Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Design and Synthesis of an Hsp90 and HDAC Dual Inhibitor as Antitumor Agent

Author(s): Jiyong Wu, Dongbo Wang, Jing Nie, Di Zhang, Lei Sun, Shifeng Kan and Wei Xu*

Volume 20, Issue 6, 2023

Published on: 29 August, 2022

Page: [619 - 627] Pages: 9

DOI: 10.2174/1570180819666220530145951

Price: $65

Abstract

Background: Cancer incidence and mortality have been increasing, and cancer is still the leading cause of death all over the world. Therefore, expanding the arsenal of anticancer drugs with high efficiency and low toxicity is still one of the most challenging tasks. As a branch of antitumor drug design and discovery, dual-targeting drug candidates draw extensive attention.

Objective: In this work, we try to construct a multitarget drug candidate and evaluate its antitumor effects.

Methods: Hsp90 and histone deacetylase were selected as two targets to design a dual targeting inhibitor w11. Enzyme inhibition work, cell viability assay, and docking simulation were carried out to evaluate the activity of the compound.

Results: w11 could inhibit the activity of Hsp90α and HDAC6 with the IC50 of 50.1 nM and 8.1 nM, respectively. In cell viability assay, five human tumor cell lines Eca-109, FaDu, HN6, MCF-7 and MDAMB- 231 were used, results showed that w11 could potently inhibit the proliferation of three human lines with IC50 values in the nM range. Molecular docking experiments proved the rationality of structure design.

Conclusion: Compound w11 was a potent Hsp90 and HDAC dual inhibitor for anticancer research.

Keywords: Hsp90, histone deacetylase, multitarget, inhibitor, antitumor,docking simulation.

Next »
Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Miller, K.D.; Fidler-Benaoudia, M.; Keegan, T.H.; Hipp, H.S.; Jemal, A.; Siegel, R.L. Cancer statistics for adolescents and young adults, 2020. CA Cancer J. Clin., 2020, 70(6), 443-459.
[http://dx.doi.org/10.3322/caac.21637] [PMID: 32940362]
[3]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[4]
Bhattarai, D.; Singh, S.; Jang, Y.; Hyeon Han, S.; Lee, K.; Choi, Y. An insight into drug repositioning for the development of novel anti-cancer drugs. Curr. Top. Med. Chem., 2016, 16(19), 2156-2168.
[http://dx.doi.org/10.2174/1568026616666160216153618] [PMID: 26881715]
[5]
Li, W.; Sun, X. Recent advances in developing novel anti-cancer drugs targeting tumor hypoxic and acidic microenvironments. Recent Patents Anticancer Drug Discov., 2018, 13(4), 455-468.
[http://dx.doi.org/10.2174/1574892813666180831102519] [PMID: 30173649]
[6]
Guan, L.Y.; Lu, Y. New developments in molecular targeted therapy of ovarian cancer. Discov. Med., 2018, 26(144), 219-229.
[PMID: 30695681]
[7]
Sankar, K.; Gadgeel, S.M.; Qin, A. Molecular therapeutic targets in non-small cell lung cancer. Expert Rev. Anticancer Ther., 2020, 20(8), 647-661.
[http://dx.doi.org/10.1080/14737140.2020.1787156] [PMID: 32580596]
[8]
Ergul, M.; Aktan, F.; Yildiz, M.T.; Tutar, Y. Perturbation of HSP network in MCF-7 breast cancer cell line triggers inducible HSP70 expression and leads to tumor suppression. Anticancer. Agents Med. Chem., 2020, 20(9), 1051-1060.
[http://dx.doi.org/10.2174/1871520620666200213102210] [PMID: 32053081]
[9]
Hoter, A.; El-Sabban, M.E.; Naim, H.Y. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci., 2018, 19(9), 2560.
[http://dx.doi.org/10.3390/ijms19092560] [PMID: 30158430]
[10]
Zhang, Z.; Jing, J.; Ye, Y.; Chen, Z.; Jing, Y.; Li, S.; Hong, W.; Ruan, H.; Liu, Y.; Hu, Q.; Wang, J.; Li, W.; Lin, C.; Diao, L.; Zhou, Y.; Han, L. Characterization of the dual functional effects of heat shock proteins (HSPs) in cancer hallmarks to aid development of HSP inhibitors. Genome Med., 2020, 12(1), 101.
[http://dx.doi.org/10.1186/s13073-020-00795-6] [PMID: 33225964]
[11]
Chatterjee, S.; Burns, T.F. Targeting heat shock proteins in cancer: A promising therapeutic approach. Int. J. Mol. Sci., 2017, 18(9), 1978.
[http://dx.doi.org/10.3390/ijms18091978] [PMID: 28914774]
[12]
Hasan, A.; Haque, E.; Hameed, R.; Maier, P.N.; Irfan, S.; Kamil, M.; Nazir, A.; Mir, S.S. Hsp90 inhibitor gedunin causes apoptosis in A549 lung cancer cells by disrupting Hsp90:Beclin-1:Bcl-2 interaction and downregulating autophagy. Life Sci., 2020, 256, 118000.
[http://dx.doi.org/10.1016/j.lfs.2020.118000] [PMID: 32585246]
[13]
Liu, K.; Jin, H.; Guo, Y.; Liu, Y.; Wan, Y.; Zhao, P.; Zhou, Z.; Wang, J.; Wang, M.; Zou, C.; Wu, W.; Cheng, Z.; Dai, Y. CFTR interacts with Hsp90 and regulates the phosphorylation of AKT and ERK1/2 in colorectal cancer cells. FEBS Open Bio, 2019, 9(6), 1119-1127.
[http://dx.doi.org/10.1002/2211-5463.12641] [PMID: 30985981]
[14]
Berezowska, S.; Novotny, A.; Bauer, K.; Feuchtinger, A.; Slotta-Huspenina, J.; Becker, K.; Langer, R.; Walch, A. Association between HSP90 and Her2 in gastric and gastroesophageal carcinomas. PLoS One, 2013, 8(7)e69098
[http://dx.doi.org/10.1371/journal.pone.0069098] [PMID: 23874879]
[15]
Watanabe, S.; Goto, Y.; Yasuda, H.; Kohno, T.; Motoi, N.; Ohe, Y.; Nishikawa, H.; Kobayashi, S.S.; Kuwano, K.; Togashi, Y. HSP90 inhibition overcomes EGFR amplification-induced resistance to third-generation EGFR-TKIs. Thorac. Cancer, 2021, 12(5), 631-642.
[http://dx.doi.org/10.1111/1759-7714.13839] [PMID: 33471376]
[16]
Zuehlke, A.D.; Moses, M.A.; Neckers, L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1738), 20160527.
[http://dx.doi.org/10.1098/rstb.2016.0527] [PMID: 29203712]
[17]
Li, Y.P.; Chen, J.J.; Shen, J.J.; Cui, J.; Wu, L.Z.; Wang, Z.; Li, Z.R. Synthesis and biological evaluation of geldanamycin analogs against human cancer cells. Cancer Chemother. Pharmacol., 2015, 75(4), 773-782.
[http://dx.doi.org/10.1007/s00280-015-2696-9] [PMID: 25681003]
[18]
Talaei, S.; Mellatyar, H.; Asadi, A.; Akbarzadeh, A.; Sheervalilou, R.; Zarghami, N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem. Biol. Drug Des., 2019, 93(5), 760-786.
[http://dx.doi.org/10.1111/cbdd.13486] [PMID: 30697932]
[19]
Baird, L.; Suzuki, T.; Takahashi, Y.; Hishinuma, E.; Saigusa, D.; Yamamoto, M. Geldanamycin-derived HSP90 inhibitors are synthetic lethal with NRF2. Mol. Cell. Biol., 2020, 40(22), 377.
[http://dx.doi.org/10.1128/MCB.00377-20] [PMID: 32868290]
[20]
Jung, J.; Kwon, J.; Hong, S.; Moon, A.N.; Jeong, J.; Kwon, S.; Kim, J.A.; Lee, M.; Lee, H.; Lee, J.H.; Lee, J. Discovery of novel heat shock protein (Hsp90) inhibitors based on luminespib with potent antitumor activity. Bioorg. Med. Chem. Lett., 2020, 30(12), 127165.
[http://dx.doi.org/10.1016/j.bmcl.2020.127165] [PMID: 32305165]
[21]
Bao, R.; Lai, C.J.; Qu, H.; Wang, D.; Yin, L.; Zifcak, B.; Atoyan, R.; Wang, J.; Samson, M.; Forrester, J.; DellaRocca, S.; Xu, G.X.; Tao, X.; Zhai, H.X.; Cai, X.; Qian, C. CUDC-305, a novel synthetic HSP90 inhibitor with unique pharmacologic properties for cancer therapy. Clin. Cancer Res., 2009, 15(12), 4046-4057.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0152] [PMID: 19509149]
[22]
Sun, C.; Bai, M.; Ke, W.; Wang, X.; Zhao, X.; Lu, Z. The HSP90 inhibitor, XL888, enhanced cell apoptosis via downregulating STAT3 after insufficient radiofrequency ablation in hepatocellular carcinoma. Life Sci., 2021, 282, 119762.
[http://dx.doi.org/10.1016/j.lfs.2021.119762] [PMID: 34186047]
[23]
McClure, J.J.; Li, X.; Chou, C.J. Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv. Cancer Res., 2018, 138, 183-211.
[http://dx.doi.org/10.1016/bs.acr.2018.02.006] [PMID: 29551127]
[24]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), 26831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[25]
Sun, Y.; Sun, Y.; Yue, S.; Wang, Y.; Lu, F. Histone deacetylase inhibitors in cancer therapy. Curr. Top. Med. Chem., 2018, 18(28), 2420-2428.
[http://dx.doi.org/10.2174/1568026619666181210152115] [PMID: 30526462]
[26]
Yan, M.; Qian, Y.M.; Yue, C.F.; Wang, Z.F.; Wang, B.C.; Zhang, W.; Zheng, F.M.; Liu, Q. Inhibition of histone deacetylases induces formation of multipolar spindles and subsequent p53-dependent apoptosis in nasopharyngeal carcinoma cells. Oncotarget, 2016, 7(28), 44171-44184.
[http://dx.doi.org/10.18632/oncotarget.9922] [PMID: 27283770]
[27]
Li, F.; Wang, T.; Wang, Z.; Chen, X.; Liu, R. Histone deacetylase inhibitor quisinostat activates caspase signaling and upregulates p53 acetylation to inhibit the proliferation of HepG2 cells. Mol. Med. Rep., 2017, 16(5), 6094-6101.
[http://dx.doi.org/10.3892/mmr.2017.7355] [PMID: 28849080]
[28]
Zhang, L.; Fang, H.; Xu, W. Strategies in developing promising histone deacetylase inhibitors. Med. Res. Rev., 2010, 30(4), 585-602.
[http://dx.doi.org/10.1002/med.20169] [PMID: 19634125]
[29]
Sun, S.; Zhao, W.; Li, Y.; Chi, Z.; Fang, X.; Wang, Q.; Han, Z.; Luan, Y. Design, synthesis and antitumor activity evaluation of novel HDAC inhibitors with tetrahydrobenzothiazole as the skeleton. Bioorg. Chem., 2021, 108, 104652.
[http://dx.doi.org/10.1016/j.bioorg.2021.104652] [PMID: 33497873]
[30]
Sivakumar, K.C.; Haixiao, J.; Naman, C.B.; Sajeevan, T.P. Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein-ligand recognition process. Drug Dev. Res., 2020, 81(6), 685-699.
[http://dx.doi.org/10.1002/ddr.21673] [PMID: 32329098]
[31]
Chen, Z.; Han, L.; Xu, M.; Xu, Y.; Qian, X. Rationally designed multitarget anticancer agents. Curr. Med. Chem., 2013, 20(13), 1694-1714.
[http://dx.doi.org/10.2174/0929867311320130009] [PMID: 23410168]
[32]
Zhao, Q.; Zhu, H.P.; Xie, X.; Mao, Q.; Liu, Y.Q.; He, X.H.; Peng, C.; Jiang, Q.L.; Huang, W. Novel HSP90-PI3K dual inhibitor suppresses melanoma cell proliferation by interfering with HSP90-EGFR interaction and downstream signaling pathways. Int. J. Mol. Sci., 2020, 21(5), 1845.
[http://dx.doi.org/10.3390/ijms21051845] [PMID: 32156008]
[33]
Luan, Y.; Li, J.; Bernatchez, J.A.; Li, R. Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy. J. Med. Chem., 2019, 62(7), 3171-3183.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00189] [PMID: 30418766]
[34]
Aoyagi, S.; Archer, T.K. Modulating molecular chaperone Hsp90 functions through reversible acetylation. Trends Cell Biol., 2005, 15(11), 565-567.
[http://dx.doi.org/10.1016/j.tcb.2005.09.003] [PMID: 16199163]
[35]
Woodford, M.R.; Hughes, M.; Sager, R.A.; Backe, S.J.; Baker-Williams, A.J.; Bratslavsky, M.S.; Jacob, J.M.; Shapiro, O.; Wong, M.; Bratslavsky, G.; Bourboulia, D.; Mollapour, M. Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity. Oncotarget, 2019, 10(56), 5824-5834.
[http://dx.doi.org/10.18632/oncotarget.27217] [PMID: 31645902]
[36]
Scroggins, B.T.; Robzyk, K.; Wang, D.; Marcu, M.G.; Tsutsumi, S.; Beebe, K.; Cotter, R.J.; Felts, S.; Toft, D.; Karnitz, L.; Rosen, N.; Neckers, L. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol. Cell, 2007, 25(1), 151-159.
[http://dx.doi.org/10.1016/j.molcel.2006.12.008] [PMID: 17218278]
[37]
Mehndiratta, S.; Lin, M.H.; Wu, Y.W.; Chen, C.H.; Wu, T.Y.; Chuang, K.H.; Chao, M.W.; Chen, Y.Y.; Pan, S.L.; Chen, M.C.; Liou, J.P. N-alkyl-hydroxybenzoyl anilide hydroxamates as dual inhibitors of HDAC and HSP90, downregulating IFN-γ induced PD-L1 expression. Eur. J. Med. Chem., 2020, 185, 111725.
[http://dx.doi.org/10.1016/j.ejmech.2019.111725] [PMID: 31655430]
[38]
Ojha, R.; Huang, H.L.; HuangFu, W.C.; Wu, Y.W.; Nepali, K.; Lai, M.J.; Su, C.J.; Sung, T.Y.; Chen, Y.L.; Pan, S.L.; Liou, J.P. 1-Aroylindoline-hydroxamic acids as anticancer agents, inhibitors of HSP90 and HDAC. Eur. J. Med. Chem., 2018, 150, 667-677.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.006] [PMID: 29567459]
[39]
Ojha, R.; Nepali, K.; Chen, C.H.; Chuang, K.H.; Wu, T.Y.; Lin, T.E.; Hsu, K.C.; Chao, M.W.; Lai, M.J.; Lin, M.H.; Huang, H.L.; Chang, C.D.; Pan, S.L.; Chen, M.C.; Liou, J.P. Isoindoline scaffold-based dual inhibitors of HDAC6 and HSP90 suppressing the growth of lung cancer in vitro and in vivo. Eur. J. Med. Chem., 2020, 190, 112086.
[http://dx.doi.org/10.1016/j.ejmech.2020.112086] [PMID: 32058238]
[40]
Dymock, B.W.; Barril, X.; Brough, P.A.; Cansfield, J.E.; Massey, A.; McDonald, E.; Hubbard, R.E.; Surgenor, A.; Roughley, S.D.; Webb, P.; Workman, P.; Wright, L.; Drysdale, M.J. Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design. J. Med. Chem., 2005, 48(13), 4212-4215.
[http://dx.doi.org/10.1021/jm050355z] [PMID: 15974572]
[41]
Brough, P.A.; Aherne, W.; Barril, X.; Borgognoni, J.; Boxall, K.; Cansfield, J.E.; Cheung, K.M.; Collins, I.; Davies, N.G.; Drysdale, M.J.; Dymock, B.; Eccles, S.A.; Finch, H.; Fink, A.; Hayes, A.; Howes, R.; Hubbard, R.E.; James, K.; Jordan, A.M.; Lockie, A.; Martins, V.; Massey, A.; Matthews, T.P.; McDonald, E.; Northfield, C.J.; Pearl, L.H.; Prodromou, C.; Ray, S.; Raynaud, F.I.; Roughley, S.D.; Sharp, S.Y.; Surgenor, A.; Walmsley, D.L.; Webb, P.; Wood, M.; Workman, P.; Wright, L. 4,5-diarylisoxazole Hsp90 chaperone inhibitors: Potential therapeutic agents for the treatment of cancer. J. Med. Chem., 2008, 51(2), 196-218.
[http://dx.doi.org/10.1021/jm701018h] [PMID: 18020435]
[42]
Sharp, S.Y.; Prodromou, C.; Boxall, K.; Powers, M.V.; Holmes, J.L.; Box, G.; Matthews, T.P.; Cheung, K.M.; Kalusa, A.; James, K.; Hayes, A.; Hardcastle, A.; Dymock, B.; Brough, P.A.; Barril, X.; Cansfield, J.E.; Wright, L.; Surgenor, A.; Foloppe, N.; Hubbard, R.E.; Aherne, W.; Pearl, L.; Jones, K.; McDonald, E.; Raynaud, F.; Eccles, S.; Drysdale, M.; Workman, P. Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol. Cancer Ther., 2007, 6(4), 1198-1211.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0149] [PMID: 17431102]
[43]
Liu, K.S.; Zhang, Y.; Ding, W.C.; Wang, S.X.; Xiang, Y.F.; Yang, P.; Chen, Z.P.; Zheng, K.; Liu, Z.; Xia, M.; Wang, Y.F. The selective Hsp90 inhibitor BJ-B11 exhibits potent antitumor activity via induction of cell cycle arrest, apoptosis and autophagy in Eca-109 human esophageal squamous carcinoma cells. Int. J. Oncol., 2012, 41(6), 2276-2284.
[http://dx.doi.org/10.3892/ijo.2012.1670] [PMID: 23076967]
[44]
Pontes, F.S.C.; Pontes, H.A.R.; de Souza, L.L.; de Jesus, A.S.; Joaquim, A.M.C.; Miyahara, L.A.N.; Fonseca, F.P.; Pinto, Junior, D.S. Effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on Akt protein expression is more effective in head and neck cancer cell lineages that retain PTEN protein expression. J. Oral Pathol. Med., 2018, 47(3), 253-259.
[http://dx.doi.org/10.1111/jop.12676] [PMID: 29297949]
[45]
Özgür, A.; Kara, A.; Gökşen Tosun, N.; Tekin, Ş.; Gökçe, İ. Debio-0932, a second generation oral Hsp90 inhibitor, induces apoptosis in MCF-7 and MDA-MB-231 cell lines. Mol. Biol. Rep., 2021, 48(4), 3439-3449.
[http://dx.doi.org/10.1007/s11033-021-06392-z] [PMID: 33999319]

© 2024 Bentham Science Publishers | Privacy Policy