Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Liquid Chromatography High-Resolution Mass Spectrometry in Forensic Toxicology: What are the Specifics of Method Development, Validation and Quality Assurance for Comprehensive Screening Approaches?

Author(s): Sarah M.R. Wille, Brigitte Desharnais, Simona Pichini, Annagiulia Di Trana, Francesco Paolo Busardò, Dirk K. Wissenbach and Frank Theodor Peters*

Volume 28, Issue 15, 2022

Published on: 22 June, 2022

Page: [1230 - 1244] Pages: 15

DOI: 10.2174/1381612828666220526152259

Price: $65

Abstract

The use of high-resolution mass spectrometry (HRMS) has increased over the past decade in clinical and forensic toxicology, especially for comprehensive screening approaches. Despite this, few guidelines in this field have specifically addressed HRMS issues concerning compound identification, validation, measurement uncertainty and quality assurance. To fully implement this technique, certainly in an era in which the quality demands for laboratories are ever-increasing due to various norms (e.g. the International Organization for Standardization’s ISO 17025), these specific issues need to be addressed. This manuscript reviews 26 HRMSbased methods for qualitative systematic toxicological analysis (STA) published between 2011 and 2021. Key analytical data such as samples matrices, analytical platforms, numbers of analytes and employed mass spectral reference databases/libraries as well as the studied validation parameters are summarized and discussed. The article further includes a critical review of targeted and untargeted data acquisition approaches, available HRMS reference databases and libraries as well as current guidelines for HRMS data interpretation with a particular focus on identification criteria. Moreover, it provides an overview on current recommendations for the validation and determination of measurement uncertainty of qualitative methods. Finally, the article aims to put forward suggestions for method development, compound identification, validation experiments to be performed, and adequate determination of measurement uncertainty for this type of wide-range qualitative HRMSbased methods.

Keywords: High-resolution mass spectrometry, method development, validation, quality assurance, measurement uncertainty, systematic toxicological analysis, HRMS data acquisition.

[1]
Pasin D, Cawley A, Bidny S, Fu S. Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: A critical review. Anal Bioanal Chem 2017; 409(25): 5821-36.
[http://dx.doi.org/10.1007/s00216-017-0441-4] [PMID: 28634759]
[2]
Maurer HH, Meyer MR. High-resolution mass spectrometry in toxicology: Current status and future perspectives. Arch Toxicol 2016; 90(9): 2161-72.
[http://dx.doi.org/10.1007/s00204-016-1764-1] [PMID: 27369376]
[3]
Maurer HH. Hyphenated high-resolution mass spectrometry-the “all-in-one” device in analytical toxicology? Anal Bioanal Chem 2021; 413(9): 2303-9.
[http://dx.doi.org/10.1007/s00216-020-03064-y] [PMID: 33247339]
[4]
Remane D, Wissenbach DK, Peters FT. Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology - An update. Clin Biochem 2016; 49(13-14): 1051-71.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.07.010] [PMID: 27452180]
[5]
ISO/IEC 17025:2017 - General requirements for the competence of testing and calibration laboratories. International Organization for Standardization (ISO). 2018. Available from:. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
[6]
Guidance for Industry - Bioanalytical Method Validation. US Department of Health and Human Services. Food and Drug Administration, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine, 2018. Available from:. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
[7]
ANSI/ASB Standard 036: Standard practices for method validation in forensic toxicology. 1st edition. American National Standards Institute (ANSI)/American Academy of Forensic Sciences Standards Board (ASB). 2018. Available from:. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
[8]
Guideline on Bioanalytical Method Validation in Pharmaceutical Development. Japanese Ministry of Health , Labour and Welfare. 2013. Available from:http://www.nihs.go.jp/drug/BMV/250913_BMV-GL_E.pdf
[9]
Guideline on bioanalytical method validation. European Medicines Agency, Committee for Medicinal Products for Human Use, 2012. Available from:. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf
[10]
Bidny S, Gago K, Chung P, Albertyn D, Pasin D. Simultaneous screening and quantification of basic, neutral and acidic drugs in blood using UPLC-QTOF-MS. J Anal Toxicol 2017; 41(3): 181-95.
[http://dx.doi.org/10.1093/jat/bkw118] [PMID: 27881618]
[11]
Birkler RI, Telving R, Ingemann-Hansen O, Charles AV, Johannsen M, Andreasen MF. Screening analysis for medicinal drugs and drugs of abuse in whole blood using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS)--toxicological findings in cases of alleged sexual assault. Forensic Sci Int 2012; 222(1-3): 154-61.
[http://dx.doi.org/10.1016/j.forsciint.2012.05.019] [PMID: 22770621]
[12]
Broecker S, Herre S, Wüst B, Zweigenbaum J, Pragst F. Development and practical application of a library of CID accurate mass spectra of more than 2,500 toxic compounds for systematic toxicological analysis by LC-QTOF-MS with data-dependent acquisition. Anal Bioanal Chem 2011; 400(1): 101-17.
[http://dx.doi.org/10.1007/s00216-010-4450-9] [PMID: 21127842]
[13]
Dalsgaard PW, Rasmussen BS, Müller IB, Linnet K. Toxicological screening of basic drugs in whole blood using UPLC-TOF-MS. Drug Test Anal 2012; 4(5): 313-9.
[http://dx.doi.org/10.1002/dta.303] [PMID: 21916023]
[14]
Fabresse N, Larabi IA, Stratton T, et al. Development of a sensitive untargeted liquid chromatography-high resolution mass spectrometry screening devoted to hair analysis through a shared MS2 spectra database: A step toward early detection of new psychoactive substances. Drug Test Anal 2019; 11(5): 697-708.
[http://dx.doi.org/10.1002/dta.2535] [PMID: 30394697]
[15]
Fels H, Dame T, Sachs H, Musshoff F. Liquid chromatography-quadrupole-time-of-flight mass spectrometry screening procedure for urine samples in forensic casework compared to gas chromatography-mass spectrometry. Drug Test Anal 2017; 9(5): 824-30.
[http://dx.doi.org/10.1002/dta.2039] [PMID: 27373549]
[16]
Grapp M, Kaufmann C, Streit F, Binder L. Systematic forensic toxicological analysis by liquid-chromatography-quadrupole-time-of-flight mass spectrometry in serum and comparison to gas chromatography-mass spectrometry. Forensic Sci Int 2018; 287: 63-73.
[http://dx.doi.org/10.1016/j.forsciint.2018.03.039] [PMID: 29649771]
[17]
Guale F, Shahreza S, Walterscheid JP, et al. Validation of LC-TOF-MS screening for drugs, metabolites, and collateral compounds in forensic toxicology specimens. J Anal Toxicol 2013; 37(1): 17-24.
[http://dx.doi.org/10.1093/jat/bks084] [PMID: 23118149]
[18]
Helfer AG, Michely JA, Weber AA, Meyer MR, Maurer HH. Orbitrap technology for comprehensive metabolite-based liquid chromatographic-high resolution-tandem mass spectrometric urine drug screening - exemplified for cardiovascular drugs. Anal Chim Acta 2015; 891: 221-33.
[http://dx.doi.org/10.1016/j.aca.2015.08.018] [PMID: 26388381]
[19]
Helfer AG, Michely JA, Weber AA, Meyer MR, Maurer HH. Liquid chromatography-high resolution-tandem mass spectrometry using Orbitrap technology for comprehensive screening to detect drugs and their metabolites in blood plasma. Anal Chim Acta 2017; 965: 83-95.
[http://dx.doi.org/10.1016/j.aca.2017.03.002] [PMID: 28366215]
[20]
Joye T, Sidibé J, Déglon J, et al. Liquid chromatography-high resolution mass spectrometry for broad-spectrum drug screening of dried blood spot as microsampling procedure. Anal Chim Acta 2019; 1063: 110-6.
[http://dx.doi.org/10.1016/j.aca.2019.02.011] [PMID: 30967174]
[21]
Kim HS, Kim J, Suh JH, Han SB. General unknown screening for pesticides in whole blood and Korean gastric contents by liquid chromatography-tandem mass spectrometry. Arch Pharm Res 2014; 37(10): 1317-24.
[http://dx.doi.org/10.1007/s12272-014-0440-3] [PMID: 25052954]
[22]
Kleis JN, Hess C, Germerott T, Roehrich J. Sensitive screening of synthetic cannabinoids using liquid chromatography quadrupole time-of-flight mass spectrometry after solid phase extraction. Drug Test Anal 2021; 13(8): 1535-51.
[http://dx.doi.org/10.1002/dta.3052] [PMID: 33884774]
[23]
Kleis J, Hess C, Germerott T, Roehrich J. Sensitive screening of new psychoactive substances in serum using liquid-chromatography quadrupole time-of-flight mass spectrometry. J Anal Toxicol 2021., bkab072.
[http://dx.doi.org/10.1093/jat/bkab072] [PMID: 34125215]
[24]
Krotulski AJ, Varnum SJ, Logan BK. Sample mining and data mining: Combined real-time and retrospective approaches for the identification of emerging novel psychoactive substances. J Forensic Sci 2020; 65(2): 550-62.
[http://dx.doi.org/10.1111/1556-4029.14184] [PMID: 31498433]
[25]
Li X, Shen B, Jiang Z, Huang Y, Zhuo X. Rapid screening of drugs of abuse in human urine by high-performance liquid chromatography coupled with high resolution and high mass accuracy hybrid linear ion trap-Orbitrap mass spectrometry. J Chromatogr A 2013; 1302: 95-104.
[http://dx.doi.org/10.1016/j.chroma.2013.06.028] [PMID: 23838299]
[26]
Odoardi S, Valentini V, De Giovanni N, Pascali VL, Strano-Rossi S. High-throughput screening for drugs of abuse and pharmaceutical drugs in hair by liquid-chromatography-high resolution mass spectrometry (LC-HRMS). Microchem J 2017; 133: 302-10.
[http://dx.doi.org/10.1016/j.microc.2017.03.050]
[27]
Partridge E, Trobbiani S, Stockham P, Scott T, Kostakis C. A validated method for the screening of 320 forensically significant compounds in blood by LC/QTOF, with simultaneous quantification of selected compounds. J Anal Toxicol 2018; 42(4): 220-31.
[http://dx.doi.org/10.1093/jat/bkx108] [PMID: 29329431]
[28]
Paul M, Ippisch J, Herrmann C, Guber S, Schultis W. Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach. Anal Bioanal Chem 2014; 406(18): 4425-41.
[http://dx.doi.org/10.1007/s00216-014-7825-5] [PMID: 24828977]
[29]
Pedersen AJ, Dalsgaard PW, Rode AJ, et al. Screening for illicit and medicinal drugs in whole blood using fully automated SPE and ultra-high-performance liquid chromatography with TOF-MS with data-independent acquisition. J Sep Sci 2013; 36(13): 2081-9.
[http://dx.doi.org/10.1002/jssc.201200921] [PMID: 23610028]
[30]
Pope JD, Black MJ, Drummer OH, Schneider HG. Urine toxicology screening by liquid chromatography time-of-flight mass spectrometry in a quaternary hospital setting. Clin Biochem 2021; 95(95): 66-72.
[http://dx.doi.org/10.1016/j.clinbiochem.2021.05.004] [PMID: 33989561]
[31]
Roche L, Pinguet J, Herviou P, et al. Fully automated semi-quantitative toxicological screening in three biological matrices using turbulent flow chromatography/high resolution mass spectrometry. Clin Chim Acta 2016; 455: 46-54.
[http://dx.doi.org/10.1016/j.cca.2016.01.017] [PMID: 26812390]
[32]
Roman M, Ström L, Tell H, Josefsson M. Liquid chromatography/time-of-flight mass spectrometry analysis of postmortem blood samples for targeted toxicological screening. Anal Bioanal Chem 2013; 405(12): 4107-25.
[http://dx.doi.org/10.1007/s00216-013-6798-0] [PMID: 23455644]
[33]
Rosano TG, Wood M, Ihenetu K, Swift TA. Drug screening in medical examiner casework by high-resolution mass spectrometry (UPLC-MSE-TOF). J Anal Toxicol 2013; 37(8): 580-93.
[http://dx.doi.org/10.1093/jat/bkt071] [PMID: 23999055]
[34]
Sundström M, Pelander A, Angerer V, Hutter M, Kneisel S, Ojanperä I. A high-sensitivity ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry (UHPLC-HR-TOFMS) method for screening synthetic cannabinoids and other drugs of abuse in urine. Anal Bioanal Chem 2013; 405(26): 8463-74.
[http://dx.doi.org/10.1007/s00216-013-7272-8] [PMID: 23954996]
[35]
Telving R, Hasselstrøm JB, Andreasen MF. Targeted toxicological screening for acidic, neutral and basic substances in postmortem and antemortem whole blood using simple protein precipitation and UPLC-HR-TOF-MS. Forensic Sci Int 2016; 266: 453-61.
[http://dx.doi.org/10.1016/j.forsciint.2016.07.004] [PMID: 27458995]
[36]
Strano-Rossi S, Castrignanò E, Anzillotti L, et al. Screening for exogenous androgen anabolic steroids in human hair by liquid chromatography/orbitrap-high resolution mass spectrometry. Anal Chim Acta 2013; 793: 61-71.
[http://dx.doi.org/10.1016/j.aca.2013.07.028] [PMID: 23953207]
[37]
Strano-Rossi S, Anzillotti L, Dragoni S, et al. Metabolism of JWH-015, JWH-098, JWH-251, and JWH-307 in silico and in vitro: A pilot study for the detection of unknown synthetic cannabinoids metabolites. Anal Bioanal Chem 2014; 406(15): 3621-36.
[http://dx.doi.org/10.1007/s00216-014-7793-9] [PMID: 24804821]
[38]
Chen X, Wang Z, Wong YE, Wu R, Zhang F, Chan TD. Electron-ion reaction-based dissociation: A powerful ion activation method for the elucidation of natural product structures. Mass Spectrom Rev 2018; 37(6): 793-810.
[http://dx.doi.org/10.1002/mas.21563] [PMID: 29603345]
[39]
Kranenburg RF, van Geenen FAMG, Berden G, Oomens J, Martens J, van Asten AC. Mass-spectrometry-based identification of synthetic drug isomers using infrared ion spectroscopy. Anal Chem 2020; 92(10): 7282-8.
[http://dx.doi.org/10.1021/acs.analchem.0c00915] [PMID: 32286052]
[40]
Glicksberg L, Bryand K, Kerrigan S. Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1035: 91-103.
[http://dx.doi.org/10.1016/j.jchromb.2016.09.027] [PMID: 27697731]
[41]
Vincenti F, Montesano C, Cellucci L, et al. Combination of pressurized liquid extraction with dispersive liquid liquid micro extraction for the determination of sixty drugs of abuse in hair. J Chromatogr A 2019; 1605, 360348.
[http://dx.doi.org/10.1016/j.chroma.2019.07.002] [PMID: 31315812]
[42]
Joye T, Rocher K, Déglon J, et al. Driving under the influence of drugs: A single parallel monitoring-based quantification approach on whole blood. Front Chem 2020; 8: 626.
[http://dx.doi.org/10.3389/fchem.2020.00626] [PMID: 33005598]
[43]
Amad MH, Houk RS. Mass resolution of 11,000 to 22,000 with a multiple pass quadrupole mass analyzer. J Am Soc Mass Spectrom 2000; 11(5): 407-15.
[http://dx.doi.org/10.1016/S1044-0305(00)00094-5] [PMID: 10790844]
[44]
Allen DR, McWhinney BC. Quadrupole time-of-flight mass spectrometry: A paradigm shift in toxicology screening applications. Clin Biochem Rev 2019; 40(3): 135-46.
[http://dx.doi.org/10.33176/AACB-19-00023] [PMID: 31530964]
[45]
Reinstadler V, Lierheimer S, Boettcher M, Oberacher H. A validated workflow for drug detection in oral fluid by non-targeted liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2019; 411(4): 867-76.
[http://dx.doi.org/10.1007/s00216-018-1504-x] [PMID: 30519959]
[46]
Wissenbach DK, Remane D, Maurer HH. Liquid chromatography-mass spectrometry.In:Clarke’s analysis of drugs and Poisons. Pharmaceutical Press: London. http://www.medicinescomplete.com
[47]
Sundström M, Pelander A, Ojanperä I. Comparison of post-targeted and pre-targeted urine drug screening by UHPLC-HR-QTOFMS. J Anal Toxicol 2017; 41(7): 623-30.
[http://dx.doi.org/10.1093/jat/bkx044] [PMID: 28873975]
[48]
Arnhard K, Gottschall A, Pitterl F, Oberacher H. Applying ‘Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra’ (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry. Anal Bioanal Chem 2015; 407(2): 405-14.
[http://dx.doi.org/10.1007/s00216-014-8262-1] [PMID: 25366975]
[49]
Roemmelt AT, Steuer AE, Poetzsch M, Kraemer T. Liquid chromatography, in combination with a quadrupole time-of-flight instrument (LC QTOF), with sequential window acquisition of all theoretical fragment-ion spectra (SWATH) acquisition: Systematic studies on its use for screenings in clinical and forensic toxicology and comparison with information-dependent acquisition (IDA). Anal Chem 2014; 86(23): 11742-9.
[http://dx.doi.org/10.1021/ac503144p] [PMID: 25329363]
[50]
Davidsen A, Mardal M, Linnet K, Dalsgaard PW. How to perform spectrum-based LC-HR-MS screening for more than 1,000 NPS with HighResNPS consensus fragment ions. PLoS One 2020; 15(11), e0242224.
[http://dx.doi.org/10.1371/journal.pone.0242224] [PMID: 33180844]
[51]
Kaufmann A, Butcher P, Maden K, Walker S, Widmer M. Does the ion mobility resolving power as provided by commercially available ion mobility quadrupole time-of-flight mass spectrometry instruments permit the unambiguous identification of small molecules in complex matrices? Anal Chim Acta 2020; 1107: 113-26.
[http://dx.doi.org/10.1016/j.aca.2020.02.032] [PMID: 32200885]
[52]
Mollerup CB, Mardal M, Dalsgaard PW, Linnet K, Barron LP. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. J Chromatogr A 2018; 1542: 82-8.
[http://dx.doi.org/10.1016/j.chroma.2018.02.025] [PMID: 29472071]
[53]
Horai H, Arita M, Kanaya S, et al. MassBank: A public repository for sharing mass spectral data for life sciences. J Mass Spectrom 2010; 45(7): 703-14.
[http://dx.doi.org/10.1002/jms.1777] [PMID: 20623627]
[54]
Advanced Mass Spectral Dataase. Available from:. https://www.mzcloud.org
[55]
Mardal M, Andreasen MF, Mollerup CB, et al. HighResNPS.com: An online crowd-sourced HR-MS database for suspect and non-targeted screening of new psychoactive substances. J Anal Toxicol 2019; 43(7): 520-7.
[http://dx.doi.org/10.1093/jat/bkz030] [PMID: 31095696]
[56]
Oberacher H, Schubert B, Libiseller K, Schweissgut A. Detection and identification of drugs and toxicants in human body fluids by liquid chromatography-tandem mass spectrometry under data-dependent acquisition control and automated database search. Anal Chim Acta 2013; 770: 121-31.
[http://dx.doi.org/10.1016/j.aca.2013.01.057] [PMID: 23498694]
[57]
von Cüpper M, Dalsgaard PW, Linnet K. Identification of new psychoactive substances in seized material using UHPLC-QTOF-MS and an online mass spectral database. J Anal Toxicol 2021; 44(9): 1047-51.
[http://dx.doi.org/10.1093/jat/bkaa028] [PMID: 32232329]
[58]
Schymanski EL, Singer HP, Slobodnik J, et al. Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis. Anal Bioanal Chem 2015; 407(21): 6237-55.
[http://dx.doi.org/10.1007/s00216-015-8681-7] [PMID: 25976391]
[59]
2002/657/EC: Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (Text with EEA relevance) (notified under document number C(2002) 3044)..
[60]
Kronstrand R, Forsman M, Roman M. Quantitative analysis of drugs in hair by UHPLC high resolution mass spectrometry. Forensic Sci Int 2018; 283: 9-15.
[http://dx.doi.org/10.1016/j.forsciint.2017.12.001] [PMID: 29241093]
[61]
Australian/New Zealand Specialist Advisory Group in Toxicology (TOXSAG). MS Identification Guidelines in Forensic Toxicology - An Australian Approach. TIAFT Bulletin 2012; 42: 52-5.
[62]
Standard for Identification Criteria in Forensic Toxicology. Organization of Scientific Area Committees for Forensic Science (OSAC). Available from: . https://www.nist.gov/system/files/documents/2019/04/22/chsac_-_tox_-_identification_in_forensic_toxicology_-_for_asb_and_website_1.pdf
[63]
Standard for Mass Spectral Data Acceptance in Forensic Toxicology Available from. https://www.nist.gov/system/files/documents/2019/03/20/standard_for_mass_spec_spectral_data_acceptance_-_asb.pdf
[64]
Broecker S, Herre S, Pragst F. General unknown screening in hair by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Forensic Sci Int 2012; 218(1-3): 68-81.
[http://dx.doi.org/10.1016/j.forsciint.2011.10.004] [PMID: 22036310]
[65]
Colby JM, Thoren KL, Lynch KL. Suspect screening using LC-QqTOF is a useful tool for detecting drugs in biological samples. J Anal Toxicol 2018; 42(4): 207-13.
[http://dx.doi.org/10.1093/jat/bkx107] [PMID: 29309651]
[66]
Favretto D, Vogliardi S, Stocchero G, Nalesso A, Tucci M, Ferrara SD. High performance liquid chromatography-high resolution mass spectrometry and micropulverized extraction for the quantification of amphetamines, cocaine, opioids, benzodiazepines, antidepressants and hallucinogens in 2.5 mg hair samples. J Chromatogr A 2011; 1218(38): 6583-95.
[http://dx.doi.org/10.1016/j.chroma.2011.07.050] [PMID: 21831386]
[67]
Vogliardi S, Favretto D, Tucci M, Stocchero G, Ferrara SD. Simultaneous LC-HRMS determination of 28 benzodiazepines and metabolites in hair. Anal Bioanal Chem 2011; 400(1): 51-67.
[http://dx.doi.org/10.1007/s00216-011-4742-8] [PMID: 21340690]
[68]
Polettini A, Gottardo R, Pascali JP, Tagliaro F. Implementation and performance evaluation of a database of chemical formulas for the screening of pharmaco/toxicologically relevant compounds in biological samples using electrospray ionization-time-of-flight mass spectrometry. Anal Chem 2008; 80(8): 3050-7.
[http://dx.doi.org/10.1021/ac800071n] [PMID: 18336013]
[69]
Mollerup CB, Dalsgaard PW, Mardal M, Linnet K. Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition. Drug Test Anal 2017; 9(7): 1052-61.
[http://dx.doi.org/10.1002/dta.2120] [PMID: 27750404]
[70]
Polettini AE, Kutzler J, Sauer C, Bleicher S, Schultis W. LC-QTOF-MS presumptive identification of synthetic cannabinoids without reference chromatographic retention/mass spectral information. I. Reversed-phase retention time QSPR prediction as an aid to identification of new/unknown compounds. J Anal Toxicol 2021; 45(5): 429-39.
[http://dx.doi.org/10.1093/jat/bkaa126] [PMID: 32896861]
[71]
Polettini AE, Kutzler J, Sauer C, Guber S, Schultis W. LC-QTOF-MS Presumptive identification of synthetic cannabinoids without reference chromatographic retention/mass spectral information. II. Evaluation of a computational approach for predicting and identifying unknown high-resolution product ion mass spectra. J Anal Toxicol 2021; 45(5): 440-61.
[http://dx.doi.org/10.1093/jat/bkaa127] [PMID: 32896859]
[72]
Hoffmann MA, Nothias LF, Ludwig M, et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nat Biotechnol 2022; 40: 411-21.
[73]
Heinonen M, Shen H, Zamboni N, Rousu J. Metabolite identification and molecular fingerprint prediction through machine learning. Bioinformatics 2012; 28(18): 2333-41.
[http://dx.doi.org/10.1093/bioinformatics/bts437] [PMID: 22815355]
[74]
Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci USA 2015; 112(41): 12580-5.
[http://dx.doi.org/10.1073/pnas.1509788112] [PMID: 26392543]
[75]
Schymanski EL, Jeon J, Gulde R, et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ Sci Technol 2014; 48(4): 2097-8.
[http://dx.doi.org/10.1021/es5002105] [PMID: 24476540]
[76]
Noble C, Weihe Dalsgaard P, Stybe Johansen S, Linnet K. Application of a screening method for fentanyl and its analogues using UHPLC-QTOF-MS with data-independent acquisition (DIA) in MSE mode and retrospective analysis of authentic forensic blood samples. Drug Test Anal 2018; 10(4): 651-62.
[http://dx.doi.org/10.1002/dta.2263] [PMID: 28834382]
[77]
Meyer MR, Maurer HH. Current applications of high-resolution mass spectrometry in drug metabolism studies. Anal Bioanal Chem 2012; 403(5): 1221-31.
[http://dx.doi.org/10.1007/s00216-012-5807-z] [PMID: 22349341]
[78]
Peters FT, Meyer MR. In vitro approaches to studying the metabolism of new psychoactive compounds. Drug Test Anal 2011; 3(7-8): 483-95.
[http://dx.doi.org/10.1002/dta.295] [PMID: 21671427]
[79]
Peters FT, Maurer HH. Bioanalytical method validation and its implications for forensic and clinical toxicology - A review. Accredit Qual Assur 2002; 7(11): 441-9.
[http://dx.doi.org/10.1007/s00769-002-0516-5]
[80]
Peters FT, Drummer OH, Musshoff F. Validation of new methods. Forensic Sci Int 2007; 165(2-3): 216-24.
[http://dx.doi.org/10.1016/j.forsciint.2006.05.021] [PMID: 16781833]
[81]
Wille SMR, Peters FT, Di Fazio V, Samyn N. Practical aspects concerning validation and quality control for forensic and clinical bioanalytical quantitative methods. Accredit Qual Assur 2011; 16(6): 279-92.
[http://dx.doi.org/10.1007/s00769-011-0775-0]
[82]
Wille SMR, Coucke W, De Baere T, Peters FT. Update of standard practices for new method validation in forensic toxicology. Curr Pharm Des 2017; 23(36): 5442-54.
[PMID: 28714407]
[83]
Partridge E, Trobbiani S, Stockham P, Charlwood C, Kostakis C. A case study involving U-47700, diclazepam and flubromazepam-application of retrospective analysis of HRMS data. J Anal Toxicol 2018; 42(9): 655-60.
[http://dx.doi.org/10.1093/jat/bky039] [PMID: 29945197]
[84]
Wissenbach DK, Meyer MR, Remane D, Philipp AA, Weber AA, Maurer HH. Drugs of abuse screening in urine as part of a metabolite-based LC-MSn screening concept. Anal Bioanal Chem 2011; 400(10): 3481-9.
[http://dx.doi.org/10.1007/s00216-011-5032-1] [PMID: 21533799]
[85]
Wissenbach DK, Meyer MR, Remane D, Weber AA, Maurer HH. Development of the first metabolite-based LC-MS(n) urine drug screening procedure-exemplified for antidepressants. Anal Bioanal Chem 2011; 400(1): 79-88.
[http://dx.doi.org/10.1007/s00216-010-4398-9] [PMID: 21079926]
[86]
Bonfiglio R, King RC, Olah TV, Merkle K. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun Mass Spectrom 1999; 13(12): 1175-85.
[http://dx.doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1175:AID-RCM639>3.0.CO;2-0] [PMID: 10407294]
[87]
Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 2003; 75(13): 3019-30.
[http://dx.doi.org/10.1021/ac020361s] [PMID: 12964746]
[88]
Rogers CA, Stockham PC, Nash CM, Martin SM, Kostakis C, Lenehan CE. An alternative approach for assessment of liquid chromatography-mass spectrometry matrix effects using auto-sampler programmed co-injection. Anal Bioanal Chem 2016; 408(8): 2009-17.
[http://dx.doi.org/10.1007/s00216-015-9278-x] [PMID: 26781099]
[89]
Maurer HH, Kraemer T, Kratzsch C, Peters FT, Weber AA. Negative ion chemical ionization gas chromatography-mass spectrometry and atmospheric pressure chemical ionization liquid chromatography-mass spectrometry of low-dosed and/or polar drugs in plasma. Ther Drug Monit 2002; 24(1): 117-24.
[http://dx.doi.org/10.1097/00007691-200202000-00019] [PMID: 11805732]
[90]
Kirkup L, Frenkel RB. An Introduction to Uncertainty in Measurement: Using the GUM (Guide to the Expression of Uncertainty in Measurement). Cambridge: Cambridge University Press 2006.
[http://dx.doi.org/10.1017/CBO9780511755538]
[91]
ISO/IEC Guide 98-3 2008(E): Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). International Organization for Standardization. 2018. Available from:. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
[93]
Camirand Lemyre F, Desharnais B, Laquerre J, et al. Qualitative threshold method validation and uncertainty evaluation: A theoretical framework and application to a 40 analytes liquid chromatography-tandem mass spectrometry method. Drug Test Anal 2020; 12(9): 1287-97.
[http://dx.doi.org/10.1002/dta.2867] [PMID: 32476284]
[94]
Pulido A, Ruisánchez I, Boqué R, Rius FX. Uncertainty of results in routine qualitative analysis. Trends Analyt Chem 2003; 22(9): 647-54.
[http://dx.doi.org/10.1016/S0165-9936(03)01104-X]
[95]
Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ 1994; 308(6943): 1552.
[http://dx.doi.org/10.1136/bmj.308.6943.1552] [PMID: 8019315]
[96]
Lehotay SJ, Sapozhnikova Y, Mol HGJ. Current issues involving screening and identification of chemical contaminants in foods by mass spectrometry. Trends Analyt Chem 2015; 69: 62-75.
[http://dx.doi.org/10.1016/j.trac.2015.02.012]
[97]
Gondim CS, Coelho OA, Alvarenga RL, Junqueira RG, de Souza SV. An appropriate and systematized procedure for validating qualitative methods: Its application in the detection of sulfonamide residues in raw milk. Anal Chim Acta 2014; 830: 11-22.
[http://dx.doi.org/10.1016/j.aca.2014.04.050] [PMID: 24856507]
[98]
Desharnais B, Lajoie MJ, Laquerre J, Mireault P, Skinner CD. A threshold LC-MS/MS method for 92 analytes in oral fluid collected with the Quantisal® device. Forensic Sci Int 2020; 317, 110506.
[http://dx.doi.org/10.1016/j.forsciint.2020.110506] [PMID: 33035929]
[99]
Goodman SN. Introduction to Bayesian methods I: Measuring the strength of evidence. Clin Trials 2005; 2: 282-90.
[100]
Woldegebriel M, Gonsalves J, van Asten A, Vivó-Truyols G. Robust bayesian algorithm for targeted compound screening in forensic toxicology. Anal Chem 2016; 88(4): 2421-30.
[http://dx.doi.org/10.1021/acs.analchem.5b04484] [PMID: 26768508]
[101]
ANSI/ASB Standard 054: Standard for a Quality Control Program in Forensic Toxicology Laboratories. 1st edition. American National Standards Institute (ANSI)/American Academy of Forensic Sciences Standards Board (ASB). 2018. Available from:. https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy