Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Advances in the Synthesis of Amides via Alpha Oxygenation of Amines

Author(s): Ketan S. Mandrekar, Hari K. Kadam*, Anita Tilve and Santosh G. Tilve*

Volume 26, Issue 12, 2022

Published on: 29 August, 2022

Page: [1185 - 1217] Pages: 33

DOI: 10.2174/1385272826666220530094822

Price: $65

conference banner
Abstract

Amides are universal in nature. Proteins are polymers (polyamides) whose units are connected by amide (peptide) linkages. Proteins perform innumerable functions in the body. Important synthetic polymers (technology products) like nylon are also polyamides. Hence, the amide is an important element in chemistry and biology, and consequently, its synthesis has remained a focused research area. Many methods are available for the synthesis of amides. The classical methods involve making amides from carboxylic acids and amines. The energy unfavourable direct reaction between an acid and an amine is turned into a favourable pathway using coupling reagents. Coupling agents like DCC, HOBt, PyBOP, etc., are used. However, these reagents generate lots of waste. There are also other selective methods, including Beckmann rearrangement, Schmidt reaction, Willgerodt-Kindler reaction, Passerini reaction, and so on. There has been a recent flurry of revelations about alternative strategies to synthesize amides, with a focus on green or catalytic approaches. In this review, we have covered several alternate methods that use amines as the precursors. Oxidation and reduction are the backbone of synthetic organic transformations. Several elegant oxidizing agents have been developed for the oxidation of alcohols and olefins with selectivity in mind. However, many of these oxidizing agents have the potential to oxidize amines to amides, but they have not been studied earlier as green chemistry was not in much focus then. With the present focus on sustainability and green chemistry, scientists have embarked on synthesizing amides in a greener way. One such way to get amides in a cleaner way is to oxidize amines to amides. Hence, in this review, we have endeavoured to compile all such methods used to make amides or have the potential for such transformation. Other than the use of several oxidizing reagents, tandem oxidation amidation and other miscellaneous methods are included in this review. The reactions that give amides as by-products are also included as such reactions are potential methods to synthesize amides. Mechanisms are also included in relevant places. The review is classified as follows: Oxidation of amines using transition metals, transition metal salts, and transition metal oxides; Oxidation of amines using non-metals; Photocatalytic oxidation of amines; Air oxidation of amines; Electrochemical oxidation; Enzymatic conversion; Oxidative coupling of Aldehydes; Oxidative coupling of Alcohols; Oxidative amidation of Methylbenzenes; and Oxidation of aromatic nitrogen heterocycles.

Keywords: amide, synthesis, non-conventional methods, synthetic organic chemistry, MEDICINAL CHEMISTRY, ORGANIC TRANSFORMATION

Graphical Abstract

[1]
Rajput, P.; Sharma, A. Synthesis and biological importance of amide analogues. J. Pharmacol. Med. Chem., 2018, 2, 22.
[2]
Kroschwitz, J.J.; Mabermann, C.E. Encyclopedia of Chemical Technology; Wiley: New York, 1991.
[3]
Lipp, D. Encyclopedia of Chemical Technology; Wiley: New York, 1991.
[4]
Opsahl, R. Encyclopedia of Chemical Technology; Wiley: New York, 1991.
[5]
Legacy, C.J. Emmert, M.H. Cα–H oxidations of amines to amides: Expanding mechanistic understanding and amine scope through catalyst development. Synlett, 2016, 27(13), 1893-1897.
[http://dx.doi.org/10.1055/s-0035-1561863]
[6]
Hao, L.H.; Li, Y.P.; He, W.Y.; Wang, H.Q.; Shan, G.Z.; Jiang, J.D.; Li, Y.H.; Li, Z. Synthesis and antiviral activity of substituted bisaryl amide compounds as novel influenza virus inhibitors. Eur. J. Med. Chem., 2012, 55, 117-124.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.008]
[7]
Winn, M.; Rowlinson, M.; Wang, F.; Bering, L.; Francis, D.; Levy, C.; Micklefield, J. Discovery, characterization and engineering of ligases for amide synthesis. Nature, 2021, 593(7859), 391-398.
[http://dx.doi.org/10.1038/s41586-021-03447-w]
[8]
Toyooka, N.; Nemoto, H. Studies in Natural Products Chemistry; Atta-ur-, Rahman, Ed.; Elsevier, 419, 2003.
[9]
Guntern, A.; Ioset, J.R.; Queiroz, E.F.; Sandor, P.; Foggin, C.M.; Hostettmann, K. Heliotropamide, a novel oxopyrrolidine-3-carboxamide from Heliotropium ovalifolium. J. Nat. Prod., 2003, 66(12), 1550-1553.
[http://dx.doi.org/10.1021/np0302495]
[10]
Valencia, E.; Freyer, A.J.; Shamma, M.; Fajardo, V. (±)-Nuevamine, an isoindoloisoquinoline alkaloid, and (±)-lennoxamine, an isoindolobenzazepine. Tetrahedron Lett., 1984, 25(6), 599-602.
[http://dx.doi.org/10.1016/S0040-4039(00)99948-9]
[11]
Valencia, E.; Weiss, I.; Firdous, S.; Freyer, A.J.; Shamma, M.; Urzús, A.; Fajardo, V. Shamma, M.; Urzua, A.; Fajardo, V. The isoindolobenzazepine alkaloids. Tetrahedron, 1984, 40(20), 3957-3962.
[http://dx.doi.org/10.1016/0040-4020(84)85073-5]
[12]
Fajardo, V.; Leon, A.; Loncharic, M.C.; Elango, V.; Shamma, M.; Cassels, B.K. Alkaloids present in Berberis empetrifolia. Bol. Soc. Chil. Quím., 1982, 27, 159.
[13]
Fajardo, V.; Elango, V.; Cassels, B.K.; Shamma, M. Chilenine: an isoindolobenzazepine alkaloid. Tetrahedron Lett., 1982, 23(1), 39-42.
[http://dx.doi.org/10.1016/S0040-4039(00)97526-9]
[14]
Valencia, E.; Fajardo, V.; Freyer, A.J.; Shamma, M. Magallanesine: an isoindolobenzazocine alkaloid. Tetrahedron Lett., 1985, 26(8), 993-996.
[http://dx.doi.org/10.1016/S0040-4039(00)98494-6]
[15]
Shamma, M.; Rahimizadeh, M. The identity of chileninone with berberrubine. The problem of true natural products vs. artifacts of isolation. J. Nat. Prod., 1986, 49(3), 398-405.
[http://dx.doi.org/10.1021/np50045a003]
[16]
Alfano, A.; Lange, H.; Brindisi, M. Amide bonds meet flow chemistry: A journey into methodologies and sustainable evolution. ChemSusChem, 2022, 2022, e202102708.
[17]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09]
[18]
Kazmierski, W.M.; Andrews, W.; Furfine, E.; Spaltenstein, A.; Wright, L. Discovery of potent pyrrolidone-based HIV-1 protease inhibitors with enhanced drug-like properties. Bioorg. Med. Chem. Lett., 2004, 14(22), 5689-5692.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.039]
[19]
Enz, A.; Feuerbach, D.; Frederiksen, M.U.; Gentsch, C.; Hurth, K.; Müller, W.; Nozulak, J.; Roy, B.L. Gamma-lactams—A novel scaffold for highly potent and selective α7 nicotinic acetylcholine receptor agonists. Bioorg. Med. Chem. Lett., 2009, 19(5), 1287-1291.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.073]
[20]
Shorvon, S. Pyrrolidone derivatives. Lancet, 2001, 358(9296), 1885-1892.
[http://dx.doi.org/10.1016/S0140-6736(01)06890-8]
[21]
Kumari, S.; Carmona, A.V.; Tiwari, A.K.; Trippier, P.C. Amide bond bioisosteres: Strategies, synthesis, and successes. J. Med. Chem., 2020, 21, 12290.
[22]
Govada, G.V.; Sabbasani, R.R. A new outlook in oxidative transformations and coupling reactions via in situ generation of organic chloramines. Appl. Organomet. Chem., 2022, 36(2), e6518.
[http://dx.doi.org/10.1002/aoc.6518]
[23]
Beller, M.; Feng, X. Transition Metal Catalyzed Carbonylation Reactions; Springer, 2008.
[24]
Murahashi, S.I.; Zhang, D. Ruthenium-catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. Chem. Soc. Rev., 2008, 37(8), 1490.
[http://dx.doi.org/10.1039/b706709g]
[25]
Li, C.J.; Li, Z. Green chemistry: The development of cross-dehydrogenative coupling (CDC) for chemical synthesis. Pure Appl. Chem., 2006, 78(5), 935-945.
[http://dx.doi.org/10.1351/pac200678050935]
[26]
Murahashi, S.I. Synthetic aspects of metal-catalyzed oxidations of amines and related reactions. Angew. Chem. Int. Ed. Engl., 1995, 34(22), 2443-2465.
[http://dx.doi.org/10.1002/anie.199524431]
[27]
Smith, M.B.; March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed; Wiley, 2007.
[28]
Tian, C.; Yao, X.; Ji, W.; Wang, Q.; An, G.; Li, G. A para-C–H functionalization of aniline derivatives via in situ generated bulky hypervalent iodinium reagents. Eur. J. Org. Chem., 2018, 2018(43), 5972-5979.
[http://dx.doi.org/10.1002/ejoc.201801058]
[29]
Tian, C.; Wang, Q.; Wang, X.; An, G.; Li, G. Visible-light mediated ortho-Trifluoromethylation of aniline derivatives. J. Org. Chem., 2019, 84(21), 14241-14247.
[http://dx.doi.org/10.1021/acs.joc.9b01987]
[30]
Yang, L.; Xie, H.; An, G.; Li, G. Acid-enabled palladium-catalyzed β-C(sp3)C(sp3)−H functionalization of weinreb amides. J. Org. Chem., 2021, 86(11), 7872-7880.
[http://dx.doi.org/10.1021/acs.joc.1c00781]
[31]
Schumperli, M.T.; Hammond, C.; Hermans, C.H.I. Developments in the aerobic oxidation of amines. ACS Catal., 2012, 2(6), 1108-1117.
[http://dx.doi.org/10.1021/cs300212q]
[32]
Smith, M.B. Organic Synthesis, 2nd ed; Mc-Graw-Hill: New York, 2002.
[33]
Valeur, E.; Bradely, M. Amide bond formation: Beyond the myth of coupling reagents. Chem. Soc. Rev., 2009, 18(2), 606-631.
[http://dx.doi.org/10.1039/B701677H]
[34]
Andrea, O.P.; Diego, G.S. Recent developments in amide synthesis using nonactivated starting materials. J. Org. Chem., 2016, 81(23), 11548-11555.
[http://dx.doi.org/10.1021/acs.joc.6b02358]
[35]
Todorovic, M.; Perrin, D.M. Recent developments in catalytic amide bond formation. Pept. Sci. (Hoboken), 2020, 112(6), e24210.
[http://dx.doi.org/10.1002/pep2.24210]
[36]
Pattabiraman, V.R.; Bode, J.W. Rethinking amide bond synthesis. Nature, 2011, 80(7378), 471-479.
[http://dx.doi.org/10.1038/nature10702]
[37]
Nagaraaj, P.; Vijayakumar, V. Oxidation of amine α-carbon to amide: A review on direct methods to access the amide functionality. Org. Chem. Front., 2019, 6(15), 2570-2599.
[http://dx.doi.org/10.1039/C9QO00387H]
[38]
Massolo, E.; Pirola, M.; Benaglia, M. Amide bond formation strategies: Latest advances on a dateless transformation. Eur. J. Org. Chem., 2020, 2020(30), 4641-4651.
[http://dx.doi.org/10.1002/ejoc.202000080]
[39]
Berkowitz, L.M.; Rylander, P.N. Use of ruthenium tetroxide as a multi-purpose oxidant. J. Org. Chem., 1958, 80, 6682.
[40]
Sheehan, J.C.; Tulis, R.W. Oxidation of cyclic amines with Ruthenium tetroxide. J. Org. Chem., 1974, 39(15), 2264-2267.
[http://dx.doi.org/10.1021/jo00929a030]
[41]
Tanaka, K.I.; Yoshifuji, S.; Nitta, Y. A new method for the synthesis of amides from amines: Ruthenium tetroxide oxidation of N-protected alkylamines. Chem. Pharm. Bull. (Tokyo), 1988, 36(8), 3125-3129.
[http://dx.doi.org/10.1248/cpb.36.3125]
[42]
Yoshifuji, S.; Tanaka, K.I.; Nitta, Y. Chemical conversion of L-α, ω-diamino acids to l-ω-Carbamoyl-α-amino acids by ruthenium tetroxide oxidation. Chem. Pharm. Bull. (Tokyo), 1987, 35(7), 2994-3001.
[http://dx.doi.org/10.1248/cpb.35.2994]
[43]
Tanaka, K.I.; Yoshifuji, S.; Nitta, Y. Ruthenium tetroxide oxidation of N-acylated alkylamines: A new general synthesis of imides. Chem. Pharm. Bull. (Tokyo), 1988, 35(1), 364-369.
[http://dx.doi.org/10.1248/cpb.35.364]
[44]
Bettoni, G.; Carbonara, G.; Franchini, C.; Tortorella, V. Oxidation of tertiary polycyclic amines by ruthenium tetraoxide. Tetrahedron, 1981, 37, 4159.
[http://dx.doi.org/10.1016/0040-4020(81)85006-5]
[45]
Yoshifuji, S.; Arakawa, Y. Ruthenium tetroxide oxidation of 3, 4-dihydroisoquinolin-1(2H)-ones: An efficient synthesis of isoquinoline-1, 3, 4(2H)-triones. Chem. Pharm. Bull. (Tokyo), 1989, 37(12), 3380-3381.
[http://dx.doi.org/10.1248/cpb.37.3380]
[46]
Kim, J.W.; Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed efficient oxygenation of primary amines to amides by a supported ruthenium hydroxide catalyst. Angew. Chem. Int. Ed., 2008, 47(48), 9249-9251.
[http://dx.doi.org/10.1002/anie.200802464]
[47]
Khusnutdinova, J.R.; David, Y.B.; Milstein, D. Oxidant-free conversion of cyclic amines to lactams and H2 using water as the oxygen atom source. J. Am. Chem. Soc., 2014, 136(8), 2998-3001.
[http://dx.doi.org/10.1021/ja500026m]
[48]
Ray, R.; Hazari, A.S.; Chandra, S.; Maiti, D.; Lahiri, G.K. Highly selective ruthenium-catalyzed direct oxygenation of amines to amides. Chem. Eur. J., 2018, 24(5), 1067-1071.
[http://dx.doi.org/10.1002/chem.201705601]
[49]
Ray, R.; Hazari, A.S.; Lahiri, G.K.; Maiti, D. Ruthenium-catalyzed aerobic oxidation of amines. Chem. Asian J., 2018, 13(17), 2138-2148.
[http://dx.doi.org/10.1002/asia.201701748]
[50]
Gumus, I.; Aslan, M. Ruthenium (II) complexes bearing bidentate acylthiourea ligands for direct oxidation of amine α-carbon to amide. Polyhedron, 2021, 210, 115496.
[http://dx.doi.org/10.1016/j.poly.2021.115496]
[51]
So, M.H.; Liu, Y.; Ho, C.M.; Che, C.M. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-Substituted 1,2,3,4-Tetrahydroisoquinolines to amides: Synthetic applications and mechanistic study. Chem. Asian J., 2009, 4(10), 1551-1561.
[http://dx.doi.org/10.1002/asia.200900261]
[52]
Preedasuriyachai, P.; Chavasiri, W.; Sakurai, H. Aerobic oxidation of cyclic amines to lactams catalyzed by PVP-stabilized nanogold. Synlett, 2011, 8, 1121.
[53]
Klobukowski, E.R.; Mueller, M.L.; Angelici, R.J.; Woo, L.K. Conversions of cyclic amines to nylon precursor lactams using bulk gold and fumed silica catalysts. ACS Catal., 2011, 1(7), 703-708.
[http://dx.doi.org/10.1021/cs200120c]
[54]
Amaya, T.; Ito, T.; Hirao, T. Selective cross-dehydrogenative coupling of N-phenyltetrahydroisoquinolines in aqueous media using poly(aniline sulfonic acid)/gold nanoparticles. Heterocycles, 2012, 86(2), 927.
[http://dx.doi.org/10.3987/COM-12-S(N)71]
[55]
Dairo, T.O.; Nelson, N.C.; Slowing, I.I.; Angelici, R.J.; Woo, L.K. Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold. Catal. Lett., 2016, 146(11), 2278-2291.
[http://dx.doi.org/10.1007/s10562-016-1834-2]
[56]
Jin, X.; Kataoka, K.; Yatabe, T.; Yamaguchi, K.; Mizuno, N. Supported gold nanoparticles for efficient α-oxygenation of secondary and tertiary amines into amides. Angew. Chem. Int. Ed., 2016, 55(25), 7212-7217.
[http://dx.doi.org/10.1002/anie.201602695]
[57]
Majumdar, K.C.; Nath, S.; Chattopadhyay, B.; Sinha, B. Palladium-catalyzed tethered intramolecular arylation: An unusual synthesis of linearly fused pyridocoumarin derivatives. Synthesis, 2010, 22(22), 3918-3926.
[http://dx.doi.org/10.1055/s-0030-1258246]
[58]
Davis, G.T.; Rosenblatt, D.H. Oxidations of amines. VI. Platinum-catalyzed air oxidation of N-methyl tertiary amines. Tetrahedron Lett., 1968, 9(38), 4085-4086.
[http://dx.doi.org/10.1016/S0040-4039(00)72867-X]
[59]
Patil, M.R.; Dedhia, N.P.; Kapdi, A.R.; Kumar, A.V. Cobalt(II)/N-Hydroxyphthalimide-catalyzed cross-dehydrogenative coupling reaction at room temperature under aerobic condition. J. Org. Chem., 2018, 83(8), 4477-4490.
[http://dx.doi.org/10.1021/acs.joc.8b00203]
[60]
Minakata, S.; Ohshima, Y.; Takemiya, A.; Ryu, I.; Komatsu, M.; Ohshiro, Y. Catalytic oxidation of amines utilizing binuclear copper(II) complex of 7-Azaindole. Chem. Lett., 1997, 26(4), 311-312.
[http://dx.doi.org/10.1246/cl.1997.311]
[61]
Xu, W.; Jiang, Y.; Fu, H. Copper-catalyzed aerobic oxidative synthesis of primary amides from (Aryl)methanamines. Synlett, 2012, 23(5), 801-804.
[http://dx.doi.org/10.1055/s-0031-1290302]
[62]
Zhang, W.; Yang, S.; Shen, Z. Copper-catalyzed cyanomethylation of substituted tetrahydroisoquinolines with acetonitrile. Adv. Synth. Catal., 2016, 358(15), 2392-2397.
[http://dx.doi.org/10.1002/adsc.201600050]
[63]
Modak, A.; Dutta, U.; Kancherla, R.; Maity, S.; Bhadra, M.; Shaikh, M.M.; Maiti, D. Predictably selective (sp3)C–O bond formation through copper catalyzed dehydrogenative coupling: Facile synthesis of dihydro-oxazinone derivatives. Org. Lett., 2014, 16(10), 2602-2605.
[http://dx.doi.org/10.1021/ol500670h]
[64]
Liu, Y.; Wang, C.; Xue, D.; Xiao, M.; Liu, J.; Li, C.; Xiao, J. Reactions catalysed by a binuclear copper complex: Relay aerobic oxidation of N-Aryl tetrahydroisoquinolines to dihydroisoquinolones with a vitamin B1 analogue. Chem. Eur. J., 2017, 23(13), 3062-3066.
[http://dx.doi.org/10.1002/chem.201604750]
[65]
Nakai, S.; Yatabe, T.; Suzuki, K.; Sasano, Y.; Iwabuchi, Y.; Hasegawa, J.; Mizuno, N.; Yamaguchi, K. Methyl‐selective α‐oxygenation of tertiary amines to formamides by employing copper/moderately hindered nitroxyl radical (DMN-AZADO or 1-Me-AZADO). Angew. Chem. Int. Ed., 2019, 58(46), 16651-16659.
[http://dx.doi.org/10.1002/anie.201909005]
[66]
Wu, X.F.; Bheeter, C.B.; Neumann, H.; Dixneuf, P.H.; Beller, M. Lewis acid-catalyzed oxidation of benzylamines to benzamides. Chem. Commun., 2012, 48, 12237.
[http://dx.doi.org/10.1039/c2cc37149a]
[67]
Murata, S.; Miura, M.; Nomura, M. Oxidation of N-acyl-pyrrolidines and -piperidines with lron(II)-hydrogen peroxide and an iron complex-molecular oxygen. J. Chem. Soc. Perkin Trans, 1987, 1, 1259-1262.
[68]
Barton, D.H.R.; Boivin, J.; Gaudin, D.; Jankowski, K. On the gif oxidation of alicyclic tertiary amines. Tetrahedron Lett., 1989, 30(11), 1381-1382.
[http://dx.doi.org/10.1016/S0040-4039(00)99470-X]
[69]
Nauth, A.M. Otto, N.; Opatz, T. α-Cyanation of aromatic tertiary amines using ferricyanide as a non-toxic cyanide source. Adv. Synth. Catal., 2015, 357(16-17), 3424-3428.
[http://dx.doi.org/10.1002/adsc.201500698]
[70]
Legacy, C.J.; Wang, A.; O’Day, B.J.; Emmert, M.H. Iron-Catalyzed cα-H oxidation of tertiary, aliphatic amines to amides under mild conditions. Angew. Chem. Int. Ed., 2015, 54(49), 14907-14910.
[http://dx.doi.org/10.1002/anie.201507738]
[71]
Geng, S.; Xiong, B.; Zhang, Y.; Zhang, J.; He, Y.; Feng, Z. Thiyl radical promoted iron-catalyzed-selective oxidation of benzylic sp3 C–H bonds with molecular oxygen. Chem. Commun., 2019, 55(84), 12699-12702.
[http://dx.doi.org/10.1039/C9CC06584A]
[72]
Wenkert, E.; Angell, E.C. Preparation of lactams via oxidation of cyclic, tertiary and secondary amines with mercury(II)-EDTA complex in alkaline medium. Synth. Commun., 1988, 18(12), 1331-1337.
[http://dx.doi.org/10.1080/00397918808078800]
[73]
Wu, X.F.; Bheeter, C.B.; Neumann, H.; Dixneuf, P.H.; Beller, M. Lewis acid-catalyzed oxidation of benzylamines to benzamides. Chem. Commun., 2012, 48(100), 12237.
[http://dx.doi.org/10.1039/c2cc37149a]
[74]
Bakre, P.V.; Kamat, D.P.; Mandrekar, K.S.; Tilve, S.G.; Ghosh, N.N. CuO-NiO-TiO2 bimetallic nanocomposites for catalytic applications. Molecular Catalysis, 2020, 496, 111193.
[http://dx.doi.org/10.1016/j.mcat.2020.111193]
[75]
Schmidt, J.; Schafer, H.J. Oxidation of amines with benzyl(triethyl) ammonium permanganate. Angew. Chem. Int. Ed. Engl., 1981, 20(1), 109.
[http://dx.doi.org/10.1002/anie.198101091]
[76]
Venkov, A.P.; Statkova-Abeghe, S.M. Synthesis of 3,4-dihydroisoquinolines, 2-alkyl(Acyl)-1(2H)-3,4-dihydroisoquinolinones, 2-alkyl-1(2H)-isoquinolin-ones and 1-alkyl-2(2H)-quinolinones by oxidation with potassium permanganate. Tetrahedron, 1996, 52(4), 1451-1460.
[http://dx.doi.org/10.1016/0040-4020(95)00971-X]
[77]
Li, J.H.; Snyder, J.K. Selective oxidation of canthines to canthin-6-ones with triethylbenzylammonium permanganate. Tetrahedron Lett., 1994, 35(10), 1485-1488.
[http://dx.doi.org/10.1016/S0040-4039(00)76738-4]
[78]
Harrowven, D.C.; Lai, D.; Lucas, M.C. A short synthesis of hippadine. Synthesis, 1999, 8(8), 1300-1302.
[http://dx.doi.org/10.1055/s-1999-3556]
[79]
Wang, Y.; Kobayashi, H.; Yamaguchi, K.; Mizuno, N. Manganese oxide-catalyzed transformation of primary amines to primary amides through the sequence of oxidative dehydrogenation and successive hydration. Chem. Commun., 2012, 48(20), 2642.
[http://dx.doi.org/10.1039/c2cc17499e]
[80]
Poeschl, A.; Mountford, D.M. A facile manganese dioxide mediated oxidation of primary benzylamines to benzamides. Org. Biomol. Chem., 2014, 12(36), 7150-7158.
[http://dx.doi.org/10.1039/C4OB01166J]
[81]
Ueo, S.; Hayazaki, T.; Yajima, H. Chromic acid oxidation of tazettine. Chem. Pharm. Bull. (Tokyo), 1963, 11(8), 1065-1067.
[http://dx.doi.org/10.1248/cpb.11.1065]
[82]
Fujii, H.; Ogawa, R.; Jinbo, E.; Tsumura, S.; Nemoto, T.; Nagase, H. Novel oxidation reaction of tertiary amines with osmium tetroxide. Synlett, 2009, 14, 2341.
[83]
Song, A.R.; Yu, J.; Zhang, C. A simple and effective synthesis of benzolactones and benzolactams by noncatalytic benzylic oxidation of cyclic benzylic ethers and N-protected cyclic benzylic amines with sodium chlorite as an oxidant. Synthesis, 2012, 44(18), 2903-2909.
[http://dx.doi.org/10.1055/s-0032-1316747]
[84]
Castro, A.; Juarge, J.; Gnecco, D.; Terran, J.T.; Galindo, A.; Bernes, S.; Enriquez, R.G. Efficient preparation of (1′R)-(−)-1-(2′-hydroxy-1′-phenylethyl)piperidin-2-one: Synthesis of (2′S,3R)-(+)-stenusine. Tetrahedron Asymmetry, 2005, 16(5), 949-952.
[http://dx.doi.org/10.1016/j.tetasy.2005.01.023]
[85]
Castro, A.; Romero, O.; Teran, J.L.; Gnecco, D.; Orea, L.; Mendoza, A.; Juarez, J.R. Oxidation and aromatization of the enantiopure piperidine derived from (R)-(-)-2-Phenylglycinol to (1‘R)-(-)-1-(2’-Hydroxy-1′-phenylethyl)-1H-pyridin-2-one. Heterocycles, 2014, 89, 725.
[http://dx.doi.org/10.3987/COM-13-12911]
[86]
Griffiths, R.J.; Burley, G.A.; Talbot, E.P.A. Transition-metal-free amine oxidation: A chemoselective strategy for the late-stage formation of lactams. Org. Lett., 2017, 19(4), 870-873.
[http://dx.doi.org/10.1021/acs.orglett.7b00021]
[87]
Rao, S.N.; Reddy, N.N.K.; Samanta, S.; Adimurthy, S.I. 2-Catalyzed oxidative amidation of benzylamines and Benzyl cyanides under mild conditions. J. Org. Chem., 2017, 82(24), 13632-13642.
[http://dx.doi.org/10.1021/acs.joc.7b02211]
[88]
Ochiai, M.; Kajishima, D.; Sueda, T. Radical oxidation of amides and related compounds with hypervalent tert-butylperoxyiodanes: Synthesis of imides and tert-butylperoxyamide acetals. Tetrahedron Lett., 1999, 40(30), 5541-5544.
[http://dx.doi.org/10.1016/S0040-4039(99)01032-1]
[89]
Sueda, T.; Kajishima, D.; Goto, S. Mechanistic investigations on the reaction between Amines or Amides and an Alkylperoxy-λ3-iodane. J. Org. Chem., 2003, 68(8), 3307-3310.
[http://dx.doi.org/10.1021/jo0268005]
[90]
Huang, W.J.; Singh, O.V.; Chen, C.H.; Chiou, S.Y.; Lee, S.S. Activation of iodosobenzene by catalytic tetrabutylammonium iodide and its application in the oxidation of some isoquinoline alkaloids. Helv. Chim. Acta, 2002, 85(4), 1069.
[http://dx.doi.org/10.1002/1522-2675(200204)85:4<1069::AID-HLCA1069>3.0.CO;2-I]
[91]
Moriarty, R.M.; Vaid, R.K.; Duncan, M.P.; Ochiai, M.; Inenaga, M.; Nagao, Y. Hypervalent iodine oxidation of amines using iodosobenzene: Synthesis of nitriles, ketones and lactams. Tetrahedron Lett., 1988, 29(52), 6913-6916.
[http://dx.doi.org/10.1016/S0040-4039(00)88473-7]
[92]
Mudithanapelli, C.; Dhorma, L.P.; Kim, M.H. PIFA-promoted, solvent-controlled selective functionalization of C(sp2)–H or C(sp3)–H: nitration via C–N bond cleavage of CH3NO2, cyanation, or oxygenation in water. Org. Lett., 2019, 21(9), 3098-3102.
[http://dx.doi.org/10.1021/acs.orglett.9b00751]
[93]
Galletti, P.; Martelli, G.; Prandini, G.; Colucci, C.; Giacomini, D. Sodium periodate/TEMPO as a selective and efficient system for amine oxidation. RSC Advances, 2018, 8(18), 9723-9730.
[http://dx.doi.org/10.1039/C8RA01365A]
[94]
Mathis, C.L.; Gist, B.M.; Frederickson, C.K.; Midkiff, K.M.; Marvin, C.C. Visible light photooxidative cyclization of amino alcohols to 1,3-oxazines. Tetrahedron Lett., 2013, 54(16), 2101-2104.
[http://dx.doi.org/10.1016/j.tetlet.2013.02.031]
[95]
Kohls, P.; Jadhav, D.; Pandey, G.; Reiser, O. Visible light photoredox catalysis: Generation and addition of N-Aryltetrahydroisoquinoline-Derived α-amino radicals to michael acceptors. Org. Lett., 2012, 4(3), 672-675.
[http://dx.doi.org/10.1021/ol202857t]
[96]
Kumar, I.; Thakur, A. Manisha; Sharma, U. Manisha; Sharma, U. α-Oxygenation of N-aryl/alkyl heterocyclic compounds via ruthenium photocatalysis. React. Chem. Eng., 2021, 6(11), 2087-2091.
[http://dx.doi.org/10.1039/D1RE00200G]
[97]
Liu, Z.; Huang, Y.; Xie, H.; Liu, W.; Zeng, J.; Cheng, P. A novel C–C radical–radical coupling reaction promoted by visible light: Facile synthesis of 6-substituted N-methyl 5,6-dihydrobenzophenanthridine alkaloids. RSC Advances, 2016, 6(56), 50500-50505.
[http://dx.doi.org/10.1039/C6RA05927A]
[98]
Zhong, J.J.; Meng, Q.Y.; Wang, G.X.; Liu, Q.; Chen, B.; Feng, K.; Tung, C.H.; Li, Z.W. A highly efficient and selective aerobic cross-dehydrogenative-coupling reaction photocatalyzed by a Platinum(II) Terpyridyl complex. Chem. Eur. J., 2013, 19(20), 6443-6450.
[http://dx.doi.org/10.1002/chem.201204572]
[99]
Tong, X.; Cao, X.; Han, T.; Cheong, W.C.; Lin, R.; Chen, Z.; Wang, D.; Chen, C.; Li, Q.; Peng, Y. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res., 2019, 12(7), 1625-1630.
[http://dx.doi.org/10.1007/s12274-018-2404-x]
[100]
Tada, N.; Ban, K.; Yoshida, M.; Hirashima, S.I.; Miura, T.; Itoh, A. Aerobic photooxidation of benzylamide under visible light irradiation with a combination of 48% aq HBr and Ca(OH)2. Tetrahedron Lett., 2010, 51(47), 6098-6100.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.021]
[101]
Li, A.; Pan, B.; Mu, C.; Wang, N.; Li, Y-L. Ouyang, Q. Porphyrin-catalyzed oxidation of n-substituted tetrahydroisoquinolines to dihydroisoquinolones. Synlett, 2021, 32(7), 679-684.
[http://dx.doi.org/10.1055/a-1345-3491]
[102]
Zhang, Y.; Riemer, D.; Schilling, W.; Kollmann, J.; Das, S. Visible-light-mediated efficient metal-free catalyst for α-oxygenation of tertiary amines to amides. ACS Catal., 2018, 8(7), 6659-6664.
[http://dx.doi.org/10.1021/acscatal.8b01897]
[103]
Pramanik, M.; Nagode, S.B.; Kant, R.; Rastogi, N. Visible light catalyzed Mannich reaction between tert-amines and silyl diazoenolates. Org. Biomol. Chem., 2017, 15(35), 7369-7373.
[http://dx.doi.org/10.1039/C7OB01756A]
[104]
Rusch, F.; Unkel, L.N.; Alpers, D.; Hoffmann, F.; Brasholz, M. A visible light photocatalytic cross-dehydrogenative coupling/dehydrogenation/6π-cyclization/oxidation cascade: synthesis of 12-nitroindoloisoquinolines from 2-aryltetrahydroisoquinolines. Chem. Eur. J., 2015, 21(23), 8336-8340.
[http://dx.doi.org/10.1002/chem.201500612]
[105]
Guryev, A.A.; Hahn, F.; Marschall, M.; Tsogoeva, S.B. Visible-light-driven C−H oxidation of cyclic tertiary amines: access to synthetic strychnos alkaloids with antiviral activity. Chem. Eur. J., 2019, 25(16), 4062-4066.
[http://dx.doi.org/10.1002/chem.201900078]
[106]
Reddy, M.B.; Neerathilingam, N.; Anandhan, R. Photoredox-catalyzed chemoselective aerobic Cα–H oxidation of propargylamines: Synthesis of substituted 2-ynamide and oxazolo[2,3-a] isoquinolinone derivatives. Org. Chem. Front., 2021, 8(1), 87-93.
[http://dx.doi.org/10.1039/D0QO01220C]
[107]
Lechner, R.; Kummel, S.; Konig, B. Visible light flavin photo-oxidation of methylbenzenes, styrenes and phenylacetic acids. Photochem. Photobiol. Sci., 2010, 9(10), 1367.
[http://dx.doi.org/10.1039/c0pp00202j]
[108]
Wang, H.; Man, Y.; Wang, K.; Wan, X.; Tong, L.; Li, N.; Tang, B. Hydrogen bond directed aerobic oxidation of amines via photoredox catalysis. Chem. Commun., 2018, 54(78), 10989-10992.
[http://dx.doi.org/10.1039/C8CC06603E]
[109]
Yang, S.; Li, P.; Wang, Z.; Wang, L. Photoinduced oxidative formylation of N,N-Dimethylanilines with molecular oxygen without external photocatalyst. Org. Lett., 2017, 19(13), 3386-3389.
[http://dx.doi.org/10.1021/acs.orglett.7b01230]
[110]
Ji, W.; Li, P.; Yang, S.; Wang, L. Visible-light-induced oxidative formylation of N-alkyl-N-(prop-2-yn-1-yl)anilines with molecular oxygen in the absence of an external photosensitizer. Chem. Commun., 2017, 53(60), 8482-8485.
[http://dx.doi.org/10.1039/C7CC03693K]
[111]
Shawcross, A.P.; Stanforth, S.P. Reaction of N-nitroaryl-1,2,3,4-tetrahydroisoquinoline derivatives with oxygen. J. Heterocycl. Chem., 1990, 27(2), 367-369.
[http://dx.doi.org/10.1002/jhet.5570270249]
[112]
Kawase, M. Autoxidation of intermediate mesoionic 1,3-oxazolium-5-olates generated from cyclic N-acyl α-amino acids. Chem. Pharm. Bull. (Tokyo), 1997, 45(8), 1248-1253.
[http://dx.doi.org/10.1248/cpb.45.1248]
[113]
Kawase, M. Unusual formation of tetrahydro-1-isoquinolones from tetrahydroisoquinoline-1-carboxylic acids with carbodiimides and mechanistic aspects. J. Chem. Soc. Chem. Commun., 1990, 19, 1328.
[http://dx.doi.org/10.1039/c39900001328]
[114]
Lemoucheux, L.; Rouden, J.; Ibazizene, M.; Sobrio, F.; Lasne, M-C. Lemoucheu,x L.; Rouden, J.; Ibazizene, M.; Sobrio, F.; Lasne, M.C. Debenzylation of tertiary amines using phosgene or triphosgene: An efficient and rapid procedure for the preparation of Carbamoyl Chlorides and unsymmetrical ureas. Application in carbon-11 Chemistry. J. Org. Chem., 2003, 68(19), 7289-7297.
[http://dx.doi.org/10.1021/jo0346297]
[115]
Nishinaga, A.; Shim, T.; Matsuura, T. Novel synthetic route to amides from arylmethylamines via Schiff Bases derived from amines and 2,6-di-t-butyl-p-benzoquinone. J. Chem. Soc. Chem. Comm., 1979, 21, 970.
[116]
Periasamy, M.; Shanmugaraja, M.; Reddy, P.O.; Ramusagar, M.; Rao, G.A. Synthetic transformations using molecular oxygen-doped carbon materials. J. Org. Chem., 2017, 82(9), 4944-4948.
[http://dx.doi.org/10.1021/acs.joc.7b00405]
[117]
Joshi, A.; Kumar, R.; Semwal, R.; Rawat, D.; Adimurthy, S. Ionic liquid catalysed aerobic oxidative amidation and thioamidation of benzylic amines under neat conditions. Green Chem., 2019, 21(5), 962-967.
[http://dx.doi.org/10.1039/C8GC03726D]
[118]
Thatikonda, T.; Deepake, S.K.; Das, U. α-angelica lactone in a new role: Facile access to N-Aryl tetrahydroisoquinolinones and isoindolinones via organocatalytic α-CH2 oxygenation. Org. Lett., 2019, 21(8), 2532-2535.
[http://dx.doi.org/10.1021/acs.orglett.9b00224]
[119]
Li, C.; Zeng, C.C.; Hu, L.M.; Yang, F.L.; Yoo, S.J.; Little, R.D. Electrochemically induced CH functionalization using bromide ion/2,2,6,6-tetramethylpiperidinyl-N-oxyl dual redox catalysts in a two-phase electrolytic system. Electrochim. Acta, 2013, 114, 560-566.
[http://dx.doi.org/10.1016/j.electacta.2013.10.093]
[120]
Bechi, B.; Herter, S.; McKenna, S.; Riley, C.; Leimkuhler, S.; Turner, N.J.; Carnell, A.J. Catalytic bio–chemo and bio–bio tandem oxidation reactions for amide and carboxylic acid synthesis. Green Chem., 2014, 16(10), 4524-4529.
[http://dx.doi.org/10.1039/C4GC01321B]
[121]
Coniglio, A.; Galli, C.; Gentili, P.; Vadala, R. Oxidation of amides by laccase-generated aminoxyl radicals. J. Mol. Catal., B Enzym., 2008, 50(1), 40-49.
[http://dx.doi.org/10.1016/j.molcatb.2007.09.022]
[122]
Kovi, K.E.; Wolf, C. One-Pot oxidative esterification and amidation of aldehydes. Chemistry, 2008, 14(21), 6302-6315.
[http://dx.doi.org/10.1002/chem.200800353]
[123]
Gaspa, S.; Porcheddu, A.; Luca, L. Recent developments in oxidative esterification and amidation of aldehydes. Tetrahedron Lett., 2016, 57(31), 3433-3440.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.115]
[124]
Figueiredo, R.M.; Suppo, J.S.; Campagne, J.M. Nonclassical routes for amide bond formation. Chem. Rev., 2016, 116(19), 12029-12122.
[http://dx.doi.org/10.1021/acs.chemrev.6b00237]
[125]
Nakagawa, K.; Onoue, H.; Minami, K. Oxidation with nickel peroxide. A new synthesis of amides from aldehydes or alcohols. Chem. Commun., 1966, 1(1), 17.
[http://dx.doi.org/10.1039/c19660000017]
[126]
Whittaker, A.M.; Dong, V.M. Nickel-Catalyzed dehydrogenative cross-coupling: Direct transformation of aldehydes into esters and amides. Angew. Chem. Int. Ed., 2015, 54(4), 1312-1315.
[http://dx.doi.org/10.1002/anie.201410322]
[127]
Goel, B.; Vyas, V.; Tripathi, N.; Singh, A.K.; Menezes, P.W.; Indra, A.; Jain, S.K. Amidation of aldehydes with amines under mild conditions using metal-organic framework derived NiO@Ni Mott-Schottky catalyst. ChemCatChem, 2020, 12(22), 5743-5749.
[http://dx.doi.org/10.1002/cctc.202001041]
[128]
Tamura, Y.; Yamada, Y.; Yoshida, Z. Direct Oxidative transformation of aldehydes to amides by palladium catalysis. Synthesis, 1983, 1983(6), 474-476.
[http://dx.doi.org/10.1055/s-1983-30388]
[129]
Suto, Y.; Yamagiwa, N.; Torisawa, Y. Pd-catalyzed oxidative amidation of aldehydes with hydrogen peroxide. Tetrahedron Lett., 2008, 49(40), 5732-5735.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.075]
[130]
Tillack, A.; Rudloff, I.; Beller, M. Catalytic amination of aldehydes to amides. Eur. J. Org. Chem., 2001, 2001(3), 523-528.
[http://dx.doi.org/10.1002/1099-0690(200102)2001:3<523::AID-EJOC523>3.0.CO;2-Z]
[131]
Nguyen, T.T.; Hull, K.L. Rhodium-catalyzed oxidative amidation of sterically hindered aldehydes and alcohols. ACS Catal., 2016, 6(12), 8214-8218.
[http://dx.doi.org/10.1021/acscatal.6b02541]
[132]
Wu, Z.; Hull, K.L. Rhodium-catalyzed oxidative amidation of allylic alcohols and aldehydes: Effective conversion of amines and anilines into amides. Chem. Sci. (Camb.), 2016, 7(2), 969-975.
[http://dx.doi.org/10.1039/C5SC03103F]
[133]
Thirumal, M.; Venkattappan, A.; Venkatachalam, G. Ruthenium(III) 2-(aminofluoreneazo)phenolate complexes: Synthesis, characterization, catalytic activity in amidation reaction and Fluorescence quenching studies. J. Organomet. Chem., 2020, 923, 121408.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121408]
[134]
Devika, N.; Ananthalakshmi, S.; Raja, N.; Gupta, G.; Therrien, B. Amidation of aldehydes using mono-cationic half-sandwich rhodium(III) complexes with functionalized phenylhydrazone ligands. J. Organomet. Chem., 2019, 886, 65-70.
[http://dx.doi.org/10.1016/j.jorganchem.2019.02.018]
[135]
Vinoth, G.; Indra, S.; Bharathi, M.; Sountharajan, M.; Sakthi, D.; Bharathi, K.S. Appraisal of Ruthenium(II) complexes of (4-phenoxyphenylazo) ligands for the synthesis of primary amides by dint of hydroxylamine hydrochloride and aldehydes. J. Organomet. Chem., 2019, 894, 67-77.
[http://dx.doi.org/10.1016/j.jorganchem.2019.05.010]
[136]
Sharma, K.N.; Ali, M.; Srivastava, A.K.; Joshi, R.K. (η6-Benzene)Ru(II) half-sandwich complexes of pyrazolated chalcogenoethers for catalytic activation of aldehydes to amides transformation. J. Organomet. Chem., 2019, 879, 69-77.
[http://dx.doi.org/10.1016/j.jorganchem.2018.09.019]
[137]
Politano, F.; Sandoval, A.L.; Witko, M.L.; Doherty, K.E.; Schroeder, C.M.; Leadbeater, N.E. Nitroxide-catalyzed oxidative amidation of aldehydes to Yield N-Acyl azoles using sodium persulfate. Eur. J. Org. Chem., 2022, 2022(4), 38.
[http://dx.doi.org/10.1002/ejoc.202101239]
[138]
Watson, A.J.A.; Wakeham, R.J.; Maxwell, A.C.; Williams, J.M.J. Ruthenium-catalysed oxidation of alcohols to amides using a hydrogen acceptor. Tetrahedron, 2014, 70(23), 3683-3690.
[http://dx.doi.org/10.1016/j.tet.2014.04.017]
[139]
Nagalakshmi, V.; Nandhini, R.; Brindha Krishnamoorthy, B.S.; Balasubrmani, K. Half-sandwich ruthenium(II) complexes containing biphenylamine based schiff base ligands: Synthesis, structure and catalytic activity in amidation of various aldehydes. J. Organomet. Chem., 2020, 912, 121175.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121175]
[140]
Muthaiah, S.; Ghosh, C.; Jee, J-E.; Chen, C.; Zhang, J.; Hong, S.H. Direct amide synthesis from either alcohols or aldehydes with amines: Activity of Ru(II) hydride and Ru(0) complexes. J. Org. Chem., 2010, 75(9), 3002-3006.
[http://dx.doi.org/10.1021/jo100254g]
[141]
Nirmala, M.; Vishwanathamurthi, P. Ruthenium(II) complexes bearing pyridine-functionalized N-heterocyclic carbene ligands: Synthesis, structure and catalytic application over amide synthesis. J. Chem. Sci., 2016, 128(11), 1725-1735.
[http://dx.doi.org/10.1007/s12039-016-1169-y]
[142]
Nandi, J.; Ovian, J.M.; Kelly, C.B.; Leadbeater, N.E. Oxidative functionalisation of alcohols and aldehydes via the merger of oxoammonium cations and photoredox catalysis. Org. Biomol. Chem., 2017, 15(39), 8295-8301.
[http://dx.doi.org/10.1039/C7OB02243C]
[143]
Raja, N.; Mathiyazhagan, U.R.; Ramesh, R. Ruthenium(II) NNO pincer type catalyst for the conversion of aldehydes to amides. Inorg. Chem. Commun., 2012, 19, 51-54.
[http://dx.doi.org/10.1016/j.inoche.2012.01.035]
[144]
Borase, P.N.; Thale, P.B.; Shankarling, G.S. Ru(Cl)-Salen Complex: Solvent selective homogeneous catalyst for one-pot synthesis of Nitriles and amides. ChemistrySelect, 2018, 3(20), 5660-5666.
[http://dx.doi.org/10.1002/slct.201800121]
[145]
Joarder, D.D.; Gayen Sarkar, R.; Bhattacharya, R.; Roy, S.; Maiti, D.K. (Artpy)RuII(ACN)3: A water-soluble catalyst for aldehyde amidation, olefin oxo-scissoring, and alkyne oxygenation. J. Org. Chem., 2019, 84(13), 8468-8480.
[http://dx.doi.org/10.1021/acs.joc.9b00487]
[146]
Pandey, G.; Koley, S.; Talukdar, R.; Sahani, P.K. Cross-dehydrogenating coupling of aldehydes with Amines/R-OTBS Ethers by Visible-Light Photoredox Catalysis: Synthesis of amides, esters, and ureas. Org. Lett., 2018, 20(18), 5861-5865.
[http://dx.doi.org/10.1021/acs.orglett.8b02537]
[147]
Li, G-L.; Kung, K.K.Y.; Wong, M.K. Gold-catalyzed amide synthesis from aldehydes and amines in aqueous medium. Chem. Commun. (Camb.), 2012, 48(34), 4112.
[http://dx.doi.org/10.1039/c2cc17689k]
[148]
Kegnaes, S.; Mielby, J.; Mentzel, U.V.; Jensen, T.; Fristrup, P.; Riisager, A. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts. Chem. Commun., 2012, 48(18), 2427.
[http://dx.doi.org/10.1039/c2cc16768a]
[149]
Miyamura, H.; Min, H.; Soule, J.F.; Kobayashi, S. Size of gold nanoparticles driving selective amide synthesis through aerobic condensation of aldehydes and amines. Angew. Chem. Int. Ed., 2015, 54(26), 7564-7567.
[http://dx.doi.org/10.1002/anie.201501795]
[150]
Wang, L.; Yu, M.; Wu, C.; Deng, N.; Wang, C.; Yao, X. Synthesis of Ag/g-C3N4 composite as highly efficient visible-light photocatalyst for oxidative amidation of aromatic aldehydes. Adv. Synth. Catal., 2016, 358(16), 2631-2641.
[http://dx.doi.org/10.1002/adsc.201600138]
[151]
Kovi, K.E.; Wolf, C. Metal-free one-pot oxidative amination of aldehydes to amides. Org. Lett., 2007, 9(17), 3429-3432.
[http://dx.doi.org/10.1021/ol7014626]
[152]
Yoo, W.; Li, C. Highly efficient oxidative amidation of aldehydes with amine hydrochloride salts. J. Am. Chem. Soc., 2006, 128(40), 13064-13065.
[http://dx.doi.org/10.1021/ja064315b]
[153]
Ding, Y.; Zhang, X.; Zhang, D.; Chen, Y.; Wu, Z.; Wang, P.; Xue, W.; Song, B.; Yang, S. Copper-catalyzed oxidative amidation between aldehydes and arylamines under mild conditions. Tetrahedron Lett., 2015, 56(6), 831-833.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.113]
[154]
Dong, D.Q.; Hao, S.H.; Zhang, H.; Wang, Z.L. Transformation of aldehydes or alcohols to amides at room temperature under aqueous conditions. Chin. Chem. Lett., 2017, 28(7), 1597-1599.
[http://dx.doi.org/10.1016/j.cclet.2017.03.008]
[155]
Yang, S.; Yan, H.; Ren, X.; Shi, X.; Li, J.; Wang, Y.; Huang, G. Copper-catalyzed dehydrogenative reaction: Synthesis of amide from aldehydes and aminopyridine. Tetrahedron, 2013, 69(31), 6431-6435.
[http://dx.doi.org/10.1016/j.tet.2013.05.072]
[156]
Zhu, M.; Fujita, K.; Yamaguchi, R.; Fujita, K.; Yamaguchi, R. Aerobic oxidative amidation of aromatic and cinnamic aldehydes with secondary amines by CuI/2-Pyridonate catalytic system. J. Org. Chem., 2012, 77(20), 9102-9109.
[http://dx.doi.org/10.1021/jo301553v]
[157]
Patel, O.P.; Anand, D.; Maurya, R.K.; Yadav, P.P. Copper-catalyzed highly efficient oxidative amidation of aldehydes with 2-aminopyridines in an aqueous micellar system. Green Chem., 2015, 17(7), 3728-3732.
[http://dx.doi.org/10.1039/C5GC00628G]
[158]
Lu, S.Y.; Badsara, S.S.; Wu, Y.C.; Reddy, D.M.; Lee, C.F. CuCl/TBHP catalyzed synthesis of amides from aldehydes and amines in water. Tetrahedron Lett., 2016, 57(6), 633-636.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.060]
[159]
Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Copper-catalyzed aerobic oxidative coupling of Aryl acetaldehydes with anilines leading to aKetoamides. Angew. Chem. Int. Ed., 2011, 50(47), 11088-11092.
[http://dx.doi.org/10.1002/anie.201105285]
[160]
Ghosh, S.C.; Negiam, J.S.Y.; Saeyad, A.M.; Tuan, D.T.; Chai, C.L.L.; Chen, A. Copper-catalyzed oxidative amidation of aldehydes with amine salts: Synthesis of primary, secondary, and tertiary amides. J. Org. Chem., 2012, 77(18), 8007-8015.
[http://dx.doi.org/10.1021/jo301252c]
[161]
Mohammadi, R.; Gholipour, B.; Alamgholiloo, H.; Rostamnia, S.; Mohtasham, H.; Zonouzi, A.; Ramakrishna, S.; Shokouhimehr, M. Nano-construction of CuO nanorods decorated with g-C3N4 nanosheets (CuO/g-C3N4-NS) as a superb colloidal nanocatalyst for liquid phase CAH conversion of aldehydes to amides. J. Mol. Liquid, 2021, 334, 116063.
[http://dx.doi.org/10.1016/j.molliq.2021.116063]
[162]
Jamalifard, S.; Mokhtari, J.; Mirjafary, Z. One-pot synthesis of amides via the oxidative amidation of aldehydes and amines catalyzed by a copper-MOF. RSC Advances, 2019, 9(39), 22749-22754.
[http://dx.doi.org/10.1039/C9RA04216D]
[163]
Cadoni, R.; Porcheddu, A.; Giacomelli, G.; De Luca, L. One-pot synthesis of amides from aldehydes and amines via C–H bond activation. Org. Lett., 2012, 14(19), 5014-5017.
[http://dx.doi.org/10.1021/ol302175v]
[164]
Pilo, M.; Procheddu, A.; Luca, L.D. A copper-catalysed amidation of aldehydes via N-hydroxysuccinimide ester formation. Org. Biomol. Chem., 2013, 11(47), 8241.
[http://dx.doi.org/10.1039/c3ob41440j]
[165]
Rani, P.; Srivastava, R. Highly efficient and recyclable copper based ionic liquid catalysts for amide synthesis. New J. Chem., 2016, 40(8), 7162-7170.
[http://dx.doi.org/10.1039/C6NJ01711H]
[166]
Renuka, M.K.; Gayathri, A. Synthesis of secondary amides by direct amidation using polymer supported copper(II) complex. Polyhedron, 2018, 148, 195-202.
[http://dx.doi.org/10.1016/j.poly.2018.04.004]
[167]
Truong, T.; Dang, G.H.; Nam, V.T.; Ngoc, T.T.; Dung, L.; Nam, T.S.P. Oxidative cross-dehydrogenative coupling of amines and α-carbonyl aldehydes over heterogeneous Cu-MOF-74 catalyst: A ligand- and base-free approach. J. Mol. Catal. Chem., 2015, 409, 110-116.
[http://dx.doi.org/10.1016/j.molcata.2015.07.022]
[168]
Li, K.; Qu, Y.; An, Y.; Breinlinger, E.; Webster, M.P.; Wen, H.; Ding, D.; Zhao, M.; Shi, X.; Wang, J.; Su, W.; Cui, W.; Satz, A.L.; Yang, H.; Kuai, L.; Little, A.; Peng, X. DNA-compatible copper-catalyzed oxidative amidation of aldehydes with non-nucleophilic arylamines. Bioconjug. Chem., 2020, 31(9), 2092-2097.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00392]
[169]
Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Copper-Catalyzed trifluoromethylation of alkenes with redox-neutral remote amidation of aldehydes. Org. Lett., 2016, 18(12), 2852-2855.
[http://dx.doi.org/10.1021/acs.orglett.6b01113]
[170]
Rostamnia, S.; Nouruzi, N.; Xin, H.; Luque, R. Efficient and selective copper-grafted nanoporous silica in aqueous conversion of aldehydes to amides. Catal. Sci. Technol., 2015, 5(1), 199-205.
[http://dx.doi.org/10.1039/C4CY00963K]
[171]
Ziaee, F.; Gholizadeh, M.; Seyedi, S.M. Uniformly dispersed copper nanoparticles onto the modified magnetically recoverable nanocatalyst for aqueous synthesis of primary amides. Appl. Organomet. Chem., 2018, 32(1), e3925.
[http://dx.doi.org/10.1002/aoc.3925]
[172]
Rezaei, M.R.; Amani, K.; Darvishi, K. One-pot green catalytic synthesis of primary amides in aqueous medium by CuII-immobilized silica-based magnetic retrievable nanocatalyst. Catal. Commun., 2017, 91, 38-42.
[http://dx.doi.org/10.1016/j.catcom.2016.12.004]
[173]
Singh, A.; Azad, C.S.; Narula, K. Copper-catalyzed regioselective azidation of arenes by C-H activation directed by pyridine. ChemistrySelect, 2020, 5, 9417.
[http://dx.doi.org/10.1002/slct.202000981]
[174]
Mamaghani, M.; Shirini, F.; Sheykhan, M.; Mohsenimehr, M. Synthesis of a copper(II) complex covalently anchoring a (2-iminomethyl)phenol moiety supported on HAp-encapsulated-α-Fe2O3 as an inorganic-organic hybrid magnetic nanocatalyst for the synthesis of primary and secondary amides. RSC Advances, 2015, 5(55), 44524-44529.
[http://dx.doi.org/10.1039/C5RA03977K]
[175]
Porcheddua, A.; Luca, L.D. Iron-catalyzed amidation of aldehydes with N-Chloroamines. Adv. Synth. Catal., 2012, 354(16), 2949-2953.
[http://dx.doi.org/10.1002/adsc.201200659]
[176]
Jiang, B.L.; Xu, B.H.; Wang, M.L.; Li, Z.X.; Liu, D.S.; Zhang, S.J. Cobalt(II)/N,N′,N”-Trihydroxyisocyanuric acid catalyzed aerobic oxidative esterification and amidation of Aldehydes. Asian J. Org. Chem., 2018, 7(5), 977-983.
[http://dx.doi.org/10.1002/ajoc.201800118]
[177]
Zhang, L.; Wang, S.; Zhou, S.; Yang, G.; Sheng, E. Cannizzaro-Type disproportionation of aromatic Aldehydes to Amides and alcohols by using either a stoichiometric amount or a catalytic amount of Lanthanide compounds. J. Org. Chem., 2006, 71(8), 3149-3153.
[http://dx.doi.org/10.1021/jo060063l]
[178]
Seo, S.; Marks, T. Mild amidation of aldehydes with amines mediated by lanthanide catalysts. Org. Lett., 2008, 10(2), 317-319.
[http://dx.doi.org/10.1021/ol702788j]
[179]
Wang, J.; Li, J.; Xu, F.; Shen, Q. Anionic bridged bis(amidinate) lithium lanthanide complexes: Efficient bimetallic catalysts for mild amidation of aldehydes with amines. Adv. Synth. Catal., 2009, 351(9), 1363-1370.
[http://dx.doi.org/10.1002/adsc.200800697]
[180]
Qian, C.; Zhang, X.; Zhang, Y.; Shen, Q. Heterobimetallic complexes of lanthanide and lithium metals with dianionic guanidinate ligands: Syntheses, structures and catalytic activity for amidation of aldehydes with amines. J. Organomet. Chem., 2010, 695(5), 747-752.
[http://dx.doi.org/10.1016/j.jorganchem.2009.12.010]
[181]
Ishihara, K.; Yano, T. Synthesis of carboxamides by LDA-Catalyzed Haller−bauer and cannizzaro reactions. Org. Lett., 2004, 6(12), 1983-1986.
[http://dx.doi.org/10.1021/ol0494459]
[182]
Ghosh, S.; Jana, C.K. Aminofluorene-mediated biomimetic domino amination–oxygenation of aldehydes to amides. Org. Lett., 2016, 18(22), 5788-5791.
[http://dx.doi.org/10.1021/acs.orglett.6b02465]
[183]
Leow, D. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes. Org. Lett., 2014, 16(21), 5812-5815.
[http://dx.doi.org/10.1021/ol5029354]
[184]
Gao, J.; Wang, G.W. Direct oxidative amidation of aldehydes with anilines under mechanical milling conditions. J. Org. Chem., 2008, 73(7), 2955-2958.
[http://dx.doi.org/10.1021/jo800075t]
[185]
Achar, T.K.; Mal, P. Transformation of contact-explosives primary amines and iodine(III) into a successful chemical reaction under solvent-free ball milling conditions. Adv. Synth. Catal., 2015, 357(18), 3977-3985.
[http://dx.doi.org/10.1002/adsc.201500914]
[186]
Premaletha, S.; Ghosh, A.; Joseph, S.; Yetra, S.R.; Biju, A.T. Facile synthesis of N-acyl 2-aminobenzothiazoles by NHC-catalyzed direct oxidative amidation of aldehydes. Chem. Commun., 2017, 53(9), 1478-1481.
[http://dx.doi.org/10.1039/C6CC08640C]
[187]
Antoniak, D.; Sakowicz, A.; Loska, R.; Makosza, M. Direct conversion of aromatic aldehydes into benzamides via oxidation with potassium permanganate in liquid ammonia. Synlett, 2015, 26, 84.
[188]
Yamaguchi, K.; Kobayashi, H.; Wang, Y.; Oishi, T.; Ogasawara, Y.; Mizuno, N. Green oxidative synthesis of primary amides from primary alcohols or aldehydes catalyzed by a cryptomelane-type manganese oxide-based octahedral molecular sieve, OMS-2. Catal. Sci. Technol., 2013, 3(2), 318-327.
[http://dx.doi.org/10.1039/C2CY20178J]
[189]
Shie, J.J.; Fang, J.M. Direct conversion of aldehydes to amides, tetrazoles, and triazines in aqueous media by one-pot tandem reactions. J. Org. Chem., 2003, 68(3), 1158-1160.
[http://dx.doi.org/10.1021/jo026407z]
[190]
Chill, S.T.; Mebane, R.C. Facile one-pot conversion of aldehydes into amides. Synth. Commun., 2010, 40(13), 2014-2017.
[http://dx.doi.org/10.1080/00397910903219443]
[191]
Achar, T.K.; Mal, P. Radical-induced metal and solvent-free cross-coupling using TBAI–TBHP: oxidative amidation of aldehydes and alcohols with N-Chloramines via c–h activation. J. Org. Chem., 2015, 80(1), 666-672.
[http://dx.doi.org/10.1021/jo502464n]
[192]
Green, R.A.; Pletcher, D.; Leach, S.G.; Brownm, R.C.D. N-Heterocyclic carbene-mediated microfluidic oxidative electrosynthesis of amides from aldehydes. Org. Lett., 2016, 18(5), 1198-1201.
[http://dx.doi.org/10.1021/acs.orglett.6b00339]
[193]
Bode, J.W.; Sohn, S.S. N-Heterocyclic carbene-catalyzed redox amidations of α-functionalized aldehydes with amines. J. Am. Chem. Soc., 2007, 129(45), 13798-13799.
[http://dx.doi.org/10.1021/ja0768136]
[194]
Vora, H.U.; Rovis, T. Nucleophilic carbene and HOAt relay catalysis in an amide bond coupling: an orthogonal peptide bond forming reaction. J. Am. Chem. Soc., 2007, 129(45), 13796-13797.
[http://dx.doi.org/10.1021/ja0764052]
[195]
Sarkar, S.D.; Studer, A. Oxidative amidation and azidation of aldehydes by NHC catalysis. Org. Lett., 2010, 12(9), 1992-1995.
[http://dx.doi.org/10.1021/ol1004643]
[196]
Kuwano, S.; Harada, S.; Oriez, R.; Yamada, K. Chemoselective conversion of α-unbranched aldehydes to amides, esters, and carboxylic acids by NHC-catalysis. Chem. Commun., 2012, 48(1), 145-147.
[http://dx.doi.org/10.1039/C1CC15539C]
[197]
Alanthadka, A.; Maheswari, C.U. N-Heterocyclic carbene-catalyzed oxidative amidation of aldehydes with Amines. Adv. Synth. Catal., 2015, 357(6), 1199-1203.
[http://dx.doi.org/10.1002/adsc.201400739]
[198]
Kang, S.; La, M.T.; Kim, H.K. Convenient metal-free direct oxidative amidation of aldehyde using dibromoisocyanuric acid under mild conditions. Tetrahedron Lett., 2018, 59(39), 3541-3546.
[http://dx.doi.org/10.1016/j.tetlet.2018.08.026]
[199]
Tan, B.; Toda, N.; Barbas, C.F., III Organocatalytic amidation and esterification of aldehydes with activating reagents by a cross-coupling strategy. Angew. Chem. Int. Ed., 2012, 51(50), 12538-12541.
[http://dx.doi.org/10.1002/anie.201205921]
[200]
Yao, H.; Tang, Y.; Yamamoto, K. Metal-free oxidative amide formation with N-hydroxysuccinimide and hypervalent iodine reagents. Tetrahedron Lett., 2012, 53(38), 5094-5098.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.024]
[201]
Devi, E.S.; Alanthadka, A.; Tamilselvi, A.; Nagarajan, S.; Sridharan, V.; Maheswari, C.U. Metal-free oxidative amidation of aldehydes with aminopyridines employing aqueous hydrogen peroxide. Org. Biomol. Chem., 2016, 14(35), 8228-8231.
[http://dx.doi.org/10.1039/C6OB01454B]
[202]
Fu, R.; Yang, Y.; Jin, W.; Gu, H.; Zeng, X.; Chai, W.; Ma, Y.; Wang, Q.; Yi, J.; Yuan, R. Microwave-assisted heteropolyanion-based ionic liquid promoted sustainable protocol to N-heteroaryl amides via N-directing dual catalyzed oxidative amidation of aldehydes. RSC Advances, 2016, 6(109), 107699-107707.
[http://dx.doi.org/10.1039/C6RA20961K]
[203]
Guggilapu, S.D.; Chari, A.R.; Nagarsenkar, A.; Sigalapalli, D.K.; Babu, B.N. An efficient and mild oxidative amidation of aldehydes using B(C6F5)3 as a catalyst and biological evaluation of the products as potential antimicrobial agents. New J. Chem., 2017, 41(6), 2328-2332.
[http://dx.doi.org/10.1039/C6NJ03772K]
[204]
Bagheri, S.; Pazoki, F.; Heydari, A. Ultrasonic synthesis and characterization of 2D and 3D metal–organic frameworks and their application in the oxidative amidation reaction. ACS Omega, 2020, 5(34), 21412-21419.
[http://dx.doi.org/10.1021/acsomega.0c01773]
[205]
Papadopoulos, G.N.; Kakotos, C.G. One-Pot amide bond formation from aldehydes and amines via a photoorganocatalytic activation of aldehydes. J. Org. Chem., 2016, 81(16), 7023-7028.
[http://dx.doi.org/10.1021/acs.joc.6b00488]
[206]
Kamble, R.B.; Mane, K.D.; Rupanawar, B.D.; Korekar, P.; Sudalai, A.; Suryavanshi, G. Ti-superoxide catalyzed oxidative amidation of aldehydes with saccharin as nitrogen source: synthesis of primary amides. RSC Advances, 2020, 10(2), 724-728.
[http://dx.doi.org/10.1039/C9RA10413E]
[207]
Du, J.; Luo, K.; Zhang, X. Synthesis of amides through an oxidative amidation of tetrazoles with aldehydes under transition-metal-free conditions. RSC Advances, 2014, 4(97), 54539-54546.
[http://dx.doi.org/10.1039/C4RA07658C]
[208]
Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Cross coupling of acyl and aminyl radicals: direct synthesis of amides catalyzed by Bu4NI with TBHP as an oxidant. Angew. Chem. Int. Ed., 2012, 51(13), 3231-3235.
[http://dx.doi.org/10.1002/anie.201108763]
[209]
Xie, S.; Ramstorm, O.; Yan, M. N,N-Diethylurea-catalyzed amidation between electron-deficient aryl azides and phenylacetaldehydes. Org. Lett., 2015, 17(3), 636-639.
[http://dx.doi.org/10.1021/ol503655a]
[210]
Xie, S.; Zhang, Y.; Ramstrom, O.; Yan, M. Base-catalyzed synthesis of aryl amides from aryl azides and aldehydes. Chem. Sci., 2016, 7(1), 713-718.
[http://dx.doi.org/10.1039/C5SC03510D]
[211]
Gu, L.; Wang, W.; Li, G.; Yuan, M. [bmIm]OH-catalyzed amidation of azides and aldehydes: an efficient route to amides. Green Chem., 2016, 18(9), 2604-2608.
[http://dx.doi.org/10.1039/C6GC00402D]
[212]
Ramesh, D.; Masood, A.R.; Bhahwal, A.S. Highly efficient dehydrogenative cross-coupling of aldehydes with amines and alcohols. RSC Advances, 2015, 5(110), 90521-90524.
[http://dx.doi.org/10.1039/C5RA17425B]
[213]
Dandia, A.; Parihar, S.; Saini, P.; Rathore, K.S.; Parewa, V. Metal-free sustainable synthesis of amides via oxidative amidation using graphene oxide as carbocatalyst in aqueous medium. Catal. Lett., 2019, 149(11), 3169-3175.
[http://dx.doi.org/10.1007/s10562-019-02878-5]
[214]
Chen, C.; Verport, F.; Wu, Q. Atom-economic dehydrogenative amide synthesis via ruthenium catalysis. RSC Advances, 2016, 6(60), 55599-55607.
[http://dx.doi.org/10.1039/C6RA10643A]
[215]
Naota, T.; Murahashi, S.I. Ruthenium-catalyzed transformations of amino alcohols to lactams. Synlett, 1991, 1991(10), 693-694.
[http://dx.doi.org/10.1055/s-1991-34758]
[216]
Watson, A.J.A.; Maxwell, A.C.; Williams, J.M.J. Ruthenium-Catalyzed oxidation of alcohols into amides. Org. Lett., 2009, 11(12), 2667-2670.
[http://dx.doi.org/10.1021/ol900723v]
[217]
Ghosh, S.C.; Muthaiah, S.K.; Zhang, Y.; Xu, X.; Hong, S.H. Direct amide synthesis from alcohols and amines by phosphine-free ruthenium catalyst systems. Adv. Synth. Catal., 2009, 351(16), 2643-2649.
[http://dx.doi.org/10.1002/adsc.200900482]
[218]
Daw, P.; Kumar, A.; Espinosa-Jalapa, N.A.; Ben-David, Y.; Milstein, D. Direct synthesis of amides by acceptorless dehydrogenative coupling of benzyl alcohols and ammonia catalyzed by a manganese pincer complex: Unexpected crucial role of base. J. Am. Chem. Soc., 2019, 141(31), 12202-12206.
[http://dx.doi.org/10.1021/jacs.9b05261]
[219]
Nordstrom, L.U.; Vogt, H.; Madsen, R. Amide synthesis from alcohols and amines by the extrusion of dihydrogen. J. Am. Chem. Soc., 2008, 130(52), 17672-17673.
[http://dx.doi.org/10.1021/ja808129p]
[220]
Dam, J.H.; Osztrovszky, G.; Nordstrøm, L.U.; Madsen, R.; Osztroszky, G.; Nordstrom, L.U.; Madsen, R. Amide synthesis from alcohols and amines catalyzed by ruthenium N-Heterocyclic carbene complexes. Chem. Eur. J., 2010, 16(23), 6820-6827.
[http://dx.doi.org/10.1002/chem.201000569]
[221]
Zhang, Y.; Chen, C.; Ghosh, S.C.; Li, Y.; Hong, S.H. Chen, C.; Ghosh, S.C.; Li, Y.; Hong, S.H. Well-Defined N-Heterocyclic carbene based ruthenium catalysts for direct amide synthesis from alcohols and amines. Organometallics, 2010, 29(6), 1374-1378.
[http://dx.doi.org/10.1021/om901020h]
[222]
Chen, C.; Zhang, Y.; Hong, S.H. N-Heterocyclic carbene based ruthenium-catalyzed direct amide synthesis from alcohols and secondary amines: Involvement of esters. J. Org. Chem., 2011, 76(24), 10005-10010.
[http://dx.doi.org/10.1021/jo201756z]
[223]
Ghosh, S.C.; Hong, S.H. Simple RuCl3-Catalyzed amide synthesis from alcohols and amines. Eur. J. Org. Chem., 2010, 2010(22), 4266-4270.
[http://dx.doi.org/10.1002/ejoc.201000362]
[224]
Schley, N.D.; Dobereiner, G.E.; Crabtree, R.H. Oxidative synthesis of amides and pyrroles via dehydrogenative alcohol oxidation by ruthenium diphosphine diamine complexes. Organometallics, 2011, 30(15), 4174-4179.
[http://dx.doi.org/10.1021/om2004755]
[225]
Saha, B.; Sengupta, G.; Sarbajna, A.; Dutta, I.; Bera, J.K. Amide synthesis from alcohols and amines catalyzed by a Ru(II)–N-heterocyclic carbene (NHC)–carbonyl complex. J. Organomet. Chem., 2014, 771, 124-130.
[http://dx.doi.org/10.1016/j.jorganchem.2013.12.051]
[226]
Oldenhuis, N.J.; Dong, V.M.; Guan, Z. Catalytic acceptorless dehydrogenations: Ru-Macho catalyzed construction of amides and imines. Tetrahedron, 2014, 70(27-28), 4213-4218.
[http://dx.doi.org/10.1016/j.tet.2014.03.085]
[227]
Fujita, K-I.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Synthesis of Five-, Six-, and seven-membered ring lactams by Cp*Rh complex-catalyzed oxidative n-heterocyclization of amino alcohols. Org. Lett., 2004, 6(16), 2785-2788.
[http://dx.doi.org/10.1021/ol0489954]
[228]
Zweifel, T.; Naubron, J-V.; Grutzmacher, H. Catalyzed dehydrogenative coupling of primary alcohols with water, methanol, or amines. Angew. Chem. Int. Ed., 2009, 48(3), 559-563.
[http://dx.doi.org/10.1002/anie.200804757]
[229]
Owston, N.A.; Parker, A.J.; Williams, J.M.J. Iridium-Catalyzed conversion of alcohols into amides via oximes. Org. Lett., 2007, 9(1), 73-75.
[http://dx.doi.org/10.1021/ol062549u]
[230]
Shimizu, K.I.; Ohshima, K.; Satsuma, A. Direct dehydrogenative amide synthesis from alcohols and amines catalyzed by γ-alumina supported silver cluster. Chem. Eur. J., 2009, 15(39), 9977-9980.
[http://dx.doi.org/10.1002/chem.200901896]
[231]
Soule, J-F.; Miyamura, H.; Kobayashi, S. Powerful amide synthesis from alcohols and amines under aerobic conditions catalyzed by gold or gold/iron, -nickel or -cobalt nanoparticles. J. Am. Chem. Soc., 2011, 133(46), 18550-18553.
[http://dx.doi.org/10.1021/ja2080086]
[232]
Soule, J.F.; Miyamura, H.; Kobayashi, S. Direct amidation from alcohols and amines through a tandem oxidation process catalyzed by heterogeneous-polymer-incarcerated gold nanoparticles under aerobic conditions. Chem. Asian J., 2013, 8(11), 2614-2626.
[http://dx.doi.org/10.1002/asia.201300733]
[233]
Wang, Y.; Zhu, D.; Tang, L.; Wang, S.; Wang, Z. Highly efficient amide synthesis from alcohols and amines by virtue of a water-soluble gold/DNA catalyst. Angew. Chem. Int. Ed., 2011, 50(38), 8917-8921.
[http://dx.doi.org/10.1002/anie.201102374]
[234]
Zhu, J.; Zhang, Y.; Shi, F.; Deng, Y. Dehydrogenative amide synthesis from alcohol and amine catalyzed by hydrotalcite-supported gold nanoparticles. Tetrahedron Lett., 2012, 53(25), 3178-3180.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.048]
[235]
Pineda, A.; Gomez, L.; Balu, A.M.; Sebastian, V.; Ojeda, M.; Arruebo, M.; Romero, A.A.; Santamaria, J.; Luque, R. Laser-driven heterogeneous catalysis: Efficient amide formation catalysed by Au/SiO2 systems. Green Chem., 2013, 15(8), 2043.
[http://dx.doi.org/10.1039/c3gc40166a]
[236]
Klitgaard, S.K.; Egeblad, K.; Mentzel, U.V.; Popov, A.G.; Jensen, T.; Taarning, E.; Nielsen, I.S.; Christensen, C.H. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts. Green Chem., 2008, 10(4), 419.
[http://dx.doi.org/10.1039/b714232c]
[237]
Yamaguchi, K.; Kobayashi, H.; Oishi, T.; Mizuno, N. Heterogeneously catalyzed synthesis of primary amides directly from primary alcohols and aqueous ammonia. Angew. Chem. Int. Ed., 2012, 51(2), 544-547.
[http://dx.doi.org/10.1002/anie.201107110]
[238]
Zultanski, S.L.; Zhao, J.; Stahl, S.S. Practical synthesis of amides via Copper/ABNO-Catalyzed aerobic oxidative coupling of alcohols and amines. J. Am. Chem. Soc., 2016, 138(20), 6416-6419.
[http://dx.doi.org/10.1021/jacs.6b03931]
[239]
Bantreil, X.; Fleith, C.; Martinez, J.; Lamaty, F. Copper-catalyzed direct synthesis of benzamides from alcohols and amines. ChemCatChem, 2012, 4(12), 1922-1925.
[http://dx.doi.org/10.1002/cctc.201200441]
[240]
Yedage, S.L.; Bhanage, B.M. Copper-catalyzed synthesis of weinreb amides by oxidative amidation of alcohols. Synthesis, 2015, 47, 526.
[241]
Krabbe, S.W.; Chan, V.S.; Franczyk, T.S.; Shekhar, S.; Napolitano, J.G.; Presto, C.A.; Simanis, J.A. Copper-catalyzed aerobic oxidative amidation of benzyl alcohols. J. Org. Chem., 2016, 81(22), 10688-10697.
[http://dx.doi.org/10.1021/acs.joc.6b01686]
[242]
Drageset, A.; Bjorsvik, H.R. Synthesis of amides from alcohols and amines through a domino oxidative amidation and telescoped transamidation process. Eur. J. Org. Chem., 2018, 32(32), 4436-4445.
[http://dx.doi.org/10.1002/ejoc.201800378]
[243]
Bantreil, X.; Kanfar, N.; Gehin, N.; Golliard, E.; Ohlmann, P.; Martinez, J.; Lamaty, F. Iron-catalyzed benzamide formation. Application to the synthesis of moclobemide. Tetrahedron, 2014, 70(34), 5093-5099.
[http://dx.doi.org/10.1016/j.tet.2014.06.001]
[244]
Ghosh, S.C.; Ngiam, J.S.Y.; Seayad, A.M.; Tuan, D.T.; Johannes, W.; Chen, A. Tandem oxidative amidation of benzyl alcohols with amine hydrochloride salts catalysed by iron nitrate. Tetrahedron Lett., 2013, 54(36), 4922-4925.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.005]
[245]
Bantreil, X.; Navals, P.; Martinez, J.; Lamaty, F. Iron/Caffeine as a catalytic system for microwave-promoted benzamide formation. Eur. J. Org. Chem., 2015, 2015(2), 417-422.
[http://dx.doi.org/10.1002/ejoc.201403173]
[246]
Gaspa, S.; Porcheddu, A.; De Luca, L. Iron-catalysed oxidative amidation of alcohols with amines. Org. Biomol. Chem., 2013, 11(23), 3803.
[http://dx.doi.org/10.1039/c3ob40170g]
[247]
Arefi, M.; Saberi, D.; Karimi, M.; Heydari, A. Superparamagnetic Fe(OH)3@Fe3O4 nanoparticles: An efficient and recoverable catalyst for tandem oxidative amidation of alcohols with amine hydrochloride salts. ACS Comb. Sci., 2015, 17(6), 341-347.
[http://dx.doi.org/10.1021/co5001844]
[248]
Wu, X-F.; Sharif, M.; Pews-Davtyan, A.; Langer, P.; Ayub, K.K.; Beller, M. The first ZnII-catalyzed oxidative amidation of benzyl alcohols with amines under solvent-free conditions. Eur. J. Org. Chem., 2013, 2013(14), 2783-2787.
[http://dx.doi.org/10.1002/ejoc.201300367]
[249]
Xie, Z.; Chen, R.; Du, Z.; Kong, L.; Li, Z.; Li, Z.; Wang, N.; Liu, J. Iodine-catalyzed formation of amide bond: Efficient strategy for the synthesis of aromatic primary amides. Asian J. Org. Chem., 2017, 6(2), 157-160.
[http://dx.doi.org/10.1002/ajoc.201600532]
[250]
Xu, K.; Hu, Y.; Zhang, S.; Zha, Z.; Wang, Z. Direct amidation of alcohols with N-Substituted formamides under transition-metal-free conditions. Chem. Eur. J., 2012, 18(32), 9793-9797.
[http://dx.doi.org/10.1002/chem.201201203]
[251]
Ohmura, R.; Takahata, M.; Togo, H. Metal-free one-pot oxidative conversion of benzylic alcohols and benzylic halides into aromatic amides with molecular iodine in aq ammonia, and hydrogen peroxide. Tetrahedron Lett., 2010, 51(33), 4378-4381.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.051]
[252]
Karimi, M.; Saberi, D.; Azizi, K.; Arefi, M.; Heydari, A. Transition-metal-free oxidative amidation of benzyl alcohols with amines catalyzed by NaI: A new method for the synthesis of benzamides. Tetrahedron Lett., 2014, 55(39), 5351-5353.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.085]
[253]
Sutar, Y.B.; Bhagat, S.B.; Telvekar, V.N. General and efficient oxidative amidation of benzyl alcohols with amines using diacetoxyiodobenzene and TBHP. Tetrahedron Lett., 2015, 56(48), 6768-6771.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.066]
[254]
Shang, S.; Chen, P.P.; Wang, L.; Lv, Y.; Li, W.X.; Gao, S. Metal-free nitrogen- and boron-codoped mesoporous carbons for primary amides synthesis from primary alcohols via direct oxidative dehydrogenation. ACS Catal., 2018, 8(11), 9936-9944.
[http://dx.doi.org/10.1021/acscatal.8b02889]
[255]
Xie, X.; Huynh, H.V. Tunable dehydrogenative amidation versus amination using a single ruthenium-NHC catalyst. ACS Catal., 2015, 5(7), 4143-4151.
[http://dx.doi.org/10.1021/acscatal.5b00588]
[256]
Reddy, T.N.; Pires de Lima, D. Recent advances in the functionalization of hydrocarbons: Synthesis of amides and its derivatives. Asian J. Org. Chem., 2019, 8(8), 1227-1262.
[http://dx.doi.org/10.1002/ajoc.201900317]
[257]
Pappula, V.; Ravi, C.; Samanta, S.; Adimurthy, S. Oxidative amidation of methylarenes and heteroamines under metal-free conditions. ChemistrySelect, 2017, 2(21), 5887-5890.
[http://dx.doi.org/10.1002/slct.201701250]
[258]
Karimi, M.; Saberi, D.; Azizi, K.; Ghonchepour, E.; Heydari, A. FeSO4·7H2O-catalyzed oxidative amidation of methylarenes. Tetrahedron Lett., 2015, 56(21), 2674-2677.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.114]
[259]
Zhao, Z.; Wang, T.; Yuan, L.; Hu, X.; Xiong, F.; Zhao, J. Oxidative coupling between methylarenes and ammonia: A direct approach to aromatic primary amides. Adv. Synth. Catal., 2015, 357(11), 2566-2570.
[http://dx.doi.org/10.1002/adsc.201500310]
[260]
Wang, T.; Yuan, L.; Zhao, Z.; Shao, A.; Gao, M.; Huang, Y.; Xiong, F.; Zhang, H.; Zhao, J. Direct oxidative amidation between methylarenes and amines in water. Green Chem., 2015, 17(5), 2741-2744.
[http://dx.doi.org/10.1039/C5GC00299K]
[261]
Wang, Y.; Yamaguchi, K.; Mizuno, N. Manganese oxide promoted liquid-phase aerobic oxidative amidation of methylarenes to monoamides using ammonia surrogates. Angew. Chem. Int. Ed., 2012, 51(29), 7250-7253.
[http://dx.doi.org/10.1002/anie.201203098]
[262]
Xie, H.; Liao, Y.; Chen, Y.; Deng, G.J. Copper-catalyzed efficient direct amidation of 2-methylquinolines with amines. Org. Biomol. Chem., 2015, 13(25), 6944-6948.
[http://dx.doi.org/10.1039/C5OB00915D]
[263]
Li, D.; Ollevier, T. Synthesis of imidazolidinone, imidazolone, and benzimidazolone derivatives through oxidation using copper and air. Org. Lett., 2019, 21(10), 3572-3575.
[http://dx.doi.org/10.1021/acs.orglett.9b00973]
[264]
Gnecco, D.; Marazano, C.; Enríquez, R.G.; Terán, J.L.; Sánchez, M.R.; Galindo, A. Oxidation of chiral non-racemic pyridinium salts to enantiopure 2-pyridone and 3-alkyl-2-pyridones. Tetrahedron Asymmetry, 1998, 9(12), 2027-2029.
[http://dx.doi.org/10.1016/S0957-4166(98)00151-7]
[265]
Luo, W.K.; Shi, X.; Zhou, W.; Yang, L. Iodine-catalyzed oxidative functionalization of azaarenes with benzylic C(sp3)–H bonds via N-Alkylation/amidation cascade: Two-step synthesis of isoindolo[2,1-b]isoquinolin-7(5H)-one. Org. Lett., 2016, 18(9), 2036-2039.
[http://dx.doi.org/10.1021/acs.orglett.6b00646]
[266]
Jin, Y.; Ou, L.; Yang, H.; Fu, H. Visible-light-mediated aerobic oxidation of N-Alkylpyridinium salts under organic photocatalysis. J. Am. Chem. Soc., 2017, 139(40), 14237-14243.
[http://dx.doi.org/10.1021/jacs.7b07883]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy