Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Boosting Anti-tumour Immunity Using Adjuvant Apigenin

Author(s): Jun Huang, Xuedong Chen, Zaoshang Chang, Chuli Xiao* and Masoud Najafi*

Volume 23, Issue 3, 2023

Published on: 20 August, 2022

Page: [266 - 277] Pages: 12

DOI: 10.2174/1871520622666220523151409

Price: $65

Abstract

The interactions and secretions within the tumour have a pivotal role in tumour growth and therapy. Immunosuppressive cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), tumour-associated macrophages (TAMs), and cancer-associated fibroblasts (CAFs) secrete some substances, which can result in the exhaustion of anti-tumour immunity. To stimulate anti-tumour immunity, suppression of the secretion and interactions of immunosuppressive cells, on the other hand, stimulation of proliferation and activation of natural killer (NK) cells and CD8+ T lymphocytes are required. Apigenin is a flavone with anticancer properties. Emerging evidence shows that not only does apigenin modulate cell death pathways in cancer cells but it also can stimulate anti-tumour immune cells to release death signals and suppress the release of tumour-promoting molecules. In this review, we discuss the interactions between apigenin and various cells within the tumour microenvironment (TME). These interactions may enhance anti-tumour immunity to improve the efficiency of anticancer remedies such as immunotherapy.

Keywords: Apigenin, Anti-Tumour Immunity, Tumour Microenvironment (TME), Natural Killer (NK) Cells, Cytotoxic CD8+ T Lymphocytes (CTLs)

[1]
Blankenstein, T. The role of tumor stroma in the interaction between tumor and immune system. Curr. Opin. Immunol., 2005, 17(2), 180-186.
[http://dx.doi.org/10.1016/j.coi.2005.01.008] [PMID: 15766679]
[2]
Fu, X.; Tang, J.; Wen, P.; Huang, Z.; Najafi, M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch. Biochem. Biophys., 2021, 708, 108952.
[http://dx.doi.org/10.1016/j.abb.2021.108952] [PMID: 34097901]
[3]
Liao, Z.; Tan, Z.W.; Zhu, P.; Tan, N.S. Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy. Cell. Immunol., 2019, 343, 103729.
[http://dx.doi.org/10.1016/j.cellimm.2017.12.003] [PMID: 29397066]
[4]
Shiao, S.L.; Coussens, L.M. The tumor-immune microenvironment and response to radiation therapy. J. Mammary Gland Biol. Neoplasia, 2010, 15(4), 411-421.
[http://dx.doi.org/10.1007/s10911-010-9194-9] [PMID: 21161342]
[5]
Kaur, P.; Asea, A. Radiation-induced effects and the immune system in cancer. Front. Oncol., 2012, 2, 191.
[http://dx.doi.org/10.3389/fonc.2012.00191] [PMID: 23251903]
[6]
Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-Associated macrophages in tumor immunity. Front. Immunol., 2020, 11(3151), 583084.
[http://dx.doi.org/10.3389/fimmu.2020.583084] [PMID: 33365025]
[7]
Khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Amini, P.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Targets for protection and mitigation of radiation injury. Cell. Mol. Life Sci., 2020, 77(16), 3129-3159.
[http://dx.doi.org/10.1007/s00018-020-03479-x] [PMID: 32072238]
[8]
Wu, Z.; Zhang, C.; Najafi, M. Targeting of the tumor immune microenvironment by metformin. J. Cell Communicat. Signal., 2022, 16(3), 333-348.
[http://dx.doi.org/10.1007/s12079-021-00648-w]
[9]
Mu, Q.; Najafi, M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int. Immunopharmacol., 2021, 98, 107895.
[http://dx.doi.org/10.1016/j.intimp.2021.107895] [PMID: 34171623]
[10]
Fu, X.; He, Y.; Li, M.; Huang, Z.; Najafi, M. Targeting of the tumor microenvironment by curcumin. Biofactors, 2021, 47(6), 914-932.
[http://dx.doi.org/10.1002/biof.1776] [PMID: 34375483]
[11]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radio-therapy: Therapy perspectives. Int. Immunoph., 2020, 87, 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[12]
Ahmed, S.A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A.B. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci., 2021, 267, 118814.
[http://dx.doi.org/10.1016/j.lfs.2020.118814] [PMID: 33333052]
[13]
Lee, S.H.; Ryu, J.K.; Lee, K-Y.; Woo, S.M.; Park, J.K.; Yoo, J.W.; Kim, Y-T.; Yoon, Y.B. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett., 2008, 259(1), 39-49.
[http://dx.doi.org/10.1016/j.canlet.2007.09.015] [PMID: 17967505]
[14]
Banerjee, K.; Mandal, M. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells. Redox Biol., 2015, 5, 153-162.
[http://dx.doi.org/10.1016/j.redox.2015.04.009] [PMID: 25965143]
[15]
Horinaka, M.; Yoshida, T.; Shiraishi, T.; Nakata, S.; Wakada, M.; Sakai, T. The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol. Cancer Ther., 2006, 5(4), 945-951.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0431] [PMID: 16648565]
[16]
Piantelli, M.; Rossi, C.; Iezzi, M.; La Sorda, R.; Iacobelli, S.; Alberti, S.; Natali, P.G. Flavonoids inhibit melanoma lung metastasis by impairing tumor cells endothelium interactions. J. Cell. Physiol., 2006, 207(1), 23-29.
[http://dx.doi.org/10.1002/jcp.20510] [PMID: 16222712]
[17]
Jameel, Q.Y.; Mohammed, N.K. Protective rules of natural antioxidants against gamma-induced damage-A review. Food Sci. Nutr., 2021, 9(9), 5263-5278.
[http://dx.doi.org/10.1002/fsn3.2469] [PMID: 34532033]
[18]
Ali, F.; Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H.; Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review. Int. J. Food Prop., 2017, 20(6), 1197-1238.
[http://dx.doi.org/10.1080/10942912.2016.1207188]
[19]
Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep., 2017, 3(6), 423-446.
[http://dx.doi.org/10.1007/s40495-017-0113-2] [PMID: 29399439]
[20]
Patel, D.; Shukla, S.; Gupta, S. Apigenin and cancer chemoprevention: progress, potential and promise (review). Int. J. Oncol., 2007, 30(1), 233-245.
[http://dx.doi.org/10.3892/ijo.30.1.233] [PMID: 17143534]
[21]
Shukla, S.; Gupta, S. Apigenin: a promising molecule for cancer prevention. Pharm. Res., 2010, 27(6), 962-978.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[22]
Wang, E.; Chen, F.; Hu, X.; Yuan, Y. Protective effects of apigenin against furan-induced toxicity in mice. Food Funct., 2014, 5(8), 1804-1812.
[http://dx.doi.org/10.1039/C4FO00038B] [PMID: 24914499]
[23]
Chen, L.; Zhao, W. Apigenin protects against bleomycin-induced lung fibrosis in rats. Exp. Ther. Med., 2016, 11(1), 230-234.
[http://dx.doi.org/10.3892/etm.2015.2885] [PMID: 26889245]
[24]
Zhang, X.; Wang, G.; Gurley, E.C.; Zhou, H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One, 2014, 9(9), e107072.
[http://dx.doi.org/10.1371/journal.pone.0107072] [PMID: 25192391]
[25]
Ashrafizadeh, M.; Bakhoda, M.R.; Bahmanpour, Z.; Ilkhani, K.; Zarrabi, A.; Makvandi, P.; Khan, H.; Mazaheri, S.; Darvish, M.; Mirzaei, H. Apigenin as tumor suppressor in cancers: Biotherapeutic activity, nanodelivery, and mechanisms with emphasis on pancreatic cancer. Front Chem., 2020, 8, 829.
[http://dx.doi.org/10.3389/fchem.2020.00829] [PMID: 33195038]
[26]
Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[27]
Meyer, H.; Bolarinwa, A.; Wolfram, G.; Linseisen, J. Bioavailability of apigenin from apiin-rich parsley in humans. Ann. Nutr. Metab., 2006, 50(3), 167-172.
[http://dx.doi.org/10.1159/000090736] [PMID: 16407641]
[28]
Chen, J.; Lin, H.; Hu, M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J. Pharmacol. Exp. Ther., 2003, 304(3), 1228-1235.
[http://dx.doi.org/10.1124/jpet.102.046409] [PMID: 12604700]
[29]
DeRango-Adem, E.F.; Blay, J. Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Front. Pharmacol., 2021, 12(1196), 681477.
[http://dx.doi.org/10.3389/fphar.2021.681477] [PMID: 34084146]
[30]
Tong, J.; Shen, Y.; Zhang, Z.; Hu, Y.; Zhang, X.; Han, L. Apigenin inhibits epithelial-mesenchymal transition of human colon cancer cells through NF-κB/Snail signaling pathway. Bios. Rep., 2019, 39(5)
[31]
Ai, X.Y.; Qin, Y.; Liu, H.J.; Cui, Z.H.; Li, M.; Yang, J.H.; Zhong, W.L.; Liu, Y.R.; Chen, S.; Sun, T.; Zhou, H.G.; Yang, C. Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling. Oncotarget, 2017, 8(59), 100216-100226.
[http://dx.doi.org/10.18632/oncotarget.22145] [PMID: 29245972]
[32]
Kim, B-K.; Cho, A-R.; Park, D-J. Enhancing oral bioavailability using preparations of apigenin-loaded W/O/W emulsions: in vitro and in vivo evaluations. Food Chem., 2016, 206, 85-91.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.052] [PMID: 27041302]
[33]
Telange, D.R.; Patil, A.T.; Pethe, A.M.; Fegade, H.; Anand, S.; Dave, V.S. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur. J. Pharm. Sci., 2017, 108, 36-49.
[http://dx.doi.org/10.1016/j.ejps.2016.12.009] [PMID: 27939619]
[34]
Zhai, Y.; Guo, S.; Liu, C.; Yang, C.; Dou, J.; Li, L.; Zhai, G. Preparation and in vitro evaluation of apigenin-loaded polymeric micelles. Colloids Surf. A Physicochem. Eng. Asp., 2013, 429, 24-30.
[http://dx.doi.org/10.1016/j.colsurfa.2013.03.051]
[35]
Zhang, J.; Huang, Y.; Liu, D.; Gao, Y.; Qian, S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur. J. Pharm. Sci., 2013, 48(4-5), 740-747.
[http://dx.doi.org/10.1016/j.ejps.2012.12.026] [PMID: 23305994]
[36]
Banerjee, K.; Banerjee, S.; Mandal, M. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions. J. Colloid Interface Sci., 2017, 491, 98-110.
[http://dx.doi.org/10.1016/j.jcis.2016.12.025] [PMID: 28012918]
[37]
Yu, C.; Yang, B.; Najafi, M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin. Pharmacol. Toxicol., 2021, 129(6), 397-415.
[http://dx.doi.org/10.1111/bcpt.13648] [PMID: 34473898]
[38]
Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis, 2021, 26(11-12), 561-573.
[http://dx.doi.org/10.1007/s10495-021-01689-7] [PMID: 34561763]
[39]
Huang, J.; Chang, Z.; Lu, Q.; Chen, X.; Najafi, M. Nobiletin as an inducer of programmed cell death in cancer: a review. Apoptosis, 2022.
[http://dx.doi.org/10.1007/s10495-022-01721-4] [PMID: 35312885]
[40]
Taghavi Bahreghani, M.; Geraily, G.H.; Alizadeh, S.H.; Najafi, M.; Shirazi, A. Apigenin Enhanced Radiation-Induced Apoptosis/Necrosis by Sensitization of LNCaP Prostate Cancer Cells to 6 MV Photon Beams. Cell J., 2021, 23(7), 730-735.
[PMID: 34979061]
[41]
Begum, N.; Prasad, N.R.; Kanimozhi, G.; Hasan, A.Q. Apigenin ameliorates gamma radiation-induced cytogenetic alterations in cultured human blood lymphocytes. Mutat. Res., 2012, 747(1), 71-76.
[http://dx.doi.org/10.1016/j.mrgentox.2012.04.001] [PMID: 22516036]
[42]
Begum, N.; Prasad, N.R.; Thayalan, K. Apigenin protects gamma-radiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(1), 45.
[http://dx.doi.org/10.4103/2231-0738.93134]
[43]
Sharma, N.K. Modulation of radiation-induced and mitomycin C-induced chromosome damage by apigenin in human lymphocytes in vitro. J. Radiat. Res. (Tokyo), 2013, 54(5), 789-797.
[http://dx.doi.org/10.1093/jrr/rrs117] [PMID: 23764456]
[44]
Rithidech, K.N.; Tungjai, M.; Whorton, E.B. Protective effect of apigenin on radiation-induced chromosomal damage in human lymphocytes. Mutat. Res., 2005, 585(1-2), 96-104.
[http://dx.doi.org/10.1016/j.mrgentox.2005.04.003] [PMID: 15886050]
[45]
Begum, N.; Rajendra Prasad, N.; Kanimozhi, G.; Agilan, B. Apigenin prevents gamma radiation-induced gastrointestinal damages by modulating inflammatory and apoptotic signalling mediators. Nat. Prod. Res., 2022, 36(6), 1631-1635.
[http://dx.doi.org/10.1080/14786419.2021.1893316] [PMID: 33673794]
[46]
Wu, Q.; Li, W.; Zhao, J.; Sun, W.; Yang, Q.; Chen, C.; Xia, P.; Zhu, J.; Zhou, Y.; Huang, G.; Yong, C.; Zheng, M.; Zhou, E.; Gao, K. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed. Pharm., 2021, 137, 111308.
[http://dx.doi.org/10.1016/j.biopha.2021.111308] [PMID: 33556877]
[47]
Goudarzi, M.; Kalantar, M.; Sadeghi, E.; Karamallah, M.H.; Kalantar, H. Protective effects of apigenin on altered lipid peroxidation, inflammation, and antioxidant factors in methotrexate-induced hepatotoxicity. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(3), 523-531.
[http://dx.doi.org/10.1007/s00210-020-01991-2] [PMID: 33057777]
[48]
Mu, Q.; Najafi, M. Modulation of the tumor microenvironment (TME) by melatonin. Eur. J. Pharmacol., 2021, 907, 174365.
[http://dx.doi.org/10.1016/j.ejphar.2021.174365] [PMID: 34302814]
[49]
Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst., 2007, 99(19), 1441-1454.
[http://dx.doi.org/10.1093/jnci/djm135] [PMID: 17895480]
[50]
Li, M.; Knight, D.A.; A Snyder, L.; Smyth, M.J.; Stewart, T.J. A role for CCL2 in both tumor progression and immunosurveillance. OncoImmunology, 2013, 2(7), e25474.
[http://dx.doi.org/10.4161/onci.25474] [PMID: 24073384]
[51]
Hao, Q.; Vadgama, J.V.; Wang, P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun. Signal., 2020, 18(1), 82.
[http://dx.doi.org/10.1186/s12964-020-00589-8] [PMID: 32471499]
[52]
Korbecki, J.; Kojder, K.; Simińska, D.; Bohatyrewicz, R.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. CC chemokines in a tumor: A review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int. J. Mol. Sci., 2020, 21(21), E8412.
[http://dx.doi.org/10.3390/ijms21218412] [PMID: 33182504]
[53]
Czernek, L.; Düchler, M. Functions of cancer-derived extracellular vesicles in immunosuppression. Arch. Immunol. Ther. Exp. (Warsz.), 2017, 65(4), 311-323.
[http://dx.doi.org/10.1007/s00005-016-0453-3] [PMID: 28101591]
[54]
Rong, L.; Li, R.; Li, S.; Luo, R. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol. Lett., 2016, 11(1), 500-504.
[http://dx.doi.org/10.3892/ol.2015.3841] [PMID: 26870240]
[55]
Yi, M.; Xu, L.; Jiao, Y.; Luo, S.; Li, A.; Wu, K. The role of cancer-derived microRNAs in cancer immune escape. J. Hematol. Oncol., 2020, 13(1), 25.
[http://dx.doi.org/10.1186/s13045-020-00848-8] [PMID: 32222150]
[56]
Ashrafizadeh, M.; Farhood, B.; Musa, E.A.; Taeb, S.; Najafi, M. Damage-associated molecular patterns in tumor radiotherapy. Int. Immunopharmacol., 2020, 86, 106761.
[http://dx.doi.org/10.1016/j.intimp.2020.106761] [PMID: 32629409]
[57]
Gajewski, T.F.; Meng, Y.; Blank, C.; Brown, I.; Kacha, A.; Kline, J.; Harlin, H. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev., 2006, 213(1), 131-145.
[http://dx.doi.org/10.1111/j.1600-065X.2006.00442.x] [PMID: 16972901]
[58]
Hazlehurst, L.A.; Landowski, T.H.; Dalton, W.S. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene, 2003, 22(47), 7396-7402.
[http://dx.doi.org/10.1038/sj.onc.1206943] [PMID: 14576847]
[59]
Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev., 2018, 32(19-20), 1267-1284.
[http://dx.doi.org/10.1101/gad.314617.118] [PMID: 30275043]
[60]
Mocellin, S.; Wang, E.; Marincola, F.M. Cytokines and immune response in the tumor microenvironment. J. Immunother., 2001, 24(5), 392-407.
[http://dx.doi.org/10.1097/00002371-200109000-00002]
[61]
Gardner, A.; Ruffell, B. Dendritic cells and cancer immunity. Trends Immunol., 2016, 37(12), 855-865.
[http://dx.doi.org/10.1016/j.it.2016.09.006] [PMID: 27793569]
[62]
Witz, I.P. Tumor-microenvironment interactions: dangerous liaisons. Adv. Cancer Res., 2008, 100, 203-229.
[http://dx.doi.org/10.1016/S0065-230X(08)00007-9] [PMID: 18620097]
[63]
Yu, D-L.; Lou, Z-P.; Ma, F-Y.; Najafi, M. The interactions of paclitaxel with tumour microenvironment. Int. Immunopharmacol., 2022, 105, 108555.
[http://dx.doi.org/10.1016/j.intimp.2022.108555] [PMID: 35121223]
[64]
Bruno, A.; Focaccetti, C.; Pagani, A.; Imperatori, A.S.; Spagnoletti, M.; Rotolo, N.; Cantelmo, A.R.; Franzi, F.; Capella, C.; Ferlazzo, G.; Mortara, L.; Albini, A.; Noonan, D.M. The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia, 2013, 15(2), 133-142.
[http://dx.doi.org/10.1593/neo.121758] [PMID: 23441128]
[65]
Duan, M.-C.; Zhong, X.-N.; Liu, G.-N.; Wei, J.-R. The Treg/Th17 paradigm in lung cancer. J. immunol. Res., 2014.
[66]
Ben-Baruch, A. Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res., 2003, 5(1), 31-36.
[http://dx.doi.org/10.1186/bcr554] [PMID: 12559043]
[67]
Bauer, D.; Redmon, N.; Mazzio, E.; Soliman, K.F. Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One, 2017, 12(4), e0175558.
[http://dx.doi.org/10.1371/journal.pone.0175558] [PMID: 28441391]
[68]
Wang, L.; Kuang, L.; Hitron, J.A.; Son, Y-O.; Wang, X.; Budhraja, A.; Lee, J-C.; Pratheeshkumar, P.; Chen, G.; Zhang, Z.; Luo, J.; Shi, X. Apigenin suppresses migration and invasion of transformed cells through down-regulation of C-X-C chemokine receptor 4 expression. Toxicol. Appl. Pharmacol., 2013, 272(1), 108-116.
[http://dx.doi.org/10.1016/j.taap.2013.05.028] [PMID: 23743303]
[69]
Bauer, D.; Mazzio, E.; Hilliard, A.; Oriaku, E.T.; Soliman, K.F.A. Effect of apigenin on whole transcriptome profile of TNFα-activated MDA-MB-468 triple negative breast cancer cells. Oncol. Lett., 2020, 19(3), 2123-2132.
[http://dx.doi.org/10.3892/ol.2020.11327] [PMID: 32194710]
[70]
de Mingo Pulido, Á.; Gardner, A.; Hiebler, S.; Soliman, H.; Rugo, H.S.; Krummel, M.F.; Coussens, L.M.; Ruffell, B. TIM-3 regulates CD103+ dendritic cell function and response to chemotherapy in breast cancer. Cancer Cell, 2018, 33(1), 60-74.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.11.019] [PMID: 29316433]
[71]
Zheng, X.; Koropatnick, J.; Chen, D.; Velenosi, T.; Ling, H.; Zhang, X.; Jiang, N.; Navarro, B.; Ichim, T.E.; Urquhart, B.; Min, W. Silencing IDO in dendritic cells: a novel approach to enhance cancer immunotherapy in a murine breast cancer model. Int. J. Cancer, 2013, 132(4), 967-977.
[http://dx.doi.org/10.1002/ijc.27710] [PMID: 22870862]
[72]
Holmgaard, R.B.; Zamarin, D.; Munn, D.H.; Wolchok, J.D.; Allison, J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med., 2013, 210(7), 1389-1402.
[http://dx.doi.org/10.1084/jem.20130066] [PMID: 23752227]
[73]
Li, F.; Sun, Y.; Huang, J.; Xu, W.; Liu, J.; Yuan, Z. CD4/CD8 + T cells, DC subsets, Foxp3, and IDO expression are predictive indictors of gastric cancer prognosis. Cancer Med., 2019, 8(17), 7330-7344.
[http://dx.doi.org/10.1002/cam4.2596] [PMID: 31631566]
[74]
Shang, N.; Figini, M.; Shangguan, J.; Wang, B.; Sun, C.; Pan, L.; Ma, Q.; Zhang, Z. Dendritic cells based immunotherapy. Am. J. Cancer Res., 2017, 7(10), 2091-2102.
[PMID: 29119057]
[75]
Mortezaee, K.; Najafi, M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[76]
Zhou, X.; Wang, F.; Zhou, R.; Song, X.; Xie, M. Apigenin: A current review on its beneficial biological activities. J. Food Biochem., 2017, 41(4), e12376.
[http://dx.doi.org/10.1111/jfbc.12376]
[77]
Ghițu, A.; Schwiebs, A.; Radeke, H.H.; Avram, S.; Zupko, I.; Bor, A.; Pavel, I.Z.; Dehelean, C.A.; Oprean, C.; Bojin, F.; Farcas, C.; Soica, C.; Duicu, O.; Danciu, C. A comprehensive assessment of apigenin as an antiproliferative, proapoptotic, antiangiogenic and immunomodulatory phytocompound. Nutrients, 2019, 11(4), 858.
[http://dx.doi.org/10.3390/nu11040858] [PMID: 30995771]
[78]
Xu, L.; Zhang, Y.; Tian, K.; Chen, X.; Zhang, R.; Mu, X.; Wu, Y.; Wang, D.; Wang, S.; Liu, F.; Wang, T.; Zhang, J.; Liu, S.; Zhang, Y.; Tu, C.; Liu, H. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J. Exp. Clin. Cancer Res., 2018, 37(1), 261.
[http://dx.doi.org/10.1186/s13046-018-0929-6] [PMID: 30373602]
[79]
Martínez-Lostao, L.; Anel, A.; Pardo, J. How do cytotoxic lymphocytes kill cancer cells? Clin. Cancer Res., 2015, 21(22), 5047-5056.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0685] [PMID: 26567364]
[80]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res., 2020, 39(1), 204.
[http://dx.doi.org/10.1186/s13046-020-01709-5] [PMID: 32993787]
[81]
Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci., 2020, 77(9), 1745-1770.
[http://dx.doi.org/10.1007/s00018-019-03351-7] [PMID: 31690961]
[82]
Chuang, C-M.; Monie, A.; Wu, A.; Hung, C-F. Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J. Biomed. Sci., 2009, 16(1), 49.
[http://dx.doi.org/10.1186/1423-0127-16-49] [PMID: 19473507]
[83]
Coombs, M.R.P.; Harrison, M.E.; Hoskin, D.W. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett., 2016, 380(2), 424-433.
[http://dx.doi.org/10.1016/j.canlet.2016.06.023] [PMID: 27378243]
[84]
Yang, P-M.; Chou, C-J.; Tseng, S-H.; Hung, C-F. Bioinformatics and in vitro experimental analyses identify the selective therapeutic potential of interferon gamma and apigenin against cervical squamous cell carcinoma and adenocarcinoma. Oncotarget, 2017, 8(28), 46145-46162.
[http://dx.doi.org/10.18632/oncotarget.17574] [PMID: 28526810]
[85]
Jiang, Z-B.; Wang, W-J.; Xu, C.; Xie, Y-J.; Wang, X-R.; Zhang, Y-Z.; Huang, J-M.; Huang, M.; Xie, C.; Liu, P.; Fan, X-X.; Ma, Y-P.; Yan, P-Y.; Liu, L.; Yao, X-J.; Wu, Q-B.; Lai-Han Leung, E. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett., 2021, 515, 36-48.
[http://dx.doi.org/10.1016/j.canlet.2021.05.019] [PMID: 34052328]
[86]
Villalobos-Ayala, K.; Luongo, J.; Marsh, A.; Areas, J.; Miller, B.; Williamson, T.; Husain, K.; Ghansah, T. Apigenin modulates immune checkpoint molecules in pancreatic cancer enhancing antitumor immunity. J. Immunol., 2020, 204(1 Supplement), 241217.
[87]
Hodge, G.; Barnawi, J.; Jurisevic, C.; Moffat, D.; Holmes, M.; Reynolds, P.N.; Jersmann, H.; Hodge, S. Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-γ by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells. Clin. Exp. Immunol., 2014, 178(1), 79-85.
[http://dx.doi.org/10.1111/cei.12392] [PMID: 24894428]
[88]
Purdy, A.K.; Campbell, K.S. Natural killer cells and cancer: regulation by the killer cell Ig-like receptors (KIR). Cancer Biol. Ther., 2009, 8(23), 2211-2220.
[http://dx.doi.org/10.4161/cbt.8.23.10455] [PMID: 19923897]
[89]
Wu, S-Y.; Fu, T.; Jiang, Y-Z.; Shao, Z-M. Natural killer cells in cancer biology and therapy. Mol. Cancer, 2020, 19(1), 120.
[http://dx.doi.org/10.1186/s12943-020-01238-x] [PMID: 32762681]
[90]
Wolf, K.; Bilal, M.; Schneiderman, S.; Dambaeva, S.; Beaman, K.D. Natural killer cells orchestrate angiogenesis. J. Immunol. 2020, 204(1 Supplement), 235.221.
[91]
Klingemann, H.; Boissel, L.; Toneguzzo, F. Natural killer cells for immunotherapy - advantages of the NK-92 Cell Line over Blood NK Cells. Front. Immunol., 2016, 7, 91.
[http://dx.doi.org/10.3389/fimmu.2016.00091] [PMID: 27014270]
[92]
Aung, M.O.M.H.; Mat Nor, N.; Mohd Adnan, L.H.; Ahmad, N.Z.B.; Septama, A.W.; Nik Nurul Najihah, N.N.N.; Ohn, M.L.; Simbak, N. A.; Hasym, M.; Nor, N.M.; Adnan, L.H.M.; Ahmad, N.Z.B. Effects of apigenin, luteolin, and quercetin on the natural killer (NK-92) cells proliferation: A potential role as immunomodulator. Sains Malays., 2021, 50(3), 821-828.
[http://dx.doi.org/10.17576/jsm-2021-5003-22]
[93]
Shen, Y.; Wei, Y.; Wang, Z.; Jing, Y.; He, H.; Yuan, J.; Li, R.; Zhao, Q.; Wei, L.; Yang, T.; Lu, J. TGF-β regulates hepatocellular carcinoma progression by inducing Treg cell polarization. Cell. Physiol. Biochem., 2015, 35(4), 1623-1632.
[http://dx.doi.org/10.1159/000373976] [PMID: 25824460]
[94]
Ohue, Y.; Nishikawa, H.; Regulatory, T. Regulatory T. (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci., 2019, 110(7), 2080-2089.
[http://dx.doi.org/10.1111/cas.14069] [PMID: 31102428]
[95]
Massari, F.; Santoni, M.; Ciccarese, C.; Santini, D.; Alfieri, S.; Martignoni, G.; Brunelli, M.; Piva, F.; Berardi, R.; Montironi, R.; Porta, C.; Cascinu, S.; Tortora, G. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat. Rev., 2015, 41(2), 114-121.
[http://dx.doi.org/10.1016/j.ctrv.2014.12.013] [PMID: 25586601]
[96]
Villalobos-Ayala, K.; Ortiz Rivera, I.; Alvarez, C.; Husain, K.; DeLoach, D.; Krystal, G.; Hibbs, M.L.; Jiang, K.; Ghansah, T. Apigenin increases SHIP-1 expression, promotes tumoricidal macrophages and anti-tumor immune responses in murine pancreatic cancer. Cancers (Basel), 2020, 12(12), E3631.
[http://dx.doi.org/10.3390/cancers12123631] [PMID: 33291556]
[97]
Georgopoulos, K.; Winandy, S.; Avitahl, N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu. Rev. Immunol., 1997, 15(1), 155-176.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.155] [PMID: 9143685]
[98]
Nelson, N.; Szekeres, K.; Iclozan, C.; Rivera, I.O.; McGill, A.; Johnson, G.; Nwogu, O.; Ghansah, T. Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One, 2017, 12(2), e0170197.
[http://dx.doi.org/10.1371/journal.pone.0170197] [PMID: 28152014]
[99]
Khaled, Y.S.; Ammori, B.J.; Elkord, E. Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol. Cell Biol., 2013, 91(8), 493-502.
[http://dx.doi.org/10.1038/icb.2013.29] [PMID: 23797066]
[100]
Groth, C.; Hu, X.; Weber, R.; Fleming, V.; Altevogt, P.; Utikal, J.; Umansky, V. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer, 2019, 120(1), 16-25.
[http://dx.doi.org/10.1038/s41416-018-0333-1] [PMID: 30413826]
[101]
de Haas, N.; de Koning, C.; Spilgies, L.; de Vries, I.J.M.; Hato, S.V. Improving cancer immunotherapy by targeting the STATe of MDSCs. OncoImmunology, 2016, 5(7), e1196312.
[http://dx.doi.org/10.1080/2162402X.2016.1196312] [PMID: 27622051]
[102]
Cassetta, L.; Pollard, J.W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug Discov., 2018, 17(12), 887-904.
[http://dx.doi.org/10.1038/nrd.2018.169] [PMID: 30361552]
[103]
Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J. Cell. Physiol., 2019, 234(10), 17187-17204.
[http://dx.doi.org/10.1002/jcp.28504] [PMID: 30912132]
[104]
Trebec-Reynolds, D.P.; Voronov, I.; Heersche, J.N.; Manolson, M.F. VEGF-A expression in osteoclasts is regulated by NF-kappaB induction of HIF-1α. J. Cell. Biochem., 2010, 110(2), 343-351.
[PMID: 20432243]
[105]
Kew, R.R.; Penzo, M.; Habiel, D.M.; Marcu, K.B. The IKKα-dependent NF-κB p52/RelB noncanonical pathway is essential to sustain a CXCL12 autocrine loop in cells migrating in response to HMGB1. J. Immunol., 2012, 188(5), 2380-2386.
[http://dx.doi.org/10.4049/jimmunol.1102454] [PMID: 22287708]
[106]
Biswas, S.K.; Lewis, C.E. NF-κB as a central regulator of macrophage function in tumors. J. Leukoc. Biol., 2010, 88(5), 877-884.
[http://dx.doi.org/10.1189/jlb.0310153] [PMID: 20573802]
[107]
Mazel, M.; Jacot, W.; Pantel, K.; Bartkowiak, K.; Topart, D.; Cayrefourcq, L.; Rossille, D.; Maudelonde, T.; Fest, T.; Alix-Panabières, C. Frequent expression of PD-L1 on circulating breast cancer cells. Mol. Oncol., 2015, 9(9), 1773-1782.
[http://dx.doi.org/10.1016/j.molonc.2015.05.009] [PMID: 26093818]
[108]
Shi, Y. Regulatory mechanisms of PD-L1 expression in cancer cells. Cancer Immunol. Immunother., 2018, 67(10), 1481-1489.
[http://dx.doi.org/10.1007/s00262-018-2226-9] [PMID: 30120503]
[109]
Wang, J.C.; Xu, Y.; Huang, Z.M.; Lu, X.J. T cell exhaustion in cancer: Mechanisms and clinical implications. J. Cell. Biochem., 2018, 119(6), 4279-4286.
[http://dx.doi.org/10.1002/jcb.26645] [PMID: 29274296]
[110]
Geyer, M.B.; Brentjens, R.J. Review: Current clinical applications of chimeric antigen receptor (CAR) modified T cells. Cytotherapy, 2016, 18(11), 1393-1409.
[http://dx.doi.org/10.1016/j.jcyt.2016.07.003] [PMID: 27592405]
[111]
Stevens, D.; Ingels, J.; Van Lint, S.; Vandekerckhove, B.; Vermaelen, K. Dendritic cell-based immunotherapy in lung cancer. Front. Immunol., 2021, 11(3881), 620374.
[http://dx.doi.org/10.3389/fimmu.2020.620374] [PMID: 33679709]
[112]
Ashrafizadeh, M.; Farhood, B.; Musa, E.A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[113]
Banstola, A.; Jeong, J.-H.; Yook, S. Immunoadjuvants for cancer immunotherapy: a review of recent developments. Acta Biomaterial, 2020, 114, 16-30. https://www.sciencedirect.com/science/article/pii/S174270612030461X?via%3Dihub
[PMID: 32777293]
[114]
Kong, X.; Lu, P.; Liu, C.; Guo, Y.; Yang, Y.; Peng, Y.; Wang, F.; Bo, Z.; Dou, X.; Shi, H.; Meng, J. A combination of PD-1/PD-L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review). Mol. Med. Rep., 2021, 23(5), 362.
[http://dx.doi.org/10.3892/mmr.2021.12001] [PMID: 33760188]
[115]
Page, D.B.; Bear, H.; Prabhakaran, S.; Gatti-Mays, M.E.; Thomas, A.; Cobain, E.; McArthur, H.; Balko, J.M.; Gameiro, S.R.; Nanda, R.; Gulley, J.L.; Kalinsky, K.; White, J.; Litton, J.; Chmura, S.J.; Polley, M-Y.; Vincent, B.; Cescon, D.W.; Disis, M.L.; Sparano, J.A.; Mittendorf, E.A.; Adams, S. Two may be better than one: PD-1/PD-L1 blockade combination approaches in metastatic breast cancer. NPJ Breast Cancer, 2019, 5(1), 34.
[http://dx.doi.org/10.1038/s41523-019-0130-x] [PMID: 31602395]
[116]
Zhang, J.Y.; Yan, Y.Y.; Li, J.J.; Adhikari, R.; Fu, L.W. PD-1/PD-L1 based combinational cancer therapy: Icing on the cake. Front. Pharmacol., 2020, 11(722), 722.
[http://dx.doi.org/10.3389/fphar.2020.00722] [PMID: 32528284]
[117]
Chen, C.H.; Wang, T.L.; Hung, C.F.; Yang, Y.; Young, R.A.; Pardoll, D.M.; Wu, T.C. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res., 2000, 60(4), 1035-1042.
[PMID: 10706121]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy