Generic placeholder image

Current Psychiatry Research and Reviews

Editor-in-Chief

ISSN (Print): 2666-0822
ISSN (Online): 2666-0830

Review Article

Obesity as a Neurobiologic Disorder: A Heavyweight Contender

Author(s): Mervin Chávez-Castillo*, Pablo Duran, Bermary Garrido, Andrea Díaz, Daniel Escalona and Clímaco Cano

Volume 19, Issue 2, 2023

Published on: 04 October, 2022

Page: [109 - 136] Pages: 28

DOI: 10.2174/2666082218666220527120848

Price: $65

conference banner
Abstract

Obesity is a multifactorial metabolic condition characterized by an abnormal or excessive accumulation of fat in the adipose tissue, capable of decreasing life expectancy. Chronically, the exacerbated inflammatory response interferes with the proper functioning of organs and tissues, becoming the cornerstone of various major metabolic imbalances in different systems, such as the central nervous system. Considering this, obesity’s meta-inflammation indirectly affects brain regions related to psychiatric illnesses and cognitive function. Also, it has been established that several neurobiological mechanisms related to appetite regulation and impulse control disorders could explain the onset of obesity. Thus, due to the high prevalence of mental illnesses linked to obese patients and the fact that a bidirectional relation between these two entities has been observed, many efforts have been made to establish an effective and secure pharmacological approach to obesity. In this context, several psychotropics and appetite- suppressant drugs, along with lifestyle changes, have been highlighted as promising therapeutic tools against obesity.

Keywords: Obesity, adipose tissue, neurobiological disorders, pharmacological approach, lifestyle, heavyweight.

[1]
Engin A. The definition and prevalence of obesity and metabolic syndrome. Adv Exp Med Biol 2017; 960: 1-17.
[http://dx.doi.org/10.1007/978-3-319-48382-5_1] [PMID: 28585193]
[2]
Apovian CM. Obesity: Definition, comorbidities, causes, and burden. Am J Manag Care 2016; 22(7) (Suppl.): s176-85.
[PMID: 27356115]
[3]
Bermúdez V, Durán P, Rojas E, et al. The sick adipose tissue: New insights into defective signaling and crosstalk with the myocardium. Front Endocrinol (Lausanne) 2021; 12: 735070.
[http://dx.doi.org/10.3389/fendo.2021.735070] [PMID: 34603210]
[4]
World Health Organization. Obesity and overweight 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
[5]
Andolfi C, Fisichella PM. Epidemiology of obesity and associated comorbidities. J Laparoendosc Adv Surg Tech A 2018; 28(8): 919-24.
[http://dx.doi.org/10.1089/lap.2018.0380] [PMID: 30010474]
[6]
Garvey WT, Garber AJ, Mechanick JI, et al. American association of clinical endocrinologists and american college of endocrinology position statement on the 2014 advanced framework for a new diagnosis of obesity as a chronic disease. Endocr Pract 2014; 20(9): 977-89.
[http://dx.doi.org/10.4158/EP14280.PS] [PMID: 25253227]
[7]
Ramírez MF. Prevalence of psychiatric disorders in a population candidate for obesity surgery: Experience in psychiatric assessment in a public hospital within a multidisciplinary morbid obesity treatment team. Vertex 2018; 29(138): 133-8.
[PMID: 30605186]
[8]
Druce M, Bloom SR. The regulation of appetite. Arch Dis Child 2006; 91(2): 183-7.
[http://dx.doi.org/10.1136/adc.2005.073759] [PMID: 16428368]
[9]
Gropp E, Shanabrough M, Borok E, et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 2005; 8(10): 1289-91.
[http://dx.doi.org/10.1038/nn1548] [PMID: 16158063]
[10]
Roh E, Song DK, Kim MS. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med 2016; 48(3): e216-6.
[http://dx.doi.org/10.1038/emm.2016.4] [PMID: 26964832]
[11]
Könner AC, Klöckener T, Brüning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol Behav 2009; 97(5): 632-8.
[http://dx.doi.org/10.1016/j.physbeh.2009.03.027] [PMID: 19351541]
[12]
MacNeil DJ. NPY Y1 and Y5 receptor selective antagonists as anti-obesity drugs. Curr Top Med Chem 2007; 7(17): 1721-33.
[http://dx.doi.org/10.2174/156802607782341028] [PMID: 17979781]
[13]
Pinto S, Roseberry AG, Liu H, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 2004; 304(5667): 110-5.
[http://dx.doi.org/10.1126/science.1089459] [PMID: 15064421]
[14]
Kullmann S, Kleinridders A, Small DM, et al. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol 2020; 8(6): 524-34.
[http://dx.doi.org/10.1016/S2213-8587(20)30113-3] [PMID: 32445739]
[15]
Wu Y, He H, Cheng Z, Bai Y, Ma X. The role of neuropeptide Y and peptide YY in the development of obesity via gut-brain axis. Curr Protein Pept Sci 2019; 20(7): 750-8.
[http://dx.doi.org/10.2174/1389203720666190125105401] [PMID: 30678628]
[16]
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007; 87(4): 1409-39.
[http://dx.doi.org/10.1152/physrev.00034.2006] [PMID: 17928588]
[17]
Hinke SA, Manhart S, Speck M, Pederson RA, Demuth HU, McIntosh CHS. In depth analysis of the N-terminal bioactive domain of gastric inhibitory polypeptide. Life Sci 2004; 75(15): 1857-70.
[http://dx.doi.org/10.1016/j.lfs.2004.03.024] [PMID: 15302229]
[18]
Holst JJ. Incretin hormones and the satiation signal. Int J Obes 2013; 37(9): 1161-8.
[http://dx.doi.org/10.1038/ijo.2012.208]
[19]
Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic efficacy of GLP-1? Trends Endocrinol Metab 2020; 31(6): 410-21.
[http://dx.doi.org/10.1016/j.tem.2020.02.006] [PMID: 32396843]
[20]
Şentürk Ş, Hatirnaz S, Kanat-Pektaş M. Serum preptin and amylin levels with respect to body mass index in polycystic ovary syndrome patients. Med Sci Monit 2018; 24: 7517-23.
[http://dx.doi.org/10.12659/MSM.912957] [PMID: 30343311]
[21]
Lutz TA. Control of food intake and energy expenditure by amylin-therapeutic implications. Int J Obes 2005 2005; 33 (Suppl 1): S24-7.
[22]
Wynne K, Bloom SR. The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nat Clin Pract Endocrinol Metab 2006; 2(11): 612-20.
[http://dx.doi.org/10.1038/ncpendmet0318] [PMID: 17082808]
[23]
Flier JS, Maratos-Flier E. Leptin’s physiologic role: Does the emperor of energy balance have no clothes? Cell Metab 2017; 26(1): 24-6.
[http://dx.doi.org/10.1016/j.cmet.2017.05.013] [PMID: 28648981]
[24]
Andermann ML, Lowell BB. Toward a wiring diagram understanding of appetite control. Neuron 2017; 95(4): 757-78.
[http://dx.doi.org/10.1016/j.neuron.2017.06.014] [PMID: 28817798]
[25]
Yanagi S, Sato T, Kangawa K, Nakazato M. The homeostatic force of ghrelin. Cell Metab 2018; 27(4): 786-804.
[http://dx.doi.org/10.1016/j.cmet.2018.02.008] [PMID: 29576534]
[26]
Castañeda TR, Tong J, Datta R, Culler M, Tschöp MH. Ghrelin in the regulation of body weight and metabolism. Front Neuroendocrinol 2010; 31(1): 44-60.
[http://dx.doi.org/10.1016/j.yfrne.2009.10.008] [PMID: 19896496]
[27]
Huszar D, Lynch CA, Fairchild-Huntress V, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88(1): 131-41.
[http://dx.doi.org/10.1016/S0092-8674(00)81865-6] [PMID: 9019399]
[28]
Sclafani A. On the role of hypoglycemia in carbohydrate appetite. Appetite 1982; 3(3): 227-8.
[http://dx.doi.org/10.1016/S0195-6663(82)80019-6] [PMID: 6760811]
[29]
Balthasar N, Dalgaard LT, Lee CE, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 2005; 123(3): 493-505.
[http://dx.doi.org/10.1016/j.cell.2005.08.035] [PMID: 16269339]
[30]
Wang J, Ling S, Usami T, Murata T, Narita K, Higuchi T. Effects of ghrelin, corticotrophin-releasing hormone, and melanotan-II on food intake in rats with paraventricular nucleus lesions. Exp Clin Endocrinol Diabetes 2007; 115(10): 669-73.
[http://dx.doi.org/10.1055/s-2007-984438] [PMID: 18058602]
[31]
le Roux CW, Batterham RL, Aylwin SJB, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 2006; 147(1): 3-8.
[http://dx.doi.org/10.1210/en.2005-0972] [PMID: 16166213]
[32]
Rahardjo GL, Huang XF, Tan YY, Deng C. Decreased plasma peptide YY accompanied by elevated peptide YY and Y2 receptor binding densities in the medulla oblongata of diet-induced obese mice. Endocrinology 2007; 148(10): 4704-10.
[http://dx.doi.org/10.1210/en.2007-0107] [PMID: 17615145]
[33]
Carpenter RHS. Homeostasis: A plea for a unified approach. Adv Physiol Educ 2004; 28(1-4): 180-7.
[http://dx.doi.org/10.1152/advan.00012.2004] [PMID: 15545346]
[34]
Huerta CI, Sarkar PR, Duong TQ, Laird AR, Fox PT. Neural bases of food perception: Coordinate-based meta-analyses of neuroimaging studies in multiple modalities. Obesity (Silver Spring) 2014; 22(6): 1439-46.
[http://dx.doi.org/10.1002/oby.20659] [PMID: 24174404]
[35]
Frank S, Kullmann S, Veit R. Food related processes in the insular cortex. Front Hum Neurosci 2013; 7: 499.
[http://dx.doi.org/10.3389/fnhum.2013.00499] [PMID: 23986683]
[36]
Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin 2015; 8: 1-31.
[http://dx.doi.org/10.1016/j.nicl.2015.03.016] [PMID: 26110109]
[37]
Kollei I, Rustemeier M, Schroeder S, Jongen S, Herpertz S, Loeber S. Cognitive control functions in individuals with obesity with and without binge-eating disorder. Int J Eat Disord 2018; 51(3): 233-40.
[http://dx.doi.org/10.1002/eat.22824] [PMID: 29328501]
[38]
Lennerz B, Lennerz JK. Food addiction, high-glycemic-index carbohydrates, and obesity. Clin Chem 2018; 64(1): 64-71.
[http://dx.doi.org/10.1373/clinchem.2017.273532] [PMID: 29158252]
[39]
Hebebrand J, Albayrak Ö, Adan R, et al. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci Biobehav Rev 2014; 47: 295-306.
[http://dx.doi.org/10.1016/j.neubiorev.2014.08.016] [PMID: 25205078]
[40]
Engeli S, Lehmann AC, Kaminski J, et al. Influence of dietary fat intake on the endocannabinoid system in lean and obese subjects. Obesity (Silver Spring) 2014; 22(5): E70-6.
[http://dx.doi.org/10.1002/oby.20728] [PMID: 24616451]
[41]
Di Marzo V, Ligresti A, Cristino L. The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation. Int J Obes 2009; 33(2) (Suppl. 2): S18-24.
[http://dx.doi.org/10.1038/ijo.2009.67] [PMID: 19528974]
[42]
Brownley KA, Berkman ND, Peat CM, et al. Binge-Eating Disorder in Adults: A Systematic Review and Meta-analysis. Ann Intern Med 2016; 165(6): 409-20.
[http://dx.doi.org/10.7326/M15-2455] [PMID: 27367316]
[43]
Frank GKW, Shott ME, DeGuzman MC. The neurobiology of eating disorders. Child Adolesc Psychiatr Clin N Am 2019; 28(4): 629-40.
[http://dx.doi.org/10.1016/j.chc.2019.05.007] [PMID: 31443880]
[44]
Silva B, Canas-Simião H, Cavanna AE. Neuropsychiatric aspects of impulse control disorders. Psychiatr Clin North Am 2020; 43(2): 249-62.
[http://dx.doi.org/10.1016/j.psc.2020.02.001] [PMID: 32439020]
[45]
Schmidt F, Körber S, de Zwaan M, Müller A. Impulse control disorders in obese patients. Eur Eat Disord Rev 2012; 20(3): e144-7.
[http://dx.doi.org/10.1002/erv.2162] [PMID: 22367789]
[46]
Brewer JA, Potenza MN. The neurobiology and genetics of impulse control disorders: Relationships to drug addictions. Biochem Pharmacol 2008; 75(1): 63-75.
[http://dx.doi.org/10.1016/j.bcp.2007.06.043] [PMID: 17719013]
[47]
Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BW. Depression and obesity: Evidence of shared biological mechanisms. Mol Psychiatry 2019; 24(1): 18-33.
[http://dx.doi.org/10.1038/s41380-018-0017-5] [PMID: 29453413]
[48]
Jantaratnotai N, Mosikanon K, Lee Y, McIntyre RS. The interface of depression and obesity. Obes Res Clin Pract 2017; 11(1): 1-10.
[http://dx.doi.org/10.1016/j.orcp.2016.07.003] [PMID: 27498907]
[49]
Lee SH, Paz-Filho G, Mastronardi C, Licinio J, Wong ML. Is increased antidepressant exposure a contributory factor to the obesity pandemic? Transl Psychiatry 2016; 6(3): e759.
[http://dx.doi.org/10.1038/tp.2016.25] [PMID: 26978741]
[50]
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008; 455(7215): 894-902.
[http://dx.doi.org/10.1038/nature07455] [PMID: 18923511]
[51]
Amiri S, Behnezhad S. Obesity and anxiety symptoms: A systematic review and meta-analysis. Neuropsychiatrie (Deisenhof) 2019; 33(2): 72-89.
[http://dx.doi.org/10.1007/s40211-019-0302-9] [PMID: 30778841]
[52]
Morris MJ, Beilharz JE, Maniam J, Reichelt AC, Westbrook RF. Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neurosci Biobehav Rev 2015; 58: 36-45.
[http://dx.doi.org/10.1016/j.neubiorev.2014.12.002] [PMID: 25496905]
[53]
Patriquin MA, Mathew SJ. The neurobiological mechanisms of generalized anxiety disorder and chronic stress. Chronic stress (thousand oaks) 2017; 1: 2470547017703993.
[http://dx.doi.org/10.1177/2470547017703993] [PMID: 29503978]
[54]
Fernandes DJ, Spring S, Roy AR, et al. Exposure to maternal high-fat diet induces extensive changes in the brain of adult offspring. Transl Psychiatry 2021; 11(1): 149.
[http://dx.doi.org/10.1038/s41398-021-01274-1] [PMID: 33654064]
[55]
Valcarcel-Ares MN, Tucsek Z, Kiss T, et al. Obesity in aging exacerbates neuroinflammation, dysregulating synaptic function-related genes and altering eicosanoid synthesis in the mouse hippocampus: Potential role in impaired synaptic plasticity and cognitive decline. J Gerontol Ser A 2019; 74(3): 290-8.
[http://dx.doi.org/10.1093/gerona/gly127] [PMID: 29893815]
[56]
Nyamugenda E, Trentzsch M, Russell S, et al. Injury to hypothalamic Sim1 neurons is a common feature of obesity by exposure to high-fat diet in male and female mice. J Neurochem 2019; 149(1): 73-97.
[http://dx.doi.org/10.1111/jnc.14662] [PMID: 30615192]
[57]
Abbasnejad Z, Nasseri B, Zardooz H, Ghasemi R. Time-course study of high fat diet induced alterations in spatial memory, hippocampal JNK, P38, ERK and Akt activity. Metab Brain Dis 2019; 34(2): 659-73.
[http://dx.doi.org/10.1007/s11011-018-0369-1] [PMID: 30552557]
[58]
Rocha DM, Caldas AP, Oliveira LL, Bressan J, Hermsdorff HH. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis 2016; 244: 211-5.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.015] [PMID: 26687466]
[59]
Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front Neurosci 2018; 12: 930.
[http://dx.doi.org/10.3389/fnins.2018.00930] [PMID: 30618559]
[60]
Wu H, Liu Q, Kalavagunta PK, et al. Normal diet vs. high fat diet - A comparative study: Behavioral and neuroimmunological changes in adolescent male mice. Metab Brain Dis 2018; 33(1): 177-90.
[http://dx.doi.org/10.1007/s11011-017-0140-z] [PMID: 29101600]
[61]
Page KC, Anday EK. Dietary exposure to excess saturated fat during early life alters hippocampal gene expression and increases risk for behavioral disorders in adulthood. Front Neurosci 2020; 14: 527258. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2020.527258/full
[http://dx.doi.org/10.3389/fnins.2020.527258]
[62]
Han J, Nepal P, Odelade A, Freely FD, Belton DM, Graves JLJ, et al. High-fat diet-induced weight gain, behavioral deficits, and dopamine changes in young C57BL/6J mice. Front Nutr 2021. Available from: https://www.frontiersin.org/articles/10.3389/fnut.2020.591161/full
[63]
Mullins CA, Gannaban RB, Khan MS, et al. Neural underpinnings of obesity: The role of oxidative stress and inflammation in the brain. Antioxidants 2020; 9(10): 1018.
[http://dx.doi.org/10.3390/antiox9101018] [PMID: 33092099]
[64]
McLean FH, Campbell FM, Langston RF, et al. A high-fat diet induces rapid changes in the mouse hypothalamic proteome. Nutr Metab (Lond) 2019; 16(1): 26.
[http://dx.doi.org/10.1186/s12986-019-0352-9] [PMID: 31168311]
[65]
Minjarez B, Calderón-González KG, Rustarazo MLV, et al. Identification of proteins that are differentially expressed in brains with Alzheimer’s disease using iTRAQ labeling and tandem mass spectrometry. J Proteomics 2016; 139: 103-21.
[http://dx.doi.org/10.1016/j.jprot.2016.03.022] [PMID: 27012543]
[66]
Mangialasche F, Baglioni M, Cecchetti R, et al. Lymphocytic mitochondrial aconitase activity is reduced in Alzheimer’s disease and mild cognitive impairment. J Alzheimers Dis 2015; 44(2): 649-60.
[http://dx.doi.org/10.3233/JAD-142052] [PMID: 25322927]
[67]
Simoncini C, Orsucci D, Caldarazzo Ienco E, Siciliano G, Bonuccelli U, Mancuso M. Alzheimer’s pathogenesis and its link to the mitochondrion. Oxid Med Cell Longev 2015; 2015: 803942.
[http://dx.doi.org/10.1155/2015/803942] [PMID: 25973139]
[68]
Sonntag KC, Ryu WI, Amirault KM, et al. Late-onset Alzheimer’s disease is associated with inherent changes in bioenergetics profiles. Sci Rep 2017; 7(1): 14038.
[http://dx.doi.org/10.1038/s41598-017-14420-x] [PMID: 29070876]
[69]
Moraes JC, Coope A, Morari J, et al. High-fat diet induces apoptosis of hypothalamic neurons. PLoS One 2009; 4(4): e5045.
[http://dx.doi.org/10.1371/journal.pone.0005045]
[70]
Vagena E, Ryu JK, Baeza-Raja B, et al. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl Psychiatry 2019; 9(1): 141.
[http://dx.doi.org/10.1038/s41398-019-0470-1] [PMID: 31076569]
[71]
Perez J, Tardito D, Racagni G, Smeraldi E, Zanardi R. Protein kinase A and Rap1 levels in platelets of untreated patients with major depression. Mol Psychiatry 2001; 6(1): 44-9.
[http://dx.doi.org/10.1038/sj.mp.4000795] [PMID: 11244484]
[72]
Cherry JA, Davis RL. Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J Comp Neurol 1999; 407(2): 287-301.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990503)407:2<287::AID-CNE9>3.0.CO;2-R] [PMID: 10213096]
[73]
Schreiber R, Hollands R, Blokland A. A mechanistic rationale for PDE-4 inhibitors to treat residual cognitive deficits in acquired brain injury. Curr Neuropharmacol 2020; 18(3): 188-201.
[http://dx.doi.org/10.2174/1570159X17666191010103044] [PMID: 31660837]
[74]
Fertig BA, Baillie GS. PDE4-Mediated cAMP Signalling. J Cardiovasc Dev Dis 2018; 5(1): 8.
[http://dx.doi.org/10.3390/jcdd5010008] [PMID: 29385021]
[75]
Castro-Sánchez S, García-Yagüe ÁJ, Kügler S, Lastres-Becker I. CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: Implications in tauopathies. Redox Biol 2019; 22: 101118.
[http://dx.doi.org/10.1016/j.redox.2019.101118] [PMID: 30769286]
[76]
Erion JR, Wosiski-Kuhn M, Dey A, et al. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J Neurosci 2014; 34(7): 2618-31.
[http://dx.doi.org/10.1523/JNEUROSCI.4200-13.2014] [PMID: 24523551]
[77]
Wang YL, Han QQ, Gong WQ, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation 2018; 15(1): 21.
[http://dx.doi.org/10.1186/s12974-018-1054-3] [PMID: 29343269]
[78]
Cope EC, LaMarca EA, Monari PK, et al. Microglia play an active role in obesity-associated cognitive decline. J Neurosci 2018; 38(41): 8889-904.
[http://dx.doi.org/10.1523/JNEUROSCI.0789-18.2018] [PMID: 30201764]
[79]
Han Y, Zhang L, Wang Q, et al. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology 2019; 107: 37-45.
[http://dx.doi.org/10.1016/j.psyneuen.2019.04.021] [PMID: 31078757]
[80]
Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Stranahan AM. Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ cells. J Clin Invest 2020; 130(4): 1961-76.
[http://dx.doi.org/10.1172/JCI126078] [PMID: 31935195]
[81]
Nigro E, Scudiero O, Monaco ML, et al. New insight into adiponectin role in obesity and obesity-related diseases. Bio Med Res Int 2014; 2014: 658913.
[http://dx.doi.org/10.1155/2014/658913] [PMID: 25110685]
[82]
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006; 116(7): 1784-92.
[http://dx.doi.org/10.1172/JCI29126] [PMID: 16823476]
[83]
Yau SY, Lee THY, Li A, Xu A, So KF. Adiponectin mediates running-restored hippocampal neurogenesis in streptozotocin-induced type 1 diabetes in mice. Front Neurosci 2018; 12: 679.
[http://dx.doi.org/10.3389/fnins.2018.00679] [PMID: 30333718]
[84]
Ng RCL, Cheng OY, Jian M, et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 2016; 11(1): 71.
[http://dx.doi.org/10.1186/s13024-016-0136-x] [PMID: 27884163]
[85]
Corbi G, Polito R, Monaco ML, et al. Adiponectin expression and genotypes in Italian people with severe obesity undergone a hypocaloric diet and physical exercise program. Nutrients 2019; 11(9): 2195.
[http://dx.doi.org/10.3390/nu11092195] [PMID: 31547312]
[86]
Salman A, Hegazy M, AbdElfadl S. Combined adiponectin deficiency and resistance in obese patients: Can it solve part of the puzzle in nonalcoholic steatohepatitis. OAMJMS 2020; 3(2): 298-302.
[87]
Platzer M, Fellendorf FT, Bengesser SA, et al. Adiponectin is decreased in bipolar depression. World J Biol Psychiatry 2019; 20(10): 813-20.
[http://dx.doi.org/10.1080/15622975.2018.1500033] [PMID: 30047831]
[88]
Leo R, Di Lorenzo G, Tesauro M, et al. Decreased plasma adiponectin concentration in major depression. Neurosci Lett 2006; 407(3): 211-3.
[http://dx.doi.org/10.1016/j.neulet.2006.08.043] [PMID: 16973279]
[89]
Diniz BS, Teixeira AL, Campos AC, et al. Reduced serum levels of adiponectin in elderly patients with major depression. J Psychiatr Res 2012; 46(8): 1081-5.
[http://dx.doi.org/10.1016/j.jpsychires.2012.04.028] [PMID: 22633396]
[90]
Lee TH Y, Yau S Y. From obesity to hippocampal neurodegeneration: Pathogenesis and non-pharmacological interventions. Int J Mol Sci 2021; 22(1): 201.
[PMID: 35008626]
[91]
Papazoglou IK, Jean A, Gertler A, Taouis M, Vacher CM. Hippocampal GSK3β as a molecular link between obesity and depression. Mol Neurobiol 2015; 52(1): 363-74.
[http://dx.doi.org/10.1007/s12035-014-8863-x] [PMID: 25169083]
[92]
Wakabayashi C, Kunugi H. Involvement of IL-6 and GSK3β in impaired sensorimotor gating induced by high-fat diet. Neurosci Res 2019; 147: 33-8.
[http://dx.doi.org/10.1016/j.neures.2018.10.004] [PMID: 30326250]
[93]
Rollins CPE, Gallino D, Kong V, et al. Contributions of a high-fat diet to Alzheimer’s disease-related decline: A longitudinal behavioural and structural neuroimaging study in mouse models. Neuroimage Clin 2019; 21: 101606.
[http://dx.doi.org/10.1016/j.nicl.2018.11.016] [PMID: 30503215]
[94]
Lyra E, Silva NM, Gonçalves RA, Pascoal TA, et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl Psychiatry 2021; 11(1): 251.
[http://dx.doi.org/10.1038/s41398-021-01349-z] [PMID: 33911072]
[95]
Li SW, Yu HR, Sheen JM, et al. A maternal high-fat diet during pregnancy and lactation, in addition to a postnatal high-fat diet, leads to metabolic syndrome with spatial learning and memory deficits: beneficial effects of resveratrol. Oncotarget 2017; 8(67): 111998-2013.
[http://dx.doi.org/10.18632/oncotarget.22960] [PMID: 29340106]
[96]
Shafie A, Rahimi AM, Ahmadi I, Nabavizadeh F, Ranjbaran M, Ashabi G. High-protein and low-calorie diets improved the anti-aging Klotho protein in the rats’ brain: the toxic role of high-fat diet. Nutr Metab (Lond) 2020; 17(1): 86.
[http://dx.doi.org/10.1186/s12986-020-00508-1] [PMID: 33072166]
[97]
Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 2013; 37(3): 382-9.
[http://dx.doi.org/10.1038/ijo.2012.48] [PMID: 22508336]
[98]
Petrov D, Pedrós I, Artiach G, Sureda FX, Barroso E, Pallàs M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta BBA - Mol Basis Dis 2015; 1852(9): 1687-99.
[http://dx.doi.org/10.1016/j.bbadis.2015.05.004]
[99]
Zuliani I, Lanzillotta C, Tramutola A, et al. High-fat diet leads to reduced protein O-GlcNAcylation and mitochondrial defects promoting the development of alzheimer’s disease signatures. Int J Mol Sci 2021; 22(7): 3746.
[http://dx.doi.org/10.3390/ijms22073746] [PMID: 33916835]
[100]
Cheng A, Wan R, Yang JL, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun 2012; 3(1): 1250.
[http://dx.doi.org/10.1038/ncomms2238] [PMID: 23212379]
[101]
Tan BL, Norhaizan ME. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019; 11(11): 2579.
[http://dx.doi.org/10.3390/nu11112579] [PMID: 31731503]
[102]
Yoon G, Cho KA, Song J, Kim YK. Transcriptomic analysis of high fat diet fed mouse brain cortex. Front Genet 2019. Available from: https://www.frontiersin.org/articles/10.3389/fgene.2019.00083/full
[http://dx.doi.org/10.3389/fgene.2019.00083]
[103]
Ng SY, Lin L, Soh BS, Stanton LW. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 2013; 29(8): 461-8.
[http://dx.doi.org/10.1016/j.tig.2013.03.002] [PMID: 23562612]
[104]
Lane CA, Barnes J, Nicholas JM, et al. Investigating the relationship between BMI across adulthood and late life brain pathologies. Alzheimers Res Ther 2021; 13(1): 91.
[http://dx.doi.org/10.1186/s13195-021-00830-7] [PMID: 33941254]
[105]
Mariotti KC, Rossato LG, Fröehlich PE, Limberger RP. Amphetamine-type medicines: A review of pharmacokinetics, pharmacodynamics, and toxicological aspects. Curr Clin Pharmacol 2013; 8(4): 350-7.
[http://dx.doi.org/10.2174/15748847113089990052] [PMID: 23342978]
[106]
Mordes JP, Liu C, Xu S. Medications for weight loss. Curr Opin Endocrinol Diabetes Obes 2015; 22(2): 91-7.
[http://dx.doi.org/10.1097/MED.0000000000000140] [PMID: 25692921]
[107]
Halford JCG, Boyland EJ, Blundell JE, Kirkham TC, Harrold JA. Pharmacological management of appetite expression in obesity. Nat Rev Endocrinol 2010; 6(5): 255-69.
[http://dx.doi.org/10.1038/nrendo.2010.19] [PMID: 20234354]
[108]
Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. Emerging roles for serotonin in regulating metabolism: New implications for an ancient molecule. Endocr Rev 2019; 40(4): 1092-107.
[http://dx.doi.org/10.1210/er.2018-00283] [PMID: 30901029]
[109]
Hirsch J, Mackintosh RM, Aronne LJ. The effects of drugs used to treat obesity on the autonomic nervous system. Obes Res 2000; 8(3): 227-33.
[http://dx.doi.org/10.1038/oby.2000.26] [PMID: 10832765]
[110]
Astrup A, Lundsgaard C. What do pharmacological approaches to obesity management offer? Linking pharmacological mechanisms of obesity management agents to clinical practice. Exp Clin Endocrinol Diabetes 1998; 106 (Suppl. 2): 29-34.
[http://dx.doi.org/10.1055/s-0029-1212034] [PMID: 9792479]
[111]
National Institute of Diabetes and Digestive and Kidney Diseases. Prescription Medications to Treat Overweight & Obesity NIDDK Available from: https://www.niddk.nih.gov/health-information/weight- management/prescription-medications-treat-overweightobesity
[112]
Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: A systematic and clinical review. JAMA 2014; 311(1): 74-86.
[http://dx.doi.org/10.1001/jama.2013.281361] [PMID: 24231879]
[113]
Aronne LJ, Wadden TA, Peterson C, Winslow D, Odeh S, Gadde KM. Evaluation of phentermine and topiramate versus phentermine/topiramate extended-release in obese adults. Obesity (Silver Spring) 2013; 21(11): 2163-71.
[http://dx.doi.org/10.1002/oby.20584] [PMID: 24136928]
[114]
Cercato C, Roizenblatt VA, Leança CC, et al. A randomized double-blind placebo-controlled study of the long-term efficacy and safety of diethylpropion in the treatment of obese subjects. Int J Obes 2005 2009; 33(8): 857-65.
[http://dx.doi.org/10.1038/ijo.2009.124]
[115]
Haddock CK, Poston WSC, Dill PL, Foreyt JP, Ericsson M. Pharmacotherapy for obesity: A quantitative analysis of four decades of published randomized clinical trials. Int J Obes 2002; 26(2): 262-73.
[http://dx.doi.org/10.1038/sj.ijo.0801889] [PMID: 11850760]
[116]
Kang JG, Park CY, Kang JH, Park YW, Park SW. Randomized controlled trial to investigate the effects of a newly developed formulation of phentermine diffuse-controlled release for obesity. Diabetes Obes Metab 2010; 12(10): 876-82.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01242.x] [PMID: 20920040]
[117]
May M, Schindler C, Engeli S. Modern pharmacological treatment of obese patients. Ther Adv Endocrinol Metab 2020; 11: 2042018819897527.
[http://dx.doi.org/10.1177/2042018819897527] [PMID: 32030121]
[118]
Hauner H, Hastreiter L, Werdier D, Chen-Stute A, Scholze J, Blüher M. Efficacy and safety of cathine (nor-pseudoephedrine) in the treatment of obesity: A randomized dose-finding study. Obes Facts 2017; 10(4): 407-19.
[http://dx.doi.org/10.1159/000478098] [PMID: 28873376]
[119]
Peat CM, Berkman ND, Lohr KN, et al. Comparative effectiveness of treatments for binge-eating disorder: Systematic review and network meta-analysis. Eur Eat Disord Rev 2017; 25(5): 317-28.
[http://dx.doi.org/10.1002/erv.2517] [PMID: 28467032]
[120]
Malhotra S, King KH, Welge JA, Brusman-Lovins L, McElroy SL. Venlafaxine treatment of binge-eating disorder associated with obesity: A series of 35 patients. J Clin Psychiatry 2002; 63(9): 802-6.
[http://dx.doi.org/10.4088/JCP.v63n0909] [PMID: 12363121]
[121]
Puzhko S, Aboushawareb SAE, Kudrina I, et al. Excess body weight as a predictor of response to treatment with antidepressants in patients with depressive disorder. J Affect Disord 2020; 267: 153-70.
[http://dx.doi.org/10.1016/j.jad.2020.01.113] [PMID: 32063567]
[122]
Hainer V, Kabrnova K, Aldhoon B, Kunesova M, Wagenknecht M. Serotonin and norepinephrine reuptake inhibition and eating behavior. Ann N Y Acad Sci 2006; 1083(1): 252-69.
[http://dx.doi.org/10.1196/annals.1367.017] [PMID: 17148744]
[123]
Mansoor B, Rengasamy M, Hilton R, et al. The bidirectional relationship between body mass index and treatment outcome in adolescents with treatment-resistant depression. J Child Adolesc Psychopharmacol 2013; 23(7): 458-67.
[http://dx.doi.org/10.1089/cap.2012.0095] [PMID: 24024532]
[124]
Araújo JR, Martel F. Sibutramine effects on central mechanisms regulating energy homeostasis. Curr Neuropharmacol 2012; 10(1): 49-52.
[http://dx.doi.org/10.2174/157015912799362788] [PMID: 22942877]
[125]
Kamil S, Finer N, James WPT, Caterson ID, Andersson C, Torp-Pedersen C. Influence of sibutramine in addition to diet and exercise on the relationship between weight loss and blood glucose changes. Eur Heart J Cardiovasc Pharmacother 2017; 3(3): 134-9.
[PMID: 27680881]
[126]
De Vincentis A, Pedone C, Vespasiani-Gentilucci U, et al. Effect of Sibutramine on Plasma C-Reactive Protein, Leptin and Adipon ectin Concentrations: A Systematic Review and Meta-Analysis of Randomized Contr olled Trials. Curr Pharm Des 2017; 23(6): 870-8.
[http://dx.doi.org/10.2174/1381612822666161006122934] [PMID: 27719651]
[127]
García-Morales LM, Berber A, Macias-Lara CC, Lucio-Ortiz C, Del-Rio-Navarro BE, Dorantes-Alvárez LM. Use of sibutramine in obese mexican adolescents: A 6-month, randomized, double-blind, placebo-controlled, parallel-group trial. Clin Ther 2006; 28(5): 770-82.
[http://dx.doi.org/10.1016/j.clinthera.2006.05.008] [PMID: 16861099]
[128]
Sánchez-Reyes L, Fanghänel G, Yamamoto J, Martínez-Rivas L, Campos-Franco E, Berber A. Use of sibutramine in overweight adult hispanic patients with type 2 diabetes mellitus: A 12-month, randomized, double-blind, placebo-controlled clinical trial. Clin Ther 2004; 26(9): 1427-35.
[http://dx.doi.org/10.1016/j.clinthera.2004.09.017] [PMID: 15531005]
[129]
Henderson DC, Fan X, Copeland PM, et al. A double-blind, placebo-controlled trial of sibutramine for clozapine-associated weight gain. Acta Psychiatr Scand 2007; 115(2): 101-5.
[http://dx.doi.org/10.1111/j.1600-0447.2006.00855.x] [PMID: 17244173]
[130]
Torp-Pedersen C, Caterson I, Coutinho W, et al. Cardiovascular responses to weight management and sibutramine in high-risk subjects: An analysis from the SCOUT trial. Eur Heart J 2007; 28(23): 2915-23.
[http://dx.doi.org/10.1093/eurheartj/ehm217] [PMID: 17595194]
[131]
Siebenhofer A, Jeitler K, Horvath K, et al. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst Rev 2016; 3: CD007654.
[http://dx.doi.org/10.1002/14651858.CD007654.pub4] [PMID: 26934640]
[132]
Astrup A, Madsbad S, Breum L, Jensen TJ, Kroustrup JP, Larsen TM. Effect of tesofensine on bodyweight loss, body composition, and quality of life in obese patients: A randomised, double-blind, placebo-controlled trial. Lancet 2008; 372(9653): 1906-13.
[http://dx.doi.org/10.1016/S0140-6736(08)61525-1] [PMID: 18950853]
[133]
Sommet A, Pathak A, Montastruc JL. Tesofensine and weight loss. Lancet 2009; 373(9665): 719.
[http://dx.doi.org/10.1016/S0140-6736(09)60433-5] [PMID: 19249626]
[134]
Goodman DW. Lisdexamfetamine dimesylate (vyvanse), a prodrug stimulant for attentiondeficit/hyperactivity disorder. P T Peer-Rev J Formul Manag 2010; 35(5): 273-87.
[135]
Fleck DE, Eliassen JC, Guerdjikova AI, et al. Effect of lisdexamfetamine on emotional network brain dysfunction in binge eating disorder. Psychiatry Res Neuroimaging 2019; 286: 53-9.
[http://dx.doi.org/10.1016/j.pscychresns.2019.03.003] [PMID: 30903953]
[136]
Hudson JI, McElroy SL, Ferreira-Cornwell MC, Radewonuk J, Gasior M. Efficacy of lisdexamfetamine in adults with moderate to severe binge-eating disorder: A Randomized Clinical Trial. JAMA Psychiatry 2017; 74(9): 903-10.
[http://dx.doi.org/10.1001/jamapsychiatry.2017.1889] [PMID: 28700805]
[137]
McElroy SL, Hudson JI, Mitchell JE, et al. Efficacy and safety of lisdexamfetamine for treatment of adults with moderate to severe binge-eating disorder: A randomized clinical trial. JAMA Psychiatry 2015; 72(3): 235-46.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.2162] [PMID: 25587645]
[138]
Coghill DR, Caballero B, Sorooshian S, Civil R. A systematic review of the safety of lisdexamfetamine dimesylate. CNS Drugs 2014; 28(6): 497-511.
[http://dx.doi.org/10.1007/s40263-014-0166-2] [PMID: 24788672]
[139]
Gustafson A, King C, Rey JA. Lorcaserin (Belviq): A selective serotonin 5-HT2C agonist in the treatment of obesity. P T Peer-Rev J Formul Manag 2013; 38(9): 525-34.
[140]
Khera R, Murad MH, Chandar AK, et al. Association of pharmacological treatments for obesity with weight loss and adverse events: A systematic review and meta-analysis. JAMA 2016; 315(22): 2424-34.
[http://dx.doi.org/10.1001/jama.2016.7602] [PMID: 27299618]
[141]
Aronne L, Shanahan W, Fain R, et al. Safety and efficacy of lorcaserin: A combined analysis of the BLOOM and BLOSSOM trials. Postgrad Med 2014; 126(6): 7-18.
[http://dx.doi.org/10.3810/pgm.2014.10.2817] [PMID: 25414931]
[142]
Smith SR, Weissman NJ, Anderson CM, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med 2010; 363(3): 245-56.
[http://dx.doi.org/10.1056/NEJMoa0909809] [PMID: 20647200]
[143]
Fidler MC, Sanchez M, Raether B, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab 2011; 96(10): 3067-77.
[http://dx.doi.org/10.1210/jc.2011-1256] [PMID: 21795446]
[144]
Singh AK, Singh R. Pharmacotherapy in obesity: A systematic review and meta-analysis of randomized controlled trials of anti-obesity drugs. Expert Rev Clin Pharmacol 2020; 13(1): 53-64.
[http://dx.doi.org/10.1080/17512433.2020.1698291] [PMID: 31770497]
[145]
Chan EW, He Y, Chui CSL, Wong AYS, Lau WCY, Wong ICK. Efficacy and safety of lorcaserin in obese adults: A meta-analysis of 1-year randomized controlled trials (RCTs) and narrative review on short-term RCTs. Obes Rev 2013; 14(5): 383-92.
[http://dx.doi.org/10.1111/obr.12015] [PMID: 23331711]
[146]
Bohula EA, Wiviott SD, McGuire DK, et al. Cardiovascular Safety of Lorcaserin in Overweight or Obese Patients. N Engl J Med 2018; 379(12): 1107-17.
[http://dx.doi.org/10.1056/NEJMoa1808721] [PMID: 30145941]
[147]
Bohula EA, Scirica BM, Inzucchi SE, et al. Effect of lorcaserin on prevention and remission of type 2 diabetes in overweight and obese patients (CAMELLIATIMI 61): A randomised, placebo-controlled trial. Lancet 2018; 392(10161): 2269-79.
[http://dx.doi.org/10.1016/S0140-6736(18)32328-6] [PMID: 30293771]
[148]
Scirica BM, Bohula EA, Dwyer JP, et al. Lorcaserin and renal outcomes in obese and overweight patients in the CAMELLIA-TIMI 61 trial. Circulation 2019; 139(3): 366-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038341] [PMID: 30586726]
[149]
Hurren KM, Berlie HD. Lorcaserin: An investigational serotonin 2C agonist for weight loss. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm 2011; 68(21): 2029-37.
[http://dx.doi.org/10.2146/ajhp100638] [PMID: 22011982]
[150]
Nigro SC, Luon D, Baker WL. Lorcaserin: A novel serotonin 2C agonist for the treatment of obesity. Curr Med Res Opin 2013; 29(7): 839-48.
[http://dx.doi.org/10.1185/03007995.2013.794776] [PMID: 23574263]
[151]
Research C for DE and FDA requests the withdrawal of the weight-loss drug Belviq, Belviq XR (lorcaserin) from the market. FDA. 2020. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-requests-withdrawal-weight-loss-drug-belviq-belviq-xr-lorcaserin-market
[152]
Garvey WT, Ryan DH, Look M, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): A randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr 2012; 95(2): 297-308.
[http://dx.doi.org/10.3945/ajcn.111.024927] [PMID: 22158731]
[153]
Verrotti A, Scaparrotta A, Agostinelli S, Di Pillo S, Chiarelli F, Grosso S. Topiramate-induced weight loss: A review. Epilepsy Res 2011; 95(3): 189-99.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.05.014] [PMID: 21684121]
[154]
Cunnane SC, Schneider JA, Tangney C, et al. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2012; 29(3): 691-7.
[http://dx.doi.org/10.3233/JAD-2012-110629] [PMID: 22466064]
[155]
Kim B, Feldman EL. Insulin resistance in the nervous system. Trends Endocrinol Metab 2012; 23(3): 133-41.
[http://dx.doi.org/10.1016/j.tem.2011.12.004] [PMID: 22245457]
[156]
Scinta W, Bayes H, Smith N. Insulin resistance and hunger in childhood obesity: A patient and physician’s perspective. Adv Ther 2017; 34(10): 2386-91.
[http://dx.doi.org/10.1007/s12325-017-0606-8] [PMID: 28884449]
[157]
Smith SM, Meyer M, Trinkley KE. Phentermine/topiramate for the treatment of obesity. Ann Pharmacother 2013; 47(3): 340-9.
[http://dx.doi.org/10.1345/aph.1R501] [PMID: 23482732]
[158]
Allison DB, Gadde KM, Garvey WT, et al. Controlled-release phentermine/topiramate in severely obese adults: A randomized controlled trial (EQUIP). Obesity (Silver Spring) 2012; 20(2): 330-42.
[http://dx.doi.org/10.1038/oby.2011.330] [PMID: 22051941]
[159]
Safer DL, Adler S, Dalai SS, et al. A randomized, placebo-controlled crossover trial of phentermine-topiramate ER in patients with binge-eating disorder and bulimia nervosa. Int J Eat Disord 2020; 53(2): 266-77.
[http://dx.doi.org/10.1002/eat.23192] [PMID: 31721257]
[160]
Kang JG, Park CY. Anti-Obesity Drugs: A review about their effects and safety. Diabetes Metab J 2012; 36(1): 13-25.
[http://dx.doi.org/10.4093/dmj.2012.36.1.13] [PMID: 22363917]
[161]
Nogueiras R, Romero-Picó A, Vazquez MJ, Novelle MG, López M, Diéguez C. The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts 2012; 5(2): 196-207.
[http://dx.doi.org/10.1159/000338163] [PMID: 22647302]
[162]
Ruban A, Stoenchev K, Ashrafian H, Teare J. Current treatments for obesity. Clin Med (Lond) 2019; 19(3): 205-12.
[http://dx.doi.org/10.7861/clinmedicine.19-3-205] [PMID: 31092512]
[163]
Greenway FL, Fujioka K, Plodkowski RA, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2010; 376(9741): 595-605.
[http://dx.doi.org/10.1016/S0140-6736(10)60888-4] [PMID: 20673995]
[164]
Hollander P, Gupta AK, Plodkowski R, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care 2013; 36(12): 4022-9.
[http://dx.doi.org/10.2337/dc13-0234] [PMID: 24144653]
[165]
Wadden TA, Foreyt JP, Foster GD, et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obesity (Silver Spring) 2011; 19(1): 110-20.
[http://dx.doi.org/10.1038/oby.2010.147] [PMID: 20559296]
[166]
Onakpoya IJ, Lee JJ, Mahtani KR, Aronson JK, Heneghan CJ. Naltrexone-bupropion (Mysimba) in management of obesity: A systematic review and meta-analysis of unpublished clinical study reports. Br J Clin Pharmacol 2020; 86(4): 646-67.
[167]
Apovian CM, Aronne L, Rubino D, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity (Silver Spring) 2013; 21(5): 935-43.
[http://dx.doi.org/10.1002/oby.20309] [PMID: 23408728]
[168]
Cohen JB, Gadde KM. Weight loss medications in the treatment of obesity and hypertension. Curr Hypertens Rep 2019; 21(2): 16.
[http://dx.doi.org/10.1007/s11906-019-0915-1] [PMID: 30747357]
[169]
Li Z, Hong K, Yip I, et al. Body weight loss with phentermine alone versus phentermine and fenfluramine with very-low-calorie diet in an outpatient obesity management program: A retrospective study. Curr Ther Res Clin Exp 2003; 64(7): 447-60.
[http://dx.doi.org/10.1016/S0011-393X(03)00126-7] [PMID: 24944395]
[170]
Ravussin E, Smith SR, Mitchell JA, et al. Enhanced weight loss with pramlintide/metreleptin: An integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 2009; 17(9): 1736-43.
[http://dx.doi.org/10.1038/oby.2009.184] [PMID: 19521351]
[171]
Tronieri JS, Wadden TA, Walsh OA, et al. Effects of liraglutide plus phentermine in adults with obesity following 1 year of treatment by liraglutide alone: A randomized placebo-controlled pilot trial. Metabolism 2019; 96: 83-91.
[http://dx.doi.org/10.1016/j.metabol.2019.03.005] [PMID: 30902750]
[172]
Gadde KM, Yonish GM, Foust MS, Wagner HR II. Combination therapy of zonisamide and bupropion for weight reduction in obese women: A preliminary, randomized, open-label study. J Clin Psychiatry 2007; 68(8): 1226-9.
[http://dx.doi.org/10.4088/JCP.v68n0809] [PMID: 17854247]
[173]
Jain SS, Ramanand SJ, Ramanand JB, Akat PB, Patwardhan MH, Joshi SR. Evaluation of efficacy and safety of orlistat in obese patients. Indian J Endocrinol Metab 2011; 15(2): 99-104.
[http://dx.doi.org/10.4103/2230-8210.81938] [PMID: 21731866]
[174]
Zhang P, Liu Y, Ren Y, Bai J, Zhang G, Cui Y. The efficacy and safety of liraglutide in the obese, non-diabetic individuals: A systematic review and meta-analysis. Afr Health Sci 2019; 19(3): 2591-9.
[http://dx.doi.org/10.4314/ahs.v19i3.35] [PMID: 32127832]
[175]
Kelly AS, Auerbach P, Barrientos-Perez M, et al. A randomized, controlled trial of liraglutide for adolescents with obesity. N Engl J Med 2020; 382(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1916038] [PMID: 32233338]
[176]
O’Neil PM, Birkenfeld AL, McGowan B, et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: A randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 2018; 392(10148): 637-49.
[http://dx.doi.org/10.1016/S0140-6736(18)31773-2] [PMID: 30122305]
[177]
Kaineder K, Birngruber T, Rauter G, et al. Chronic intrahypothalamic rather than subcutaneous liraglutide treatment reduces body weight gain and stimulates the melanocortin receptor system. Int J Obes 2005 2017; 41(8): 1263-70.
[http://dx.doi.org/10.1038/ijo.2017.98]
[178]
Al-Massadi O, Fernø J, Diéguez C, Nogueiras R, Quiñones M. Glucagon Control on Food Intake and Energy Balance. Int J Mol Sci 2019; 20(16): 3905.
[http://dx.doi.org/10.3390/ijms20163905] [PMID: 31405212]
[179]
Vanderheiden A, Harrison LB, Warshauer JT, et al. Mechanisms of action of liraglutide in patients with type 2 diabetes treated with high-dose insulin. J Clin Endocrinol Metab 2016; 101(4): 1798-806.
[http://dx.doi.org/10.1210/jc.2015-3906] [PMID: 26909799]
[180]
Austin J, Marks D. Hormonal regulators of appetite. Int J Pediatr Endocrinol 2009; 2009(1): 141753.
[http://dx.doi.org/10.1186/1687-9856-2009-141753] [PMID: 19946401]
[181]
Drew BS, Dixon AF, Dixon JB. Obesity management: update on orlistat. Vasc Health Risk Manag 2007; 3(6): 817-21.
[PMID: 18200802]
[182]
Derosa G, Maffioli P, Sahebkar A. Improvement of plasma adiponectin, leptin and C-reactive protein concentrations by orlistat: A systematic review and meta-analysis. Br J Clin Pharmacol 2016; 81(5): 819-34.
[http://dx.doi.org/10.1111/bcp.12874] [PMID: 26717446]
[183]
Al-Tahami BAM, Al-Safi Ismail AA, Sanip Z, et al. Metabolic and inflammatory changes with orlistat and sibutramine treatment in obese malaysian subjects. J Nippon Med Sch Nippon Ika Daigaku Zasshi 2017; 84(3): 125-32.
[http://dx.doi.org/10.1272/jnms.84.125] [PMID: 28724846]
[184]
Xie S, Furjanic MA, Ferrara JJ, et al. The endocannabinoid system and rimonabant: A new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism--or inverse agonism--as potential obesity treatment and other therapeutic use. J Clin Pharm Ther 2007; 32(3): 209-31.
[http://dx.doi.org/10.1111/j.1365-2710.2007.00817.x] [PMID: 17489873]
[185]
Hagmann WK. The discovery of taranabant, a selective cannabinoid-1 receptor inverse agonist for the treatment of obesity. Arch Pharm (Weinheim) 2008; 341(7): 405-11.
[http://dx.doi.org/10.1002/ardp.200700255] [PMID: 18574849]
[186]
Varga B, Kassai F, Szabó G, Kovács P, Fischer J, Gyertyán I. Pharmacological comparison of traditional and non-traditional cannabinoid receptor 1 blockers in rodent models in vivo. Pharmacol Biochem Behav 2017; 159: 24-35.
[http://dx.doi.org/10.1016/j.pbb.2017.06.012] [PMID: 28666894]
[187]
Kirkham TC. Taranabant cuts the fat: new hope for cannabinoid-based obesity therapies? Cell Metab 2008; 7(1): 1-2.
[http://dx.doi.org/10.1016/j.cmet.2007.12.006] [PMID: 18177717]
[188]
Koch L. Obesity: Taranabant no longer developed as an antiobesity agent. Nat Rev Endocrinol 2010; 6(6): 300-0.
[http://dx.doi.org/10.1038/nrendo.2010.56] [PMID: 20518102]
[189]
Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: A meta-analysis of randomised trials. Lancet 2007; 370(9600): 1706-13.
[http://dx.doi.org/10.1016/S0140-6736(07)61721-8] [PMID: 18022033]
[190]
Després JP, Golay A, Sjöström L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005; 353(20): 2121-34.
[http://dx.doi.org/10.1056/NEJMoa044537] [PMID: 16291982]
[191]
Aronne LJ, Tonstad S, Moreno M, et al. A clinical trial assessing the safety and efficacy of taranabant, a CB1R inverse agonist, in obese and overweight patients: A high-dose study. Int J Obes 2005 2010; 34(5): 919-35.
[192]
Proietto J, Rissanen A, Harp JB, et al. A clinical trial assessing the safety and efficacy of the CB1R inverse agonist taranabant in obese and overweight patients: low-dose study. Int J Obes 2005 2010; 34(8): 1243-54.
[193]
DiNicolantonio JJ, McCarty MF, OKeefe JH. Role of dietary histidine in the prevention of obesity and metabolic syndrome. Open Heart 2018; 5(2): e000676.
[http://dx.doi.org/10.1136/openhrt-2017-000676] [PMID: 30018771]
[194]
Provensi G, Blandina P, Passani MB. The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology 2016; 106: 3-12.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.002] [PMID: 26164344]
[195]
El-Menshawe SF, Ali AA, Halawa AA, Srag El-Din AS. A novel transdermal nanoethosomal gel of betahistine dihydrochloride for weight gain control: In-vitro and in-vivo characterization. Drug Des Devel Ther 2017; 11: 3377-88.
[http://dx.doi.org/10.2147/DDDT.S144652] [PMID: 29238164]
[196]
Smith RC, Maayan L, Wu R, et al. Betahistine effects on weight-related measures in patients treated with antipsychotic medications: A double-blind placebo-controlled study. Psychopharmacology (Berl) 2018; 235(12): 3545-58.
[http://dx.doi.org/10.1007/s00213-018-5079-1] [PMID: 30382354]
[197]
Gerrard P, Malcolm R. Mechanisms of modafinil: A review of current research. Neuropsychiatr Dis Treat 2007; 3(3): 349-64.
[PMID: 19300566]
[198]
Henderson DC, Louie PM, Koul P, Namey L, Daley TB, Nguyen DD. Modafinil-associated weight loss in a clozapine-treated schizoaffective disorder patient. Ann Clin Psychiatry 2005; 17(2): 95-7.
[http://dx.doi.org/10.1080/10401230590932407] [PMID: 16075662]
[199]
Shin L, Bregman H, Frazier J, Noyes N. An overview of obesity in children with psychiatric disorders taking atypical antipsychotics. Harv Rev Psychiatry 2008; 16(2): 69-79.
[http://dx.doi.org/10.1080/10673220802073915] [PMID: 18415880]
[200]
Wadhwa M, Chauhan G, Roy K, et al. Caffeine and modafinil ameliorate the neuroinflammation and anxious behavior in rats during sleep deprivation by inhibiting the microglia activation. Front Cell Neurosci 2018; 12: 49.
[http://dx.doi.org/10.3389/fncel.2018.00049] [PMID: 29599709]
[201]
Kalafateli AL, Vallöf D, Jörnulf JW, Heilig M, Jerlhag E. A cannabinoid receptor antagonist attenuates ghrelin-induced activation of the mesolimbic dopamine system in mice. Physiol Behav 2018; 184: 211-9.
[http://dx.doi.org/10.1016/j.physbeh.2017.12.005] [PMID: 29221808]
[202]
Daina A, Giuliano C, Pietra C, et al. Rational design, synthesis, and pharmacological characterization of novel ghrelin receptor inverse agonists as potential treatment against obesity-related metabolic diseases. J Med Chem 2018; 61(24): 11039-60.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00794] [PMID: 30265805]
[203]
Abegg K, Bernasconi L, Hutter M, et al. Ghrelin receptor inverse agonists as a novel therapeutic approach against obesity-related metabolic disease. Diabetes Obes Metab 2017; 19(12): 1740-50.
[http://dx.doi.org/10.1111/dom.13020] [PMID: 28544245]
[204]
Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2010; 159(5): 1009-21.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00489.x] [PMID: 19922535]
[205]
Miller LJ, Harikumar KG, Wootten D, Sexton PM. Roles of cholecystokinin in the nutritional continuum. Physiology and potential therapeutics. Front Endocrinol (Lausanne) 2021; 12: 684656.
[http://dx.doi.org/10.3389/fendo.2021.684656] [PMID: 34149622]
[206]
Christoffersen BØ, Skyggebjerg RB, Bugge A, Kirk RK, Vestergaard B, Uldam HK, et al. Long-acting CCK analogue NN9056 lowers food intake and body weight in obese Göttingen Minipigs. Int J Obes 2020; 44(2): 447-56.
[http://dx.doi.org/10.1038/s41366-019-0386-0]
[207]
Lee YS, Cha BY, Yamaguchi K, et al. Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice. Cytotechnology 2010; 62(4): 367-76.
[http://dx.doi.org/10.1007/s10616-010-9288-7] [PMID: 20862608]
[208]
Wu Y, Yu Y, Szabo A, Han M, Huang XF. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PLoS One 2014; 9(3): e92618.
[http://dx.doi.org/10.1371/journal.pone.0092618] [PMID: 24675731]
[209]
Park HJ, Kim JH, Shim I. Anti-obesity effects of ginsenosides in high-fat diet-fed rats. Chin J Integr Med 2019; 25(12): 895-901.
[http://dx.doi.org/10.1007/s11655-019-3200-x] [PMID: 31144161]
[210]
Hamdaoui MH, Snoussi C, Dhaouadi K, et al. Tea decoctions prevent body weight gain in rats fed high-fat diet; black tea being more efficient than green tea. J Nutr Intermed Metab 2016; 6: 33-40.
[http://dx.doi.org/10.1016/j.jnim.2016.07.002]
[211]
Chávez-Castillo M, Nuñez V, Rojas M, et al. Exploring phytotherapeutic alternatives for obesity, insulin resistance and diabetes mellitus. Curr Pharm Des 2020; 26(35): 4430-43.
[http://dx.doi.org/10.2174/1381612826666200701205132] [PMID: 32611293]
[212]
Payab M, Hasani-Ranjbar S, Shahbal N, et al. Effect of the herbal medicines in obesity and metabolic syndrome: A systematic review and meta-analysis of clinical trials. Phytother Res 2020; 34(3): 526-45.
[http://dx.doi.org/10.1002/ptr.6547] [PMID: 31793087]
[213]
Onakpoya I, Hung SK, Perry R, Wider B, Ernst E. The use of garcinia extract (hydroxycitric acid) as a weight loss supplement: A systematic review and meta-analysis of randomised clinical trials. J Obes 2011; 2011: 509038.
[http://dx.doi.org/10.1155/2011/509038] [PMID: 21197150]
[214]
Diepvens K, Kovacs EMR, Vogels N, Westerterp-Plantenga MS. Metabolic effects of green tea and of phases of weight loss. Physiol Behav 2006; 87(1): 185-91.
[http://dx.doi.org/10.1016/j.physbeh.2005.09.013] [PMID: 16277999]
[215]
Novo Nordisk A/S. SELECT - semaglutide effects on cardiovascular outcomes in people with overweight or obesity. Clinicaltrialsgov 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03574597
[216]
Novo Nordisk A/S. Effect of Semaglutide 2.4 mg Once Weekly on Function and Symptoms in Subjects With Obesity-related Heart Failure With Preserved Ejection Fraction. Clinicaltrialsgov 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04788511
[217]
Xiangya Hospital of Central South University. Effects of GLP-1 RAs on Weight and Metabolic Indicators in Obese Patients. Clinicaltrialsgov 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03671733
[218]
MD CLR. Brain systems and behaviors underlying response to obesity treatment in children. Clinicaltrialsgov 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04520490
[219]
Randomized A. Eli Lilly and Company. Efficacy and safety of tirzepatide once weekly versus placebo for maintenance of weight loss in participants without type 2 diabetes who have obesity or are overweight with weight-related comorbidities: clinicaltrialsgov 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04660643
[220]
Randomized A. 2021.Eli Lilly and Company. Efficacy and safety of tirzepatide once weekly versus placebo after an intensive lifestyle program in participants without type 2 diabetes who have obesity or are overweight with weight-related comorbidities: Available from: https://clinicaltrials.gov/ct2/show/NCT04657016
[221]
Elvsaas IKØ, Giske L, Fure B, Juvet LK. Multicomponent lifestyle interventions for treating overweight and obesity in children and adolescents: A systematic review and meta-analyses. J Obes 2017; 2017: 5021902.
[http://dx.doi.org/10.1155/2017/5021902] [PMID: 29391949]
[222]
LeBlanc ES, Patnode CD, Webber EM, Redmond N, Rushkin M, O’Connor EA. Behavioral and pharmacotherapy weight loss interventions to prevent obesity-related morbidity and mortality in adults: Updated evidence report and systematic review for the US preventive services task force. JAMA 2018; 320(11): 1172-91.
[http://dx.doi.org/10.1001/jama.2018.7777] [PMID: 30326501]
[223]
Bray GA. Drug Insight: Appetite suppressants. Nat Clin Pract Gastroenterol Hepatol 2005; 2(2): 89-95.
[http://dx.doi.org/10.1038/ncpgasthep0092] [PMID: 16265126]
[224]
Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002; 5(6): 566-72.
[http://dx.doi.org/10.1038/nn0602-861] [PMID: 12021765]
[225]
Cetinkalp S, Simsir IY, Ertek S. Insulin resistance in brain and possible therapeutic approaches. Curr Vasc Pharmacol 2014; 12(4): 553-64.
[http://dx.doi.org/10.2174/1570161112999140206130426] [PMID: 23627981]
[226]
Tak YJ, Lee SY. Long-term efficacy and safety of anti-obesity treatment: Where do we stand? Curr Obes Rep 2021; 10(1): 14-30.
[http://dx.doi.org/10.1007/s13679-020-00422-w] [PMID: 33410104]
[227]
Tak YJ, Lee SY. Anti-obesity drugs: Long-term efficacy and safety: An updated review. World J Mens Health 2021; 39(2): 208-21.
[http://dx.doi.org/10.5534/wjmh.200010] [PMID: 32202085]
[228]
Wadden TA, Butryn ML, Wilson C. Lifestyle modification for the management of obesity. Gastroenterology 2007; 132(6): 2226-38.
[http://dx.doi.org/10.1053/j.gastro.2007.03.051] [PMID: 17498514]
[229]
Wadden TA, Webb VL, Moran CH, Bailer BA. Lifestyle modification for obesity: new developments in diet, physical activity, and behavior therapy. Circulation 2012; 125(9): 1157-70.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.039453] [PMID: 22392863]
[230]
Ard JD, Miller G, Kahan S. Nutrition interventions for obesity. Med Clin North Am 2016; 100(6): 1341-56.
[http://dx.doi.org/10.1016/j.mcna.2016.06.012] [PMID: 27745598]
[231]
Stelmach-Mardas M, Rodacki T, Dobrowolska-Iwanek J, et al. Link between food energy density and body weight changes in obese adults. Nutrients 2016; 8(4): 229.
[http://dx.doi.org/10.3390/nu8040229] [PMID: 27104562]
[232]
Smethers AD, Rolls BJ. Dietary management of obesity: Cornerstones of healthy eating patterns. Med Clin North Am 2018; 102(1): 107-24.
[http://dx.doi.org/10.1016/j.mcna.2017.08.009] [PMID: 29156179]
[233]
Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014; 129(25) (Suppl. 2): S102-38.
[http://dx.doi.org/10.1161/01.cir.0000437739.71477.ee] [PMID: 24222017]
[234]
Bok E, Jo M, Lee S, Lee BR, Kim J, Kim HJ. Dietary restriction and neuroinflammation: A potential mechanistic link. Int J Mol Sci 2019; 20(3): 464.
[http://dx.doi.org/10.3390/ijms20030464] [PMID: 30678217]
[235]
Kim KH, Kim YH, Son JE, et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res 2017; 27(11): 1309-26.
[http://dx.doi.org/10.1038/cr.2017.126] [PMID: 29039412]
[236]
Klempel MC, Kroeger CM, Bhutani S, Trepanowski JF, Varady KA. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr J 2012; 11(1): 98.
[http://dx.doi.org/10.1186/1475-2891-11-98] [PMID: 23171320]
[237]
Trepanowski JF, Kroeger CM, Barnosky A, et al. Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: Secondary analysis of a randomized controlled trial. Clin Nutr Edinb Scotl 2018; 37(6) (6 Pt A): 1871-8.
[http://dx.doi.org/10.1016/j.clnu.2017.11.018] [PMID: 29258678]
[238]
Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: A critical review. J Am Coll Nutr 2004; 23(5): 373-85.
[http://dx.doi.org/10.1080/07315724.2004.10719381] [PMID: 15466943]
[239]
Moon J, Koh G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. J Obes Metab Syndr 2020; 29(3): 166-73.
[http://dx.doi.org/10.7570/jomes20028] [PMID: 32699189]
[240]
Ghazzawi HA, Mustafa S. Effect of high-protein breakfast meal on within-day appetite hormones: Peptide YY, glucagon like peptide-1 in adults. Clin Nutr Exp 2019; 28: 111-22.
[http://dx.doi.org/10.1016/j.yclnex.2019.09.002]
[241]
Krebs JD, Bell D, Hall R, et al. Improvements in glucose metabolism and insulin sensitivity with a low-carbohydrate diet in obese patients with type 2 diabetes. J Am Coll Nutr 2013; 32(1): 11-7.
[http://dx.doi.org/10.1080/07315724.2013.767630] [PMID: 24015695]
[242]
Miketinas DC, Bray GA, Beyl RA, Ryan DH, Sacks FM, Champagne CM. Fiber intake predicts weight loss and dietary adherence in adults consuming calorie-restricted diets: The pounds lost (preventing overweight using novel dietary strategies) study. J Nutr 2019; 149(10): 1742-8.
[http://dx.doi.org/10.1093/jn/nxz117] [PMID: 31174214]
[243]
Liu S, Willett WC, Manson JE, Hu FB, Rosner B, Colditz G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 2003; 78(5): 920-7.
[http://dx.doi.org/10.1093/ajcn/78.5.920] [PMID: 14594777]
[244]
Koh-Banerjee P, Franz M, Sampson L, et al. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr 2004; 80(5): 1237-45.
[http://dx.doi.org/10.1093/ajcn/80.5.1237] [PMID: 15531671]
[245]
Ledoux TA, Hingle MD, Baranowski T. Relationship of fruit and vegetable intake with adiposity: A systematic review. Obes Rev 2011; 12(5): e143-50.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00786.x] [PMID: 20633234]
[246]
Kaippert VC, dos Santos Lopes MCO, de Carvalho PD, Rosado EL. Effects of unsaturated fatty acids on weight loss, body composition and obesity related biomarkers. Diabetol Metab Syndr 2015; 7 (Suppl. 1): A139.
[http://dx.doi.org/10.1186/1758-5996-7-S1-A139]
[247]
Field AE, Willett WC, Lissner L, Colditz GA. Dietary fat and weight gain among women in the Nurses’ Health Study. Obesity (Silver Spring) 2007; 15(4): 967-76.
[http://dx.doi.org/10.1038/oby.2007.616] [PMID: 17426332]
[248]
Huang CW, Chien YS, Chen YJ, Ajuwon KM, Mersmann HM, Ding ST. Role of n-3 polyunsaturated fatty acids in ameliorating the obesity-induced metabolic syndrome in animal models and humans. Int J Mol Sci 2016; 17(10): E1689.
[http://dx.doi.org/10.3390/ijms17101689] [PMID: 27735847]
[249]
Wang Y, Huang F. N-3 Polyunsaturated fatty acids and inflammation in obesity: Local effect and systemic benefit. BioMed Res Int 2015; 2015: 581469.
[http://dx.doi.org/10.1155/2015/581469] [PMID: 26339623]
[250]
Behrouz V, Jazayeri S, Aryaeian N, Zahedi MJ, Hosseini F. Effects of probiotic and prebiotic supplementation on leptin, adiponectin, and glycemic parameters in non-alcoholic fatty liver disease: A randomized clinical trial. Middle East J Dig Dis 2017; 9(3): 150-7.
[http://dx.doi.org/10.15171/mejdd.2017.66] [PMID: 28894517]
[251]
Al-Muzafar HM, Amin KA. Probiotic mixture improves fatty liver disease by virtue of its action on lipid profiles, leptin, and inflammatory biomarkers. BMC Complement Altern Med 2017; 17(1): 43.
[http://dx.doi.org/10.1186/s12906-016-1540-z] [PMID: 28086768]
[252]
Bernini LJ, Simão ANC, de Souza CHB, et al. Effect of Bifidobacterium lactis HN019 on inflammatory markers and oxidative stress in subjects with and without the metabolic syndrome. Br J Nutr 2018; 120(6): 645-52.
[http://dx.doi.org/10.1017/S0007114518001861] [PMID: 30058513]
[253]
Salazar J, Angarita L, Morillo V, et al. Microbiota and diabetes mellitus: Role of lipid mediators. Nutrients 2020; 12(10): E3039.
[http://dx.doi.org/10.3390/nu12103039] [PMID: 33023000]
[254]
Jakicic JM, Rogers RJ, Davis KK, Collins KA. Role of physical activity and exercise in treating patients with overweight and obesity. Clin Chem 2018; 64(1): 99-107.
[http://dx.doi.org/10.1373/clinchem.2017.272443] [PMID: 29158251]
[255]
Thorogood A, Mottillo S, Shimony A, et al. Isolated aerobic exercise and weight loss: A systematic review and meta-analysis of randomized controlled trials. Am J Med 2011; 124(8): 747-55.
[http://dx.doi.org/10.1016/j.amjmed.2011.02.037] [PMID: 21787904]
[256]
Ross R, Blair S, de Lannoy L, Després JP, Lavie CJ. Changing the endpoints for determining effective obesity management. Prog Cardiovasc Dis 2015; 57(4): 330-6.
[http://dx.doi.org/10.1016/j.pcad.2014.10.002] [PMID: 25459976]
[257]
Alves JG, Gale CR, Mutrie N, Correia JB, Batty GDA. A 6-month exercise intervention among inactive and overweight favela-residing women in Brazil: the Caranguejo Exercise Trial. Am J Public Health 2009; 99(1): 76-80.
[http://dx.doi.org/10.2105/AJPH.2007.124495] [PMID: 18556608]
[258]
Donnelly JE, Honas JJ, Smith BK, et al. Aerobic exercise alone results in clinically significant weight loss for men and women: midwest exercise trial 2. Obesity (Silver Spring) 2013; 21(3): E219-28.
[http://dx.doi.org/10.1002/oby.20145] [PMID: 23592678]
[259]
Maillard F, Pereira B, Boisseau N. Effect of high-intensity interval training on total, abdominal and visceral fat mass: A meta-analysis. Sports Med 2018; 48(2): 269-88.
[http://dx.doi.org/10.1007/s40279-017-0807-y] [PMID: 29127602]
[260]
Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: A systematic review and meta-analysis. Obes Rev 2017; 18(6): 635-46.
[http://dx.doi.org/10.1111/obr.12532] [PMID: 28401638]
[261]
Miller T, Mull S, Aragon AA, Krieger J, Schoenfeld BJ. Resistance training combined with diet decreases body fat while preserving lean mass independent of resting metabolic rate: A Randomized Trial. Int J Sport Nutr Exerc Metab 2018; 28(1): 46-54.
[http://dx.doi.org/10.1123/ijsnem.2017-0221] [PMID: 28871849]
[262]
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical activity and brain health. genes (Basel) 2019; 10(9): 720.
[http://dx.doi.org/10.3390/genes10090720] [PMID: 31533339]
[263]
Romero-Pérez EM, González-Bernal JJ, Soto-Cámara R, et al. Influence of a physical exercise program in the anxiety and depression in children with obesity. Int J Environ Res Public Health 2020; 17(13): E4655.
[http://dx.doi.org/10.3390/ijerph17134655] [PMID: 32605252]
[264]
Schmidt FM, Mergl R, Minkwitz J, et al. Is there an association or not?-investigating the association of depressiveness, physical activity, body composition and sleep with mediators of inflammation. Front Psychiatry 2020; 11: 563.
[http://dx.doi.org/10.3389/fpsyt.2020.00563] [PMID: 32670105]
[265]
Physical activity Available from: https://www.who.int/news-room/fact-sheets/detail/physical-activity [cited 2022 Jan 17].
[266]
Biddle S. Physical activity and mental health: evidence is growing. World Psychiatry 2016; 15(2): 176-7.
[http://dx.doi.org/10.1002/wps.20331] [PMID: 27265709]
[267]
Abd El-Kader SM, Al-Jiffri OH, Neamatallah ZA, AlKhateeb AM, AlFawaz SS. Weight reduction ameliorates inflammatory cytokines, adipocytokines and endothelial dysfunction biomarkers among Saudi patients with type 2 diabetes. Afr Health Sci 2020; 20(3): 1329-36.
[http://dx.doi.org/10.4314/ahs.v20i3.39] [PMID: 33402982]
[268]
Elloumi M, Ben Ounis O, Makni E, Van Praagh E, Tabka Z, Lac G. Effect of individualized weight-loss programmes on adiponectin, leptin and resistin levels in obese adolescent boys. Acta Paediatr Oslo Nor 1992 2009; 98(9): 1487-93.
[http://dx.doi.org/10.1111/j.1651-2227.2009.01365.x]
[269]
Hagobian TA, Yamashiro M, Hinkel-Lipsker J, Streder K, Evero N, Hackney T. Effects of acute exercise on appetite hormones and ad libitum energy intake in men and women. Appl Physiol Nutr Metab 2013; 38(1): 66-72.
[http://dx.doi.org/10.1139/apnm-2012-0104] [PMID: 23368830]
[270]
Vatansever-Ozen S, Tiryaki-Sonmez G, Bugdayci G, Ozen G. The effects of exercise on food intake and hunger: relationship with acylated ghrelin and leptin. J Sports Sci Med 2011; 10(2): 283-91.
[PMID: 24149873]
[271]
Douglas JA, King JA, McFarlane E, et al. Appetite, appetite hormone and energy intake responses to two consecutive days of aerobic exercise in healthy young men. Appetite 2015; 92: 57-65.
[http://dx.doi.org/10.1016/j.appet.2015.05.006] [PMID: 25963104]
[272]
Dorling J, Broom DR, Burns SF, et al. Acute and chronic effects of exercise on appetite, energy intake, and appetite-related hormones: The modulating effect of adiposity, sex, and habitual physical activity. Nutrients 2018; 10(9): E1140.
[http://dx.doi.org/10.3390/nu10091140] [PMID: 30131457]
[273]
King JA, Garnham JO, Jackson AP, Kelly BM, Xenophontos S, Nimmo MA. Appetite-regulatory hormone responses on the day following a prolonged bout of moderate-intensity exercise. Physiol Behav 2015; 141: 23-31.
[http://dx.doi.org/10.1016/j.physbeh.2014.12.050] [PMID: 25562575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy