Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis of Novel Substituted Thiazolo Azapurines and Pyrimido Thiazolo Azapurines and Evaluation of their Biological Activities

Author(s): Srikanth Annareddygari*, Venkateshwerreddy Kasireddy, Jayachandra Reddy, Shashidharreddy Shagum and Jyothi Vantikommu

Volume 20, Issue 7, 2023

Published on: 09 September, 2022

Page: [916 - 920] Pages: 5

DOI: 10.2174/1570180819666220523144826

Price: $65

Abstract

Background: Nitrogen-rich heterocycles have occupied a special place in medicinal chemistry due to their exceptional biological activities. In that, thiazolo azapurines and pyrimido thiazolo azapurines are compounds of interest with their medicinal properties.

Objective: The objective is to synthesize novel substituted thiazolo azapurines and pyrimido thiazolo azapurines and evaluate their biological activities.

Methods: Herein, we have demonstrated the efficient synthesis of thiazole fused triazolo[4,5-d]pyrimidin- 7-ones starting from the easily accessible feedstock chemical cyano acetamide. The reaction proceeds under mild reaction conditions with diversified substrate scope.

Results: Notably, the obtained compounds are further derivatized under various sets of conditions to give the corresponding nitrogen-rich tetracyclic core. All synthesized compounds were tested against four pathogenic microorganisms and some of the compounds were found potent with good inhibition.

Conclusion: We have synthesized a diversely substituted nitrogen-rich thiazolo azapurines and pyrimido thiazolo azapurines and evaluated them for their anti-bacterial activity. All synthesized compounds were tested against four pathogenic microorganisms, and some of the compounds were found to be potent with good inhibition.

Keywords: Fused thiazole, azapurines, triazoles, pyrimidine, antibacterial activity, antimycobacterial activity, cyano, acetamide, isopropylazide.

Graphical Abstract

[1]
Santos, C.M.M.; Freitas, M.; Fernandes, E. A comprehensive review on xanthone derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2018, 157, 1460-1479.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.073] [PMID: 30282319]
[2]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.040] [PMID: 30261467]
[3]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Synth. Commun., 2019, 49(19), 2437-2459.
[http://dx.doi.org/10.1080/00397911.2019.1639755]
[4]
Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur. J. Med. Chem., 2017, 142, 179-212.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.033] [PMID: 28760313]
[5]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[6]
Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon–carbon and carbon–heteroatom bond formation reactions under green conditions. Curr. Org. Chem., 2019, 23, 3156-3192.
[7]
Kim, M.H.; Kim, M.; Yu, H.; Kim, H.; Yoo, K.H.; Sim, T.; Hah, J.M. Structure based design and syntheses of amino-1H-pyrazole amide derivatives as selective Raf kinase inhibitors in melanoma cells. Bioorg. Med. Chem., 2011, 19(6), 1915-1923.
[http://dx.doi.org/10.1016/j.bmc.2011.01.067] [PMID: 21353571]
[8]
Al-Suwaidan, I.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; El-Sayed, M.A-A.; Alanazi, A.M.; El-Ashmawy, M.B.; Abdel-Aziz, A-A.M. Antitumor evaluation and molecular docking study of substituted 2-benzylidenebutane-1,3-dione, 2-hydrazonobutane-1,3-dione and trifluoromethyl-1H-pyrazole analogues. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 679-687.
[http://dx.doi.org/10.3109/14756366.2014.960863] [PMID: 25472776]
[9]
Abdel-Aziz, A.A-M.; El-Azab, A.S.; Alanazi, A.M.; Asiri, Y.A.; Al-Suwaidan, I.A.; Maarouf, A.R.; Ayyad, R.R.; Shawer, T.Z. Synthesis and potential antitumor activity of 7-(4-substituted piperazin-1-yl)-4-oxoquinolines based on ciprofloxacin and norfloxacin scaffolds: In silico studies. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 796-809.
[http://dx.doi.org/10.3109/14756366.2015.1069288] [PMID: 26226179]
[10]
Nagender, P.; Malla Reddy, G.; Naresh Kumar, R.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis, cytotoxicity, antimicrobial and anti-biofilm activities of novel pyrazolo[3,4-b]pyridine and pyrimidine functionalized 1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2905-2908.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.084] [PMID: 24835633]
[11]
Hao, Y.; Xu, X.P.; Chen, T.; Zhao, L.L.; Ji, S.J. Multicomponent approaches to 8-carboxylnaphthyl-functionalized pyrazolo[3,4-b]pyridine derivatives. Org. Biomol. Chem., 2012, 10(4), 724-728.
[http://dx.doi.org/10.1039/C1OB06624B] [PMID: 22167248]
[12]
Golubev, A.S.; Starostin, G.S.; Ghunikhin, K.S.; Peregudov, A.S.; Rodygin, K.C.; Rubtsova, S.A.; Slepukhin, P.A.; Kuchin, A.V.; Chkamokov, N.D. Synthesis of new fluorine-containing pyrazolo[3,4-b]pyridinones as promising drug precursors. Russ. Chem. Bull., 2011, 60(4), 733-745.
[http://dx.doi.org/10.1007/s11172-011-0114-y]
[13]
Al-Issa, S.A. Synthesis of a new series of pyridine and fused pyridine derivatives. Molecules, 2012, 17(9), 10902-10915.
[http://dx.doi.org/10.3390/molecules170910902] [PMID: 22968474]
[14]
De Clercq, E. Recent highlights in the development of new antiviral drugs. Curr. Opin. Microbiol., 2005, 8(5), 552-560.
[http://dx.doi.org/10.1016/j.mib.2005.08.010] [PMID: 16125443]
[15]
Eizuru, Y. Development of new antivirals for herpesviruses. Antivir. Chem. Chemother., 2003, 14(6), 299-308.
[http://dx.doi.org/10.1177/095632020301400602] [PMID: 14968936]
[16]
Witherington, J.; Bordas, V.; Garland, S.L.; Hickey, D.M.; Ife, R.J.; Liddle, J.; Saunders, M.; Smith, D.G.; Ward, R.W. 5-arylpyrazolo[3,4-b]pyridines: potent inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg. Med. Chem. Lett., 2003, 13(9), 1577-1580.
[http://dx.doi.org/10.1016/S0960-894X(03)00134-3] [PMID: 12699759]
[17]
de Mello, H.; Echevarria, A.; Bernardino, A.M.R.; Canto-Cavalheiro, M.; Leon, L.L. Antileishmanial pyrazolopyridine derivatives: synthesis and structure-activity relationship analysis. J. Med. Chem., 2004, 47(22), 5427-5432.
[http://dx.doi.org/10.1021/jm0401006] [PMID: 15481980]
[18]
Sharma, K.K.; Maurya, I.K.; Khan, S.I.; Jacob, M.R.; Kumar, V.; Tikoo, K.; Jain, R. Discovery of a membrane-active, ring-modified histidine containing ultrashort amphiphilic peptide that exhibits potent inhibition of cryptococcus neoformans. J. Med. Chem., 2017, 60(15), 6607-6621.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00481] [PMID: 28697301]
[19]
Thamban Chandrika, N.; Shrestha, S.K.; Ngo, H.X.; Tsodikov, O.V.; Howard, K.C.; Garneau-Tsodikova, S. Alkylated piperazines and piperazine-azole hybrids as antifungal agents. J. Med. Chem., 2018, 61(1), 158-173.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01138] [PMID: 29256601]
[20]
Herrera, A.; Martínez-Alvarez, R.; Chioua, R.; Chioua, M. One-pot synthesis of new heterocycles: 2, 4-disubstituted 6, 7-dihydro-5Hbenzo [6, 7] cyclohepta [1, 2-d] pyrimidines. Tetrahedron Lett., 2003, 44(10), 2149-2151.
[http://dx.doi.org/10.1016/S0040-4039(03)00160-6]
[21]
Joseph, B.; Alagille, D.; Mérour, J-Y.; Léonce, S. Synthesis and in vitro cytotoxic evaluation of N-substituted benzo[5,6]cycloheptal[b]indoles. Chem. Pharm. Bull. (Tokyo), 2000, 48(12), 1872-1876.
[http://dx.doi.org/10.1248/cpb.48.1872] [PMID: 11145134]
[22]
Sasaki, K.; Sekiya, Y.; Fujiwara, H.; Ohtomo, H.; Nakayama, T.; Hirota, T. Polycyclic N‐heterocyclic compounds. XLV. Synthesis of 4‐substituted 5, 6‐dihydrobenzo [h] quinazolines and 6, 7‐dihydro‐5Hbenzo [6, 7] cyclohepta [1, 2‐d] pyrimidines and their inhibitory activity on platelet aggregation. J. Heterocycl. Chem., 1993, 30(4), 993-995.
[http://dx.doi.org/10.1002/jhet.5570300426]
[23]
Kassem, A.F.; Abbas, E.M. ; Al‐Qurashi, N.T.; Farghaly, T.A. New azoloazine derivatives as antimicrobial agents: Synthesis under microwave irradiations, structure elucidation, and antimicrobial activity. J. Heterocycl. Chem., 2020, 57(2), 611-620.
[http://dx.doi.org/10.1002/jhet.3792]
[24]
Abd Elhameed, A.A.; El-Gohary, N.S.; El-Bendary, E.R.; Shaaban, M.I.; Bayomi, S.M. Synthesis and biological screening of new thiazolo[4,5-d]pyrimidine and dithiazolo[3,2-a:5′,4′-e]pyrimidinone derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Bioorg. Chem., 2018, 81, 299-310.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.013] [PMID: 30172111]
[25]
Al Safarjalani, O.N.; Zhou, X-J.; Rais, R.H.; Shi, J.; Schinazi, R.F.; Naguib, F.N.; El Kouni, M.H. 5-(Phenylthio)acyclouridine: a powerful enhancer of oral uridine bioavailability: relevance to chemotherapy with 5-fluorouracil and other uridine rescue regimens. Cancer Chemother. Pharmacol., 2005, 55(6), 541-551.
[http://dx.doi.org/10.1007/s00280-004-0967-y] [PMID: 15729584]
[26]
Spácilová, L.; Dzubák, P.; Hajdúch, M.; Krupková, S.; Hradil, P.; Hlavác, J. Synthesis and cytotoxic activity of various 5-[alkoxy-(4-nitro-phenyl)-methyl]-uracils in their racemic form. Bioorg. Med. Chem. Lett., 2007, 17(23), 6647-6650.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.022] [PMID: 17935983]
[27]
Rizk, S.A.; El-Naggar, A.M.; El-Badawy, A.A. Synthesis, spectroscopic characterization and computational chemical study of 5-cyano-2-thiouracil derivatives as potential antimicrobial agents. J. Mol. Struct., 2018, 1155, 720-733.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.066]
[28]
Gomha, S.M.; Mohamed, A.M.; Zaki, Y.H.; Ewies, M.M.; Elroby, S.A. Structural elucidation and antimicrobial evaluation of novel [1, 2, 4] Triazolo [4, 3‐a] pyrimidines and Pyrido [2, 3‐d][1, 2, 4] triazolo [4, 3‐a] pyrimidinones. J. Heterocycl. Chem., 2018, 55(5), 1147-1156.
[http://dx.doi.org/10.1002/jhet.3146]
[29]
Abbas, I.M.; Abdallah, M.A.; Gomha, S.M.; Kazem, M.S. Synthesis and antimicrobial activity of novel azolopyrimidines and pyrido-triazolo-pyrimidinones incorporating pyrazole moiety. J. Heterocycl. Chem., 2017, 54(6), 3447-3457.
[http://dx.doi.org/10.1002/jhet.2968]
[30]
Havlicek, L.; Fuksova, K.; Krystof, V.; Orsag, M.; Vojtesek, B.; Strnad, M. 8-Azapurines as new inhibitors of cyclin-dependent kinases. Bioorg. Med. Chem., 2005, 13(18), 5399-5407.
[http://dx.doi.org/10.1016/j.bmc.2005.06.007] [PMID: 15993080]
[31]
Chou, S-Y.; Yin, W-K.; Chung, Y-S.; Chang, L-S.; Liu, C-W.; Chen, S-F.; Shih, K-S. Kilogram-scale synthesis of a highly selective α1-adrenoceptor antagonist (DL-028A). Org. Process Res. Dev., 2002, 6(3), 273-278.
[http://dx.doi.org/10.1021/op0100807]

© 2024 Bentham Science Publishers | Privacy Policy