Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Electrochemiluminescence Sensor based on Electrospun Crosslinked Carbon Nanofibers for the Detection of Difenidol Hydrochloride

Author(s): Hao Cheng, Xuenuan Li, Tianhao Li, Tingfan Tang and Danfeng Qin*

Volume 26, Issue 6, 2023

Published on: 26 December, 2022

Page: [1149 - 1156] Pages: 8

DOI: 10.2174/1386207325666220524093530

Price: $65

Abstract

Background: Cross-linked porous carbon nanofibers (CNF) were successfully prepared by electrospinning and high-temperature carbonization. Polyacrylonitrile (PAN) as the carbon source and genipin as the cross-linking agent were used to prepare cross-linked porous carbon nanofibers (CNF).

Materials and Methods: The field emission scanning electron microscopy (SEM), transmission electron microscope (TEM), automatic specific surface and porosity analyzer Brunner Emmet Teller (BET), X-ray diffraction (XRD), and a laser confocal microspectroscope (Raman, XploRA PLUS, Horiba) were used to characterize the materials. The CNF suspension was dropped on the surface of the bare glassy carbon electrode by the drip coating method to obtain a CNF-modified electrode. Cyclic voltammetry was used to study the electrochemiluminescence behavior of difenidol hydrochloride on CNF-modified glassy carbon electrode (Glassy Carbon Electrode, GCE).

Results and Discussion: Herein, we synthesised a kind of crosslinked carbon nanofibers and designed a novel ECL biosensor. Under the optimal conditions, the concentration of difenidol hydrochloride exhibited a linear relationship with the peak current in the range of 8.0×10-8 to 1.0×10-4 mol/L, with the correlation coefficient of R2=0.997, and a low detection limit (1.2×10-8 mol/L). Difenidol hydrochloride in difenidol hydrochloride tablets was tested, and the recovery rate of sample addition was estimated to be 83.17%-92.17%, and the RSD value to be <5.0%. The designed platform exhibited excellent analytical performance for difenidol hydrochloride determination.

Keywords: Genipin , Crosslinking agent, CNF, Electrochemiluminescence, Ru(bpy)32+, Difenidol hydrochloride

Graphical Abstract

[1]
Varoli, L.; Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Bedini, A.; Fazio, N.; Spampinato, S. Diphenidol-related diamines as novel muscarinic M4 receptor antagonists. Bioorg. Med. Chem. Lett., 2008, 18(9), 2972-2976.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.061] [PMID: 18395442]
[2]
Yong, Y.L.; Guo, B.Y.; Cai, Z.Y. Determination of the difenidol hydrochloride in its tablets by microfluidic chip. Guangzhou Chemistry, 2011, 36(02), 1-6.
[3]
Bao, S.J.; Li, C.M.; Zang, J.F. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater., 2008, 18(4), 591-599.
[http://dx.doi.org/10.1002/adfm.200700728]
[4]
Jijing, L.; Jian, C.; Liqing, W. Determination of difenidol hydrochloride by HPLC. Tianjin Pharm., 2009, 5, 4.
[5]
Guo, H.; Cui, X.; Yang, Z. Determination of diphenidol hydrochloride tablets by HPLC. Chin. Pharm. J., 2000, 31(4), 166-167.
[6]
Dong, Y. LC-MS/MS determination of difenidol in human blood and application in law cases. Yaowu Fenxi Zazhi, 2013, 33(7), 1137-1140.
[7]
Yi, Z.; Jiu, ru, L. Determination of diphenidol hydrochloride by post-chemiluminescence reaction. J. J. Analytical Science, 2008, 4, 7.
[8]
Li, W. Determination of amitriptyline hydrochloride tablets and its content uniformity by anionic surfactant titration. Chin. Pharm. J., 1999, 30, 319.
[9]
Wei, Z.; Pan, P.; Hong, F.F.; Cao, Z.; Ji, Y.; Chen, L. A novel approach for efficient fabrication of chitosan nanoparticles-embedded bacterial nanocellulose conduits. Carbohydr. Polym., 2021, 264, 118002.
[http://dx.doi.org/10.1016/j.carbpol.2021.118002] [PMID: 33910735]
[10]
Ye, J.; Xiao, Z.; Gao, L.; Zhang, J.; He, L.; Zhang, H.; Liu, Q.; Yang, G. Assessment of the effects of four crosslinking agents on gelatin hydrogel for myocardial tissue engineering applications. Biomed. Mater., 2021, 16(4), 045026.
[http://dx.doi.org/10.1088/1748-605X/abfff2] [PMID: 33975301]
[11]
Cheng, H.; Zhou, Z.; Li, Y.; Huang, W.; Feng, J.; Tang, T.; Li, L. Electrochemiluminescence sensor based on electrospun three-dimensional carbon nanofibers for the detection of difenidol hydrochloride. Sensors (Basel), 2019, 19(15), 3315-3327.
[http://dx.doi.org/10.3390/s19153315] [PMID: 31357704]
[12]
Cheng, H.; Zhou, Z.; Liu, T. Electro-spinning fabrication of nitrogen, phosphorus co-doped porous carbon nanofiber as an electro-chemiluminescent sensor for the determination of cyproheptadine. RSC Advances, 2020, 10, 23091-23096.
[http://dx.doi.org/10.1039/D0RA02115F]
[13]
Cheng, H.; Zhou, Z.; Qin, D. Electrochemical sensor based on electrospun three-dimensional carbon nanofibers to determine trace levels of Cu(II). Sci. Adv. Mater., 2020, 12(5), 693-700.
[http://dx.doi.org/10.1166/sam.2020.3709]
[14]
Li, Z.; Zhu, M. Detection of pollutants in water bodies: Electrochemical detection or photo-electrochem. Chem. Commun. (Camb.), 2020.
[http://dx.doi.org/10.1039/D0CC05709F]
[15]
Xue, Q.; Sun, J.; Huang, Y.; Zhu, M.; Pei, Z.; Li, H.; Wang, Y.; Li, N.; Zhang, H.; Zhi, C. Recent progress on flexible and wearable supercapacitors. Small, 2017, 13(45), 1701827.
[http://dx.doi.org/10.1002/smll.201701827] [PMID: 28941073]
[16]
Zhang, J.; Qu, L.; Shi, G.; Liu, J.; Chen, J.; Dai, L. N, P‐codoped carbon networks as efficient metal‐free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 2230-2234.
[http://dx.doi.org/10.1002/anie.201510495] [PMID: 26709954]
[17]
Liu, X.; Li, W.; Zeng, T. Sensitive detection of acetaminophen based on N, P-co-doped carbon microspheres modified electrode. J. Electrochem. Soc., 2019, 166(15), B1491-B1496.
[http://dx.doi.org/10.1149/2.0381915jes]
[18]
Afsharan, H.; Navaeipour, F.; Khalilzadeh, B.; Tajalli, H.; Mollabashi, M.; Ahar, M.J.; Rashidi, M.R. Highly sensitive electrochemiluminescence detection of p53 protein using functionalized Ru-silica nanoporous@gold nanocomposite. Biosens. Bioelectron., 2016, 80, 146-153.
[http://dx.doi.org/10.1016/j.bios.2016.01.030] [PMID: 26827144]
[19]
Pan, W.; Liu, Y.; Huang, Y.; Yao, S. Determination of difenidol hydrochloride by capillary electrophoresis with electrochemiluminescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 831(1-2), 17-23.
[http://dx.doi.org/10.1016/j.jchromb.2005.11.020] [PMID: 16364700]
[20]
Xiao, Y.; Xu, Y.; Zhang, K. Coaxial electrospun free-standing and mechanically stable hierarchical porous carbon nanofiber membranes for flexible supercapacitors. Carbon, 2020, 160, 80-87.
[http://dx.doi.org/10.1016/j.carbon.2020.01.017]
[21]
He, Z.; Jiang, Y.; Zhu, J. N-doped carbon coated LiTi2(PO4)3 as superior anode using PANi as carbon and nitrogen bi-sources for aqueous lithium ion battery. Electrochim. Acta, 2018, 279, 279-288.
[http://dx.doi.org/10.1016/j.electacta.2018.05.096]
[22]
He, H.; Gan, Q.; Wang, H. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy, 2018, 44, 217-227.
[http://dx.doi.org/10.1016/j.nanoen.2017.11.077]
[23]
Fereja, T.H.; Kitte, S.A.; Snizhko, D.; Qi, L.; Nsabimana, A.; Liu, Z.; Xu, G. Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescent determination of ethyl formate. Anal. Bioanal. Chem., 2018, 410(26), 6779-6785.
[http://dx.doi.org/10.1007/s00216-018-1275-4] [PMID: 30088032]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy