-323.
[http://dx.doi.org/10.1016/j.bmc.2006.09.057] [PMID: 17046265]
[57]
Kim, I.H.; Tsai, H.J.; Nishi, K.; Kasagami, T.; Morisseau, C.; Hammock, B.D. 1,3-disubstituted ureas functionalized with ether groups are potent inhibitors of the soluble epoxide hydrolase with improved pharmacokinetic properties. J. Med. Chem., 2007, 50(21), 5217-5226.
[http://dx.doi.org/10.1021/jm070705c] [PMID: 17894481]
[58]
Hwang, S.H.; Tsai, H.J.; Liu, J.Y.; Morisseau, C.; Hammock, B.D. Orally bioavailable potent soluble epoxide hydrolase inhibitors. J. Med. Chem., 2007, 50(16), 3825-3840.
[http://dx.doi.org/10.1021/jm070270t] [PMID: 17616115]
[59]
Shen, H.C.; Ding, F.X.; Deng, Q.; Xu, S.; Chen, H.S.; Tong, X.; Tong, V.; Zhang, X.; Chen, Y.; Zhou, G.; Pai, L.Y.; Alonso-Galicia, M.; Zhang, B.; Roy, S.; Tata, J.R.; Berger, J.P.; Colletti, S.L. Discovery of 3,3-disubstituted piperidine-derived trisubstituted ureas as highly potent soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(18), 5314-5320.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.138] [PMID: 19682899]
[60]
Anandan, S.K.; Do, Z.N.; Webb, H.K.; Patel, D.V.; Gless, R.D. Non-urea functionality as the primary pharmacophore in soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(4), 1066-1070.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.013] [PMID: 19168352]
[61]
Xie, Y.; Liu, Y.; Gong, G.; Smith, D.H.; Yan, F.; Rinderspacher, A.; Feng, Y.; Zhu, Z.; Li, X.; Deng, S.X.; Branden, L.; Vidović, D.; Chung, C.; Schürer, S.; Morisseau, C.; Hammock, B.D.; Landry, D.W. Discovery of potent non-urea inhibitors of soluble epoxide hydrolase. Bioorg. Med. Chem. Lett., 2009, 19(8), 2354-2359.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.066] [PMID: 19303288]
[62]
Shen, H.C.; Ding, F.X.; Wang, S.; Deng, Q.; Zhang, X.; Chen, Y.; Zhou, G.; Xu, S.; Chen, H.S.; Tong, X.; Tong, V.; Mitra, K.; Kumar, S.; Tsai, C.; Stevenson, A.S.; Pai, L.Y.; Alonso-Galicia, M.; Chen, X.; Soisson, S.M.; Roy, S.; Zhang, B.; Tata, J.R.; Berger, J.P.; Colletti, S.L. Discovery of a highly potent, selective, and bioavailable soluble epoxide hydrolase inhibitor with excellent ex vivo target engagement. J. Med. Chem., 2009, 52(16), 5009-5012.
[http://dx.doi.org/10.1021/jm900725r] [PMID: 19645482]
[63]
Shen, H.C.; Ding, F.X.; Deng, Q.; Xu, S.; Tong, X.; Zhang, X.; Chen, Y.; Zhou, G.; Pai, L.Y.; Alonso-Galicia, M.; Roy, S.; Zhang, B.; Tata, J.R.; Berger, J.P.; Colletti, S.L. A strategy of employing aminoheterocycles as amide mimics to identify novel, potent and bioavailable so-luble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(19), 5716-5721.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.006] [PMID: 19700315]
[64]
Taylor, S.J.; Soleymanzadeh, F.; Eldrup, A.B.; Farrow, N.A.; Muegge, I.; Kukulka, A.; Kabcenell, A.K.; De Lombaert, S. Design and synt-hesis of substituted nicotinamides as inhibitors of soluble epoxide hydrolase. Bioorg. Med. Chem. Lett., 2009, 19(20), 5864-5868.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.074] [PMID: 19758802]
[65]
Rose, T.E.; Morisseau, C.; Liu, J.Y.; Inceoglu, B.; Jones, P.D.; Sanborn, J.R.; Hammock, B.D. 1-Aryl-3-(1-acylpiperidin-4-yl)urea inhibi-tors of human and murine soluble epoxide hydrolase: Structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain. J. Med. Chem., 2010, 53(19), 7067-7075.
[http://dx.doi.org/10.1021/jm100691c] [PMID: 20812725]
[66]
Anandan, S.K.; Gless, R.D. Exploration of secondary and tertiary pharmacophores in unsymmetrical N,N′-diaryl urea inhibitors of solu-ble epoxide hydrolase. Bioorg. Med. Chem. Lett., 2010, 20(9), 2740-2744.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.074] [PMID: 20363133]
[67]
Huang, S.X.; Li, H.Y.; Liu, J.Y.; Morisseau, C.; Hammock, B.D.; Long, Y.Q. Incorporation of piperazino functionality into 1,3-disubstituted urea as the tertiary pharmacophore affording potent inhibitors of soluble epoxide hydrolase with improved pharmacokinetic properties. J. Med. Chem., 2010, 53(23), 8376-8386.
[http://dx.doi.org/10.1021/jm101087u] [PMID: 21070033]
[68]
Kowalski, J.A.; Swinamer, A.D.; Muegge, I.; Eldrup, A.B.; Kukulka, A.; Cywin, C.L.; De Lombaert, S. Rapid synthesis of an array of tri-substituted urea-based soluble epoxide hydrolase inhibitors facilitated by a novel solid-phase method. Bioorg. Med. Chem. Lett., 2010, 20(12), 3703-3707.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.078] [PMID: 20472432]
[69]
Anandan, S.K.; Webb, H.K.; Chen, D.; Wang, Y.X.; Aavula, B.R.; Cases, S.; Cheng, Y.; Do, Z.N.; Mehra, U.; Tran, V.; Vincelette, J.; Was-zczuk, J.; White, K.; Wong, K.R.; Zhang, L.N.; Jones, P.D.; Hammock, B.D.; Patel, D.V.; Whitcomb, R.; MacIntyre, D.E.; Sabry, J.; Gless, R. 1-(1-acetyl-piperidin-4-yl)-3-adamantan-1-yl-urea (AR9281) as a potent, selective, and orally available soluble epoxide hydrolase in-hibitor with efficacy in rodent models of hypertension and dysglycemia. Bioorg. Med. Chem. Lett., 2011, 21(3), 983-988.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.042] [PMID: 21211973]
[70]
Xing, L.; McDonald, J.J.; Kolodziej, S.A.; Kurumbail, R.G.; Williams, J.M.; Warren, C.J.; O’Neal, J.M.; Skepner, J.E.; Roberds, S.L. Dis-covery of potent inhibitors of soluble epoxide hydrolase by combinatorial library design and structure-based virtual screening. J. Med. Chem., 2011, 54(5), 1211-1222.
[http://dx.doi.org/10.1021/jm101382t] [PMID: 21302953]
[71]
Hwang, S.H.; Wagner, K.M.; Morisseau, C.; Liu, J.Y.; Dong, H.; Wecksler, A.T.; Hammock, B.D. Synthesis and structure-activity rela-tionship studies of urea-containing pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble epoxide hydrolase. J. Med. Chem., 2011, 54(8), 3037-3050.
[http://dx.doi.org/10.1021/jm2001376] [PMID: 21434686]
[72]
Pecic, S.; Deng, S.X.; Morisseau, C.; Hammock, B.D.; Landry, D.W. Design, synthesis and evaluation of non-urea inhibitors of soluble epoxide hydrolase. Bioorg. Med. Chem. Lett., 2012, 22(1), 601-605.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.074] [PMID: 22079754]
[73]
Kim, I.H.; Nishi, K.; Kasagami, T.; Morisseau, C.; Liu, J.Y.; Tsai, H.J.; Hammock, B.D. Biologically active ester derivatives as potent inhi-bitors of the soluble epoxide hydrolase. Bioorg. Med. Chem. Lett., 2012, 22(18), 5889-5892.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.074] [PMID: 22901393]
[74]
Tang, L.; Ma, W.H.; Ma, Y.L.; Ban, S.R.; Feng, X.E.; Li, Q.S. Synthesis and biological activity of 4-substituted benzoxazolone derivatives as a new class of sEH inhibitors with high anti-inflammatory activity in vivo. Bioorg. Med. Chem. Lett., 2013, 23(8), 2380-2383.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.048] [PMID: 23489630]
[75]
North, E.J.; Scherman, M.S.; Bruhn, D.F.; Scarborough, J.S.; Maddox, M.M.; Jones, V.; Grzegorzewicz, A.; Yang, L.; Hess, T.; Morisseau, C.; Jackson, M.; McNeil, M.R.; Lee, R.E. Design, synthesis and anti-tuberculosis activity of 1-adamantyl-3-heteroaryl ureas with impro-ved in vitro pharmacokinetic properties. Bioorg. Med. Chem., 2013, 21(9), 2587-2599.
[http://dx.doi.org/10.1016/j.bmc.2013.02.028] [PMID: 23498915]
[76]
Pecic, S.; Pakhomova, S.; Newcomer, M.E.; Morisseau, C.; Hammock, B.D.; Zhu, Z.; Rinderspacher, A.; Deng, S.X. Synthesis and structu-re-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(2), 417-421.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.084] [PMID: 23237835]
[77]
Takai, K.; Nakajima, T.; Takanashi, Y.; Sone, T.; Nariai, T.; Chiyo, N.; Nakatani, S.; Ishikawa, C.; Yamaguchi, N.; Fujita, K.; Yamada, K. Structure-based optimization of cyclopropyl urea derivatives as potent soluble epoxide hydrolase inhibitors for potential decrease of renal injury without hypotensive action. Bioorg. Med. Chem., 2014, 22(5), 1548-1557.
[http://dx.doi.org/10.1016/j.bmc.2014.01.040] [PMID: 24530032]
[78]
Nimbarte, V.D.; Murtuza, H.; Phaniraj, S.; Shrivastava, S.; Naidu, V.G.M.; Satheesh Kumar, N.; Atcha, K.R. Design, synthesis and biologi-cal evaluation of 4-(1-(4(Sulphanilamide)Phenyl)-3-(Methyl)-1H-Pyrazol-5-Yl)Dine urea and N-Acyl derivatives as a soluble epoxide hydrolase inhibitors. Med. Chem. Res., 2009, 23(5), 2178-2197.
[http://dx.doi.org/10.1007/s00044-013-0817-8]
[79]
Kato, Y.; Fuchi, N.; Nishimura, Y.; Watanabe, A.; Yagi, M.; Nakadera, Y.; Higashi, E.; Yamada, M.; Aoki, T.; Kigoshi, H. Discovery of 1-oxa-4,9-diazaspiro[5.5]undecane-based trisubstituted urea derivatives as highly potent soluble epoxide hydrolase inhibitors and orally ac-tive drug candidates for treating of chronic kidney diseases. Bioorg. Med. Chem. Lett., 2014, 24(2), 565-570.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.020] [PMID: 24373724]
[80]
Kim, I.H.; Lee, I.H.; Nishiwaki, H.; Hammock, B.D.; Nishi, K. Structure-activity relationships of substituted oxyoxalamides as inhibitors of the human soluble epoxide hydrolase. Bioorg. Med. Chem., 2014, 22(3), 1163-1175.
[http://dx.doi.org/10.1016/j.bmc.2013.12.027] [PMID: 24433964]
[81]
Burmistrov, V.; Morisseau, C.; Lee, K.S.S.; Shihadih, D.S.; Harris, T.R.; Butov, G.M.; Hammock, B.D. Symmetric adamantyl-diureas as soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(9), 2193-2197.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.016] [PMID: 24685540]
[82]
Rezaee Zavareh, E.; Hedayati, M.; Hoghooghi Rad, L.; Shahhosseini, S.; Faizi, M.; Tabatabai, S.A. Design, synthesis and biological evalua-tion of 4-benzamidobenzoic acid hydrazide derivatives as novel soluble epoxide hydrolase inhibitors. Iran. J. Pharm. Res., 2014, 13(Suppl.), 51-59.
[PMID: 24711829]
[83]
Takai, K.; Chiyo, N.; Nakajima, T.; Nariai, T.; Ishikawa, C.; Nakatani, S.; Ikeno, A.; Yamamoto, S.; Sone, T. Three-dimensional rational approach to the discovery of potent substituted cyclopropyl urea soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(8), 1705-1708.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.076] [PMID: 25800114]
[84]
Blöcher, R.; Lamers, C.; Wittmann, S.K.; Merk, D.; Hartmann, M.; Weizel, L.; Diehl, O.; Brüggerhoff, A.; Boß, M.; Kaiser, A.; Schader, T.; Göbel, T.; Grundmann, M.; Angioni, C.; Heering, J.; Geisslinger, G.; Wurglics, M.; Kostenis, E.; Brüne, B.; Steinhilber, D.; Schubert-Zsilavecz, M.; Kahnt, A.S.; Proschak, E. N-Benzylbenzamides: A novel merged scaffold for orally available dual soluble epoxide hydrola-se/peroxisome proliferator-activated receptor γ modulators. J. Med. Chem., 2016, 59(1), 61-81.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01239] [PMID: 26595749]
[85]
Podolin, P.L.; Bolognese, B.J.; Foley, J.F.; Long, E., III; Peck, B.; Umbrecht, S.; Zhang, X.; Zhu, P.; Schwartz, B.; Xie, W.; Quinn, C.; Qi, H.; Sweitzer, S.; Chen, S.; Galop, M.; Ding, Y.; Belyanskaya, S.L.; Israel, D.I.; Morgan, B.A.; Behm, D.J.; Marino, J.P., Jr; Kurali, E.; Bar-nette, M.S.; Mayer, R.J.; Booth-Genthe, C.L.; Callahan, J.F. In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhi-bitor. Prostaglandins Other Lipid Mediat., 2013, 104-105, 25-31.
[http://dx.doi.org/10.1016/j.prostaglandins.2013.02.001] [PMID: 23434473]
[86]
Lazaar, A.L.; Yang, L.; Boardley, R.L.; Goyal, N.S.; Robertson, J.; Baldwin, S.J.; Newby, D.E.; Wilkinson, I.B.; Tal-Singer, R.; Mayer, R.J.; Cheriyan, J. Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibi-tor. Br. J. Clin. Pharmacol., 2016, 81(5), 971-979.
[http://dx.doi.org/10.1111/bcp.12855] [PMID: 26620151]
[87]
Manickam, M.; Pillaiyar, T.; Boggu, P.; Venkateswararao, E.; Jalani, H.B.; Kim, N.D.; Lee, S.K.; Jeon, J.S.; Kim, S.K.; Jung, S.H. Disco-very of enantioselectivity of urea inhibitors of soluble epoxide hydrolase. Eur. J. Med. Chem., 2016, 117, 113-124.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.015] [PMID: 27092411]
[88]
Meirer, K.; Glatzel, D.; Kretschmer, S.; Wittmann, S.K.; Hartmann, M.; Blöcher, R.; Angioni, C.; Geisslinger, G.; Steinhilber, D.; Hofmann, B.; Fürst, R.; Proschak, E. Design, synthesis and cellular characterization of a dual inhibitor of 5-Lipoxygenase and soluble epoxide hydrolase. Molecules, 2016, 22(1), 45.
[http://dx.doi.org/10.3390/molecules22010045] [PMID: 28036068]
[89]
Karami, L.; Saboury, A.A.; Rezaee, E.; Tabatabai, S.A. Investigation of the binding mode of 1, 3, 4-oxadiazole derivatives as amide-based inhibitors for soluble epoxide hydrolase (sEH) by molecular docking and MM-GBSA. Eur. Biophys. J., 2017, 46(5), 445-459.
[http://dx.doi.org/10.1007/s00249-016-1188-0] [PMID: 27928588]
[90]
Temml, V.; Garscha, U.; Romp, E.; Schubert, G.; Gerstmeier, J.; Kutil, Z.; Matuszczak, B.; Waltenberger, B.; Stuppner, H.; Werz, O.; Schuster, D. Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharma-cophore-based virtual screening. Sci. Rep., 2017, 7(1), 42751.
[http://dx.doi.org/10.1038/srep42751] [PMID: 28218273]
[91]
Burmistrov, V.; Morisseau, C.; Pitushkin, D.; Karlov, D.; Fayzullin, R.R.; Butov, G.M.; Hammock, B.D. Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(13), 2302-2313.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.024] [PMID: 29803731]
[92]
Gurung, A.B.; Mayengbam, B.; Bhattacharjee, A. Discovery of novel drug candidates for inhibition of soluble epoxide hydrolase of ara-chidonic acid cascade pathway implicated in atherosclerosis. Comput. Biol. Chem., 2018, 74, 1-11.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.019] [PMID: 29522918]
[93]
Kodani, S.D.; Bhakta, S.; Hwang, S.H.; Pakhomova, S.; Newcomer, M.E.; Morisseau, C.; Hammock, B.D. Identification and optimization of soluble epoxide hydrolase inhibitors with dual potency towards fatty acid amide hydrolase. Bioorg. Med. Chem. Lett., 2018, 28(4), 762-768.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.003] [PMID: 29366648]
[94]
Lukin, A.; Kramer, J.; Hartmann, M.; Weizel, L.; Hernandez-Olmos, V.; Falahati, K.; Burghardt, I.; Kalinchenkova, N.; Bagnyukova, D.; Zhurilo, N.; Rautio, J.; Forsberg, M.; Ihalainen, J.; Auriola, S.; Leppänen, J.; Konstantinov, I.; Pogoryelov, D.; Proschak, E.; Dar’in, D.; Krasavin, M. Discovery of polar spirocyclic orally bioavailable urea inhibitors of soluble epoxide hydrolase. Bioorg. Chem., 2018, 80, 655-667.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.014] [PMID: 30059891]
[95]
Nandha, B.; Ramareddy, S.A.; Kuntal, H. Synthesis of substituted fluorobenzimidazoles as inhibitors of 5-lipoxygenase and soluble epo-xide hydrolase for anti-inflammatory activity. Arch. Pharm. (Weinheim), 2018, 351(6), e1800030.
[http://dx.doi.org/10.1002/ardp.201800030] [PMID: 29732612]
[96]
Pecic, S.; Zeki, A.A.; Xu, X.; Jin, G.Y.; Zhang, S.; Kodani, S.; Halim, M.; Morisseau, C.; Hammock, B.D.; Deng, S.X. Novel piperidine-derived amide sEH inhibitors as mediators of lipid metabolism with improved stability. Prostaglandins Other Lipid Mediat., 2018, 136, 90-95.
[http://dx.doi.org/10.1016/j.prostaglandins.2018.02.004] [PMID: 29567338]
[97]
Vieider, L.; Romp, E.; Temml, V.; Fischer, J.; Kretzer, C.; Schoenthaler, M.; Taha, A.; Hernández-Olmos, V.; Sturm, S.; Schuster, D.; Werz, O.; Garscha, U.; Matuszczak, B. Synthesis, biological evaluation and structure-activity relationships of diflapolin analogues as dual sEH/FLAP inhibitors. ACS Med. Chem. Lett., 2018, 10(1), 62-66.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00415] [PMID: 30655948]
[98]
Burmistrov, V.; Morisseau, C.; Harris, T.R.; Butov, G.; Hammock, B.D. Effects of adamantane alterations on soluble epoxide hydrolase inhibition potency, physical properties and metabolic stability. Bioorg. Chem., 2018, 76, 510-527.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.024] [PMID: 29310082]
[99]
Burmistrov, V.; Morisseau, C.; D’yachenko, V.; Rybakov, V.B.; Butov, G.M.; Hammock, B.D. Fluoroaromatic fragments on 1,3-disubstituted ureas enhance soluble epoxide hydrolase inhibition. J. Fluor. Chem., 2019, 220, 48-53.
[http://dx.doi.org/10.1016/j.jfluchem.2019.02.005] [PMID: 32132741]
[100]
Matsumoto, N.; Kataoka, M.; Hirosaki, H.; Morisseau, C.; Hammock, B.D.; Suzuki, E.; Hasumi, K. N-Substituted amino acid inhibitors of the phosphatase domain of the soluble epoxide hydrolase. Biochem. Biophys. Res. Commun., 2019, 515(1), 248-253.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.088] [PMID: 31146915]
[101]
Hejazi, L.; Rezaee, E.; Tabatabai, S.A. Quinazoline-4(3H)-one derivatives as novel and potent inhibitors of soluble epoxide hydrolase: Design, synthesis and biological evaluation. Bioorg. Chem., 2020, 99, 103736.
[http://dx.doi.org/10.1016/j.bioorg.2020.103736] [PMID: 32229350]
[102]
Lee, K.S.S.; Ng, J.C.; Yang, J.; Hwang, S.H.; Morisseau, C.; Wagner, K.; Hammock, B.D. Preparation and evaluation of soluble epoxide hydrolase inhibitors with improved physical properties and potencies for treating diabetic neuropathic pain. Bioorg. Med. Chem., 2020, 28(22), 115735.
[http://dx.doi.org/10.1016/j.bmc.2020.115735] [PMID: 33007552]
[103]
Hammock, B.D.; McReynolds, C.B.; Wagner, K.; Buckpitt, A.; Cortes-Puch, I.; Croston, G.; Lee, K.S.S.; Yang, J.; Schmidt, W.K.; Hwang, S.H. Movement to the clinic of soluble epoxide hydrolase inhibitor EC5026 as an analgesic for neuropathic pain and for use as a nonad-dictive opioid alternative. J. Med. Chem., 2021, 64(4), 1856-1872.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01886] [PMID: 33550801]
[104]
Mahlooji, I.; Shokri, M.; Manoochehri, R.; Mahboubi-Rabbani, M.; Rezaee, E.; Tabatabai, S.A. Discovery of phthalimide derivatives as novel inhibitors of a soluble epoxide hydrolase. Arch. Pharm. (Weinheim), 2020, 353(8), e2000052.
[http://dx.doi.org/10.1002/ardp.202000052] [PMID: 32484272]
[105]
Rezaee, E.; Amrolah, S.M.; Nazari, M.; Tabatabai, S.A. Novel amide derivatives of 3-phenylglutaric acid as potent soluble epoxide hydro-lase inhibitors. Mol. Divers., 2021, 25(1), 45-53.
[http://dx.doi.org/10.1007/s11030-019-10023-y] [PMID: 31873869]
[106]
Rezaee, E.; Shadzad, H.R.; Nazari, M.; Tabatabai, S.A. Design, synthesis, and biological evaluation of some 1,2,3-Triazole derivatives as novel amide-based inhibitors of soluble epoxide hydrolase. Med. Chem. Res., 2021, 30(9), 1738-1746.
[http://dx.doi.org/10.1007/s00044-021-02752-3]
[107]
Sun, C.P.; Zhang, X.Y.; Morisseau, C.; Hwang, S.H.; Zhang, Z.J.; Hammock, B.D.; Ma, X.C. Discovery of soluble epoxide hydrolase inhi-bitors from chemical synthesis and natural products. J. Med. Chem., 2021, 64(1), 184-215.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01507] [PMID: 33369424]
[108]
Lee, G.H.; Oh, S.J.; Lee, S.Y.; Lee, J.Y.; Ma, J.Y.; Kim, Y.H.; Kim, S.K. Discovery of soluble epoxide hydrolase inhibitors from natural products. Food Chem. Toxicol., 2014, 64, 225-230.
[http://dx.doi.org/10.1016/j.fct.2013.11.042] [PMID: 24309146]
[109]
Bai, M.M.; Shi, W.; Tian, J.M.; Lei, M.; Kim, J.H.; Sun, Y.N.; Kim, Y.H.; Gao, J.M. Soluble epoxide hydrolase inhibitory and anti-inflammatory components from the leaves of Eucommia ulmoides Oliver (duzhong). J. Agric. Food Chem., 2015, 63(8), 2198-2205.
[http://dx.doi.org/10.1021/acs.jafc.5b00055] [PMID: 25679330]
[110]
Kitamura, S.; Morisseau, C.; Inceoglu, B.; Kamita, S.G.; De Nicola, G.R.; Nyegue, M.; Hammock, B.D. Potent natural soluble epoxide hydrolase inhibitors from Pentadiplandra brazzeana baillon: Synthesis, quantification, and measurement of biological activities in vitro and in vivo. PLoS One, 2015, 10(2), e0117438.
[http://dx.doi.org/10.1371/journal.pone.0117438] [PMID: 25659109]
[111]
Li, H.X.; Yang, S.Y.; Kim, Y.H.; Li, W. Isolation of two new compounds and other constituents from leaves of Piper crocatum and study of their soluble epoxide hydrolase activities. Molecules, 2019, 24(3), 489.
[http://dx.doi.org/10.3390/molecules24030489] [PMID: 30704047]
[112]
Thao, N.P.; Kim, J.H.; Thuy Luyen, B.T.; Dat, N.T.; Kim, Y.H. In silico investigation of cycloartane triterpene derivatives from Cimicifuga dahurica (Turcz.) Maxim. roots for the development of potent soluble epoxide hydrolase inhibitors. Int. J. Biol. Macromol., 2017, 98, 526-534.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.023] [PMID: 28188798]
[113]
Kim, J.H.; Morgan, A.M.A.; Tai, B.H.; Van, D.T.; Cuong, N.M.; Kim, Y.H. Inhibition of soluble epoxide hydrolase activity by compounds isolated from the aerial parts of Glycosmis stenocarpa. J. Enzyme Inhib. Med. Chem., 2016, 31(4), 640-644.
[http://dx.doi.org/10.3109/14756366.2015.1057719] [PMID: 26444316]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy