Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Medicinal Importance, Pharmacological Activities, and Analytical Aspects of Engeletin in Medicine: Therapeutic Benefit Through Scientific Data Analysis

Author(s): Dinesh Kumar Patel

Volume 23, Issue 3, 2023

Published on: 21 October, 2022

Page: [273 - 282] Pages: 10

DOI: 10.2174/1871530322666220520162251

Price: $65

Abstract

Background: Phytochemicals belonging to the class of flavonoids have been used in medicine for the treatment of different kinds of human health complications. Flavonoids have beneficial health aspects in medicine mainly due to their anti-microbial, anti-diabetic, anti-inflammatory, anticancer, and anti-carcinogenic activities. They have been scientifically investigated for their health benefit and pharmacological activities in medicine. Engeletin is a pure flavanonol class phytocompound present in the skin of white grapes and white wine. Engeletin has numerous pharmacological activities in medicine.

Methods: In order to know the beneficial health aspects of engeletin in medicine, scientific data on engeletin have been collected from different literature sources and analyzed in the present work. The present work summarized the important findings of engeletin with respect to its medicinal uses, pharmacological activities, and analytical aspects in medicine. All the scientific data were collected from PubMed, Google, Scopus, Science Direct and Google Scholar and analyzed in the present work.

Results: Scientific data analysis of research works revealed the biological importance and therapeutic benefit of engeletin in medicine. Engeletin has attracted scientific attention mainly due to its antiinflammatory and anti-tumor potential. Engeletin could inhibit the occurrence of cervical cancer and delay the development of liver damage and lung cancer in mice. Engeletin was found to inhibit lipopolysaccharides- induced endometritis in mice by inhibiting the inflammatory response. Pharmacological data analysis revealed the therapeutic importance of engeletin against acute lung injury, inflammatory diseases, liver injury, pulmonary fibrogenesis, Alzheimer’s disease, endometritis, cervical carcinogenesis, lung cancer, and osteoarthritis. Analytical data signified the importance of modern analytical tools for separating, isolating, and identifying engeletin.

Conclusion: Scientific data analysis revealed the biological importance and therapeutic benefit of engeletin in medicine and other allied health sectors.

Keywords: Engeletin, Flavanonol, Anti-inflammatory, Endometritis, Cervical cancer, Liver damage, Phytoconstituents

Graphical Abstract

[1]
Rameshkumar, M.R.; Indu, P.; Arunagirinathan, N.; Venkatadri, B.; El-Serehy, H.A.; Ahmad, A. Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA-dependent RNA polymerase and spike proteins: A molecular docking study. Saudi J. Biol. Sci., 2021, 28(1), 448-458.
[http://dx.doi.org/10.1016/j.sjbs.2020.10.028] [PMID: 33110386]
[2]
Orief, Y.I.; Farghaly, N.F.; Ibrahim, M.I.A. Use of herbal medicines among pregnant women attending family health centers in Alexandria. Middle East Fertil. Soc. J., 2014, 19(1), 42-50.
[http://dx.doi.org/10.1016/j.mefs.2012.02.007]
[3]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Pat. Antiinfect. Drug Discov., 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[4]
Singh, B.; Sahu, P.M.; Sharma, R.A. Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II. Cytotechnology, 2017, 69(1), 103-115.
[http://dx.doi.org/10.1007/s10616-016-0041-8] [PMID: 27905025]
[5]
Orhan, D.D.; Ozçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res., 2010, 165(6), 496-504.
[http://dx.doi.org/10.1016/j.micres.2009.09.002] [PMID: 19840899]
[6]
Yuan, Y.; Wang, N.; Zhu, F.; Shen, M.; Chen, K. Exploration of the protein targets and function mechanism of tricetin based on surface plasmon resonance and reverse molecular docking. Front. Drug Chem. Clin. Res. (Alex.), 2019, 2, 1-9.
[7]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[8]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[9]
Firenzuoli, F.; Gori, L. Herbal medicine today: Clinical and research issues. Evid. Based Complement. Alternat. Med., 2007, 4(Suppl. 1), 37-40.
[http://dx.doi.org/10.1093/ecam/nem096] [PMID: 18227931]
[10]
Patel, K.; Jain, A.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. J. Acute Dis., 2013, 2(3), 169-178.
[http://dx.doi.org/10.1016/S2221-6189(13)60123-7]
[11]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[12]
Zima, V.; Radilová, K.; Kožíšek, M.; Albiñana, C.B.; Karlukova, E.; Brynda, J.; Fanfrlík, J.; Flieger, M.; Hodek, J.; Weber, J.; Majer, P.; Konvalinka, J.; Machara, A. Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors. Eur. J. Med. Chem., 2020, 208, 112754.
[http://dx.doi.org/10.1016/j.ejmech.2020.112754] [PMID: 32883638]
[13]
Xiang, Y.; Liu, S.; Yang, J.; Wang, Z.; Zhang, H.; Gui, C. Investigation of the interactions between flavonoids and human organic anion transporting polypeptide 1B1 using fluorescent substrate and 3D-QSAR analysis. Biochim. Biophys. Acta Biomembr., 2020, 1862(5), 183210.
[http://dx.doi.org/10.1016/j.bbamem.2020.183210] [PMID: 32006472]
[14]
Zha, J.; Wu, X.; Gong, G.; Koffas, M.A.G. Pathway enzyme engineering for flavonoid production in recombinant microbes. Metab. Eng. Commun., 2019, 9, e00104.
[http://dx.doi.org/10.1016/j.mec.2019.e00104] [PMID: 31720219]
[15]
Yu, M.; Wang, B.; Qi, Z.; Xin, G.; Li, W. Response surface method was used to optimize the ultrasonic assisted extraction of flavonoids from Crinum asiaticum. Saudi J. Biol. Sci., 2019, 26(8), 2079-2084.
[http://dx.doi.org/10.1016/j.sjbs.2019.09.018] [PMID: 31889798]
[16]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[17]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[18]
Bhati, S.; Kaushik, V.; Singh, J. Rational design of flavonoid based potential inhibitors targeting SARS-CoV 3CL protease for the treatment of COVID-19. J. Mol. Struct., 2021, 1237, 130380.
[http://dx.doi.org/10.1016/j.molstruc.2021.130380] [PMID: 33840835]
[19]
Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci., 2018, 25(8), 1622-1631.
[http://dx.doi.org/10.1016/j.sjbs.2016.08.001] [PMID: 30591779]
[20]
Jiang, X.; Chen, L.; Zhang, Z.; Sun, Y.; Wang, X.; Wei, J. Protective and therapeutic effects of engeletin on LPS-induced acute lung injury. Inflammation, 2018, 41(4), 1259-1265.
[http://dx.doi.org/10.1007/s10753-018-0773-z] [PMID: 29704150]
[21]
Wang, C.; La, L.; Feng, H.; Yang, Q.; Wu, F.; Wang, C.; Wu, J.; Hou, L.; Hou, C.; Liu, W. Aldose reductase inhibitor engeletin suppresses pelvic inflammatory disease by blocking the phospholipase C/protein kinase C-dependent/NF-κB and MAPK cascades. J. Agric. Food Chem., 2020, 68(42), 11747-11757.
[http://dx.doi.org/10.1021/acs.jafc.0c05102] [PMID: 33047600]
[22]
Wu, H.; Zhao, G.; Jiang, K.; Li, C.; Qiu, C.; Deng, G. Engeletin alleviates lipopolysaccharide-induced endometritis in mice by inhibiting TLR4-mediated NF-κB activation. J. Agric. Food Chem., 2016, 64(31), 6171-6178.
[http://dx.doi.org/10.1021/acs.jafc.6b02304] [PMID: 27411287]
[23]
Tian, Q.; Wang, G.; Zhang, Y.; Zhang, F.; Yang, L.; Liu, Z.; Shen, Z. Engeletin inhibits Lipopolysaccharide/d-galactosamine-induced liver injury in mice through activating PPAR-γ. J. Pharmacol. Sci., 2019, 140(3), 218-222.
[http://dx.doi.org/10.1016/j.jphs.2019.06.011] [PMID: 31473044]
[24]
Kaur, A.; Gupta, V.; Christopher, A.F.; Malik, M.A.; Bansal, P. Nutraceuticals in prevention of cataract - An evidence based approach. Saudi J. Ophthalmol., 2017, 31(1), 30-37.
[http://dx.doi.org/10.1016/j.sjopt.2016.12.001] [PMID: 28337060]
[25]
Li, Y; Liu, X; Zhou, H; Li, B; Mazurenko, IK Inhibitory mechanism of engeletin against α-glucosidase. Nat Prod Commun, 2021, 16, 1934578X2098672.
[http://dx.doi.org/10.1177/1934578X20986723]
[26]
Liu, T.; Li, Y.; Sun, J.; Tian, G.; Shi, Z. Engeletin suppresses lung cancer progression by inducing apoptotic cell death through modulating the XIAP signaling pathway: A molecular mechanism involving ER stress. Biomed. Pharmacother., 2020, 128, 110221.
[http://dx.doi.org/10.1016/j.biopha.2020.110221] [PMID: 32447208]
[27]
Shen, K.; Li, R.; Zhang, X.; Qu, G.; Li, R.; Wang, Y.; Liu, B.; Lv, C.; Li, M.; Song, X. Acetyl oxygen benzoate engeletin ester promotes KLF4 degradation leading to the attenuation of pulmonary fibrosis via inhibiting TGFβ1-smad/p38MAPK-lnc865/lnc556-miR-29b-2-5p-STAT3 signal pathway. Aging (Albany NY), 2021, 13(10), 13807-13821.
[http://dx.doi.org/10.18632/aging.202975] [PMID: 33929970]
[28]
Zhang, J.; Chen, X.; Chen, H.; Li, R.; Xu, P.; Lv, C.; Liu, B.; Song, X. Engeletin ameliorates pulmonary fibrosis through endoplasmic reticulum stress depending on lnc949-mediated TGF-β1-Smad2/3 and JNK signalling pathways. Pharm. Biol., 2020, 58(1), 1114-1123.
[http://dx.doi.org/10.1080/13880209.2020.1834590]
[29]
Wang, H.; Jiang, Z.; Pang, Z.; Qi, G.; Hua, B.; Yan, Z.; Yuan, H. Engeletin protects against TNF-α-induced apoptosis and reactive oxygen species generation in chondrocytes and alleviates osteoarthritis in vivo. J. Inflamm. Res., 2021, 14, 745-760.
[http://dx.doi.org/10.2147/JIR.S297166] [PMID: 33727849]
[30]
Chen, T; Li, J; Cao, J; Xu, Q; Komatsu, K; Namba, T. A new flavanone isolated from Rhizoma Smilacis Glabrae and the structural requirements of its derivatives for preventing immunological hepatocyte damage. Planta Med, 1999, 65, 056-9.
[http://dx.doi.org/10.1055/s-1999-13963]
[31]
Huang, Z.; Ji, H.; Shi, J.; Zhu, X.; Zhi, Z. engeletin attenuates aβ1-42-induced oxidative stress and neuroinflammation by Keap1/Nrf2 pathway. Inflammation, 2020, 43(5), 1759-1771.
[http://dx.doi.org/10.1007/s10753-020-01250-9] [PMID: 32445069]
[32]
Huang, H.; Cheng, Z.; Shi, H.; Xin, W.; Wang, T.T.Y.; Yu, L.L. Isolation and characterization of two flavonoids, engeletin and astilbin, from the leaves of Engelhardia roxburghiana and their potential anti-inflammatory properties. J. Agric. Food Chem., 2011, 59(9), 4562-4569.
[http://dx.doi.org/10.1021/jf2002969] [PMID: 21476602]
[33]
Zhao, X.; Chen, R.; Shi, Y.; Zhang, X.; Tian, C.; Xia, D. Antioxidant and anti-inflammatory activities of six flavonoids from Smilax glabra Roxb. Molecules, 2020, 25(22), 5295.
[http://dx.doi.org/10.3390/molecules25225295] [PMID: 33202848]
[34]
Ruangnoo, S.; Jaiaree, N.; Makchuchit, S.; Panthong, S.; Thongdeeying, P.; Itharat, A. An in vitro inhibitory effect on RAW 264.7 cells by anti-inflammatory compounds from smilax corbularia Kunth. Asian Pac. J. Allergy Immunol., 2012, 30(4), 268-274.
[PMID: 23393906]
[35]
Bai, H.; Yin, H. Engeletin suppresses cervical carcinogenesis in vitro and in vivo by reducing NF-κB-dependent signaling. Biochem. Biophys. Res. Commun., 2020, 526(2), 497-504.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.091] [PMID: 32241545]
[36]
Wirasathien, L.; Pengsuparp, T.; Suttisri, R.; Ueda, H.; Moriyasu, M.; Kawanishi, K. Inhibitors of aldose reductase and advanced glycation end-products formation from the leaves of Stelechocarpus cauliflorus R.E. Fr. Phytomedicine, 2007, 14(7-8), 546-550.
[http://dx.doi.org/10.1016/j.phymed.2006.09.001] [PMID: 17084603]
[37]
Itharat, A.; Srikwan, K.; Ruangnoo, S.; Thongdeeying, P. Anti-allergic activities of smilax Glabra rhizome extracts and its isolated compounds. J. Med. Assoc. Thai., 2015, 98(Suppl. 3), S66-S74.
[38]
Chang, T-T.; Huang, H-J.; Lee, K-J.; Yu, H.W.; Chen, H-Y.; Tsai, F-J.; Sun, M.F.; Chen, C.Y. Key features for designing phosphodiesterase-5 inhibitors. J. Biomol. Struct. Dyn., 2010, 28(3), 309-321.
[http://dx.doi.org/10.1080/07391102.2010.10507361] [PMID: 20919747]
[39]
Ye, W.; Chen, R.; Sun, W.; Huang, C.; Lin, X.; Dong, Y.; Wen, C.; Wang, X. Determination and pharmacokinetics of engeletin in rat plasma by ultra-high performance liquid chromatography with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1060, 144-149.
[http://dx.doi.org/10.1016/j.jchromb.2017.06.018] [PMID: 28622617]
[40]
Xie, J.; Li, L.; Shi, Y.; Chen, R.; Liu, G.; Wang, M.; Zheng, M.; Zhang, N. Simultaneous ultra-performance liquid chromatography-tandem mass spectrometry determination of six components in rat plasma after oral administration of Smilacis glabrae Roxb. extract. Biomed. Chromatogr., 2019, 33(12), e4680.
[http://dx.doi.org/10.1002/bmc.4680] [PMID: 31415097]
[41]
Peng, X.; Yu, J.; Yu, Q.; Bian, H.; Huang, F.; Liang, H. Binding of engeletin with bovine serum albumin: Insights from spectroscopic investigations. J. Fluoresc., 2012, 22(1), 511-519.
[http://dx.doi.org/10.1007/s10895-011-0985-1] [PMID: 21947612]
[42]
Liang, G.; Nie, Y.; Chang, Y.; Zeng, S.; Liang, C.; Zheng, X.; Xiao, D.; Zhan, S.; Zheng, Q. Protective effects of Rhizoma Smilacis Glabrae extracts on potassium oxonate- and monosodium urate-induced hyperuricemia and gout in mice. Phytomedicine, 2019, 59, 152772.
[http://dx.doi.org/10.1016/j.phymed.2018.11.032] [PMID: 31005813]
[43]
Feng, H.; He, Y.; La, L.; Hou, C.; Song, L.; Yang, Q.; Wu, F.; Liu, W.; Hou, L.; Li, Y.; Wang, C.; Li, Y. The flavonoid-enriched extract from the root of Smilax china L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway. J. Ethnopharmacol., 2020, 256, 112785.
[http://dx.doi.org/10.1016/j.jep.2020.112785] [PMID: 32222576]
[44]
Zhang, Q-F.; Guo, Y-X.; Zheng, G.; Wang, W-J. Chemical constituents comparison between Rhizoma Smilacis Glabrae and Rhizoma Smilacis Chinae by HPLC-DAD-MS/MS. Nat. Prod. Res., 2013, 27(3), 277-281.
[http://dx.doi.org/10.1080/14786419.2012.666747] [PMID: 22400809]
[45]
Xu, S.; Shang, M.Y.; Liu, G.X.; Xu, F.; Li, F.C.; Wang, X.; Cai, S.Q. Simultaneous determination of seven bioactive constituents in Smilacis glabrae Rhizoma by high-performance liquid chromatography. Zhongguo Zhongyao Zazhi, 2015, 40(3), 469-479.
[PMID: 26084172]
[46]
Xu, Y.; Liang, J-Y.; Zou, Z-M. Studies on chemical constituents of rhizomes of Smilax china. Zhongguo Zhongyao Zazhi, 2008, 33(21), 2497-2499.
[PMID: 19149257]
[47]
Xu, J.; Li, X.; Zhang, P.; Li, Z-L.; Wang, Y. Antiinflammatory constituents from the roots of Smilax bockii warb. Arch. Pharm. Res., 2005, 28(4), 395-399.
[http://dx.doi.org/10.1007/BF02977667] [PMID: 15918511]
[48]
Guo, W.; Dong, H.; Wang, D.; Yang, B.; Wang, X.; Huang, L. Separation of seven polyphenols from the rhizome of Smilax glabra by offline two dimension recycling HSCCC with extrusion mode. Molecules, 2018, 23(2), 505.
[http://dx.doi.org/10.3390/molecules23020505] [PMID: 29495285]
[49]
Shao, B.; Guo, H.Z.; Cui, Y.J.; Liu, A.H.; Yu, H.L.; Guo, H.; Xu, M.; Guo, D.A. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography. J. Pharm. Biomed. Anal., 2007, 44(3), 737-742.
[http://dx.doi.org/10.1016/j.jpba.2007.03.008] [PMID: 17475435]
[50]
Dai, W.; Zhao, W.; Gao, F.; Shen, J.; Lv, D.; Qi, Y.; Fan, G. Simultaneous chemical fingerprint and quantitative analysis of Rhizoma smilacis glabrae by accelerated solvent extraction and high-performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci., 2015, 38(9), 1466-1475.
[http://dx.doi.org/10.1002/jssc.201401189] [PMID: 25678068]
[51]
Yang, A.; Guo, X. Chemical constituents of rhizomes of Smilax ferox. Zhongguo Zhongyao Zazhi, 2010, 35(17), 2293-2295.
[PMID: 21137341]
[52]
Jiang, S-Y.; Song, X-Y.; Zhang, D-D.; Li, Z-L.; Yang, Y-Y.; Luo, X-Y.; Ye, X.C. Spectrum-effect relationship between UPLC fingerprint of Smilax china and anti-pelvic inflammation in rats. Zhongguo Zhongyao Zazhi, 2019, 44(15), 3323-3329.
[PMID: 31602890]
[53]
Wungsintaweekul, B.; Umehara, K.; Miyase, T.; Noguchi, H. Estrogenic and anti-estrogenic compounds from the Thai medicinal plant, Smilax corbularia (Smilacaceae). Phytochemistry, 2011, 72(6), 495-502.
[http://dx.doi.org/10.1016/j.phytochem.2010.12.018] [PMID: 21315392]
[54]
Li, Y-P.; Li, Y-H.; Zhong, J-D.; Li, R-T. Antioxidant phenolic glycoside and flavonoids from Pieris japonica. J. Asian Nat. Prod. Res., 2013, 15(8), 875-879.
[http://dx.doi.org/10.1080/10286020.2013.803475] [PMID: 23796053]
[55]
Du, H.Z.; He, X.C.; Nong, H.; Dong, L.S.; Chen, H.B.; Cai, J.; Li, M. UPLC and HPLC analysis on contents of astilbin and engeletin in dong medicine “sunl gaems” of Guizhou origin by QAMS. Zhongguo Zhongyao Zazhi, 2015, 40(15), 3115-3120.
[PMID: 26677720]
[56]
Pacheco, A.G.M.; Branco, A.; Câmara, C.A.; Silva, T.M.S.; Silva, T.M.G.; de Oliveira, A.P. Identification of flavonoids in Hymenaea martiana Hayne (Fabaceae) by HPLC-DAD-MSn analysis. Nat. Prod. Res., 2019, 1-6.
[PMID: 31592691]
[57]
Zhang, Q-F.; Fu, Y-J.; Huang, Z-W.; Shangguang, X-C.; Guo, Y-X. Aqueous stability of astilbin: Effects of pH, temperature, and solvent. J. Agric. Food Chem., 2013, 61(49), 12085-12091.
[http://dx.doi.org/10.1021/jf404420s] [PMID: 24255970]
[58]
Negm, W.A.; Abo El-Seoud, K.A.; Kabbash, A.; Kassab, A.A.; El-Aasr, M. Hepatoprotective, cytotoxic, antimicrobial and antioxidant activities of Dioon spinulosum leaves Dyer Ex Eichler and its isolated secondary metabolites. Nat. Prod. Res., 2020, 1-11.
[PMID: 32643403]
[59]
Wei, J.; Zhang, Y.; Li, D.; Xie, T.; Li, Y.; Li, J.; Chen, X.; Wei, G. Integrating network pharmacology and component analysis study on anti-atherosclerotic mechanisms of total flavonoids of Engelhardia roxburghiana leaves in mice. Chem. Biodivers., 2020, 17(3), e1900629.
[http://dx.doi.org/10.1002/cbdv.201900629] [PMID: 31943763]
[60]
Chen, L.; Chen, H.; Lu, Y.; Han, L.; Wang, S.; Liu, M.; Li, X.; Zhao, J.; Lu, C.; Li, S. Decoding active components in a formulation of multiple herbs for treatment of psoriasis based on three cell lines fishing and liquid chromatography-mass spectrometry analysis. J. Pharm. Biomed. Anal., 2020, 186, 113331.
[http://dx.doi.org/10.1016/j.jpba.2020.113331] [PMID: 32380350]
[61]
Gu, W-Y.; Li, N.; Leung, E.L-H.; Zhou, H.; Yao, X-J.; Liu, L.; Wu, J.L. Rapid identification of new minor chemical constituents from Smilacis glabrae Rhizoma by combined use of UHPLC-Q-TOF-MS, preparative HPLC and UHPLC-SPE-NMR-MS techniques. Phytochem. Anal., 2015, 26(6), 428-435.
[http://dx.doi.org/10.1002/pca.2577] [PMID: 26183111]
[62]
Su, B-N.; Cuendet, M.; Hawthorne, M.E.; Kardono, L.B.S.; Riswan, S.; Fong, H.H.S.; Mehta, R.G.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of the bark and twigs of Artocarpus dadah with cyclooxygenase inhibitory activity. J. Nat. Prod., 2002, 65(2), 163-169.
[http://dx.doi.org/10.1021/np010451c] [PMID: 11858749]
[63]
Nguyen, K.H.; Ta, T.N.; Pham, T.H.M.; Nguyen, Q.T.; Pham, H.D.; Mishra, S.; Nyomba, B.L. Nuciferine stimulates insulin secretion from beta cells-an in vitro comparison with glibenclamide. J. Ethnopharmacol., 2012, 142(2), 488-495.
[http://dx.doi.org/10.1016/j.jep.2012.05.024] [PMID: 22633982]
[64]
Zhang, Q-F.; Cheung, H-Y.; Zeng, L-B. Development of HPLC fingerprint for species differentiation and quality assessment of Rhizoma smilacis Glabrae. J. Nat. Med., 2013, 67(1), 207-211.
[http://dx.doi.org/10.1007/s11418-012-0648-9] [PMID: 22382863]
[65]
Shi, H.; Liu, M.; Wang, R.; Gao, B.; Zhang, Z.; Niu, Y.; Yu, L.L. Separating four diastereomeric pairs of dihydroflavonol glycosides from Engelhardia roxburghiana using high performance counter-current chromatography. J. Chromatogr. A, 2015, 1383, 79-87.
[http://dx.doi.org/10.1016/j.chroma.2015.01.024] [PMID: 25620740]
[66]
Chamkha, M.; Cathala, B.; Cheynier, V.; Douillard, R. Phenolic composition of champagnes from Chardonnay and Pinot Noir vintages. J. Agric. Food Chem., 2003, 51(10), 3179-3184.
[http://dx.doi.org/10.1021/jf021105j] [PMID: 12720412]
[67]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[68]
Karker, M.; Falleh, H.; Msaada, K.; Smaoui, A.; Abdelly, C.; Legault, J.; Ksouri, R. Antioxidant, anti-inflammatory and anticancer activities of the medicinal halophyte Reaumuria vermiculata. EXCLI J., 2016, 15, 297-307.
[PMID: 27298615]
[69]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[70]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[71]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[72]
Messaadia, L.; Bekkar, Y.; Benamira, M.; Lahmar, H. Predicting the antioxidant activity of some flavonoids of Arbutus plant: A theoretical approach. Chem. Phys. Impact, 2020, 1, 100007.
[http://dx.doi.org/10.1016/j.chphi.2020.100007]
[73]
Patel, D.K. Medicinal importance of flavonoid “Eupatorin” in the health sectors: Therapeutic benefit and pharmacological activities through scientific data analysis. Curr. Chinese Sci., 2021, 1(6), 629-638.
[http://dx.doi.org/10.2174/2210298101666210804141644]
[74]
Patel, D.K. Therapeutic potential of poncirin against numerous human health complications: Medicinal uses and therapeutic benefit of an active principle of citrus species. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1974-1981.
[http://dx.doi.org/10.2174/1871530321666210108122924] [PMID: 33423654]
[75]
Moulishankar, A.; Lakshmanan, K. Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data Brief, 2020, 29, 105243.
[http://dx.doi.org/10.1016/j.dib.2020.105243] [PMID: 32072001]
[76]
Gutiérrez-Venegas, G.; Gómez-Mora, J.A.; Meraz-Rodríguez, M.A.; Flores-Sánchez, M.A.; Ortiz-Miranda, L.F. Effect of flavonoids on antimicrobial activity of microorganisms present in dental plaque. Heliyon, 2019, 5(12), e03013.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03013] [PMID: 31886429]
[77]
Huang, X.; Li, W.; Zhang, X. Flavonoid scutellarin positively regulates root length through NUTCRACKER. Plant Divers., 2020, 43(3), 248-254.
[http://dx.doi.org/10.1016/j.pld.2020.08.001] [PMID: 34195510]
[78]
Mowbray, M.; Savage, T.; Wu, C.; Song, Z.; Cho, B.A.; Del Rio-Chanona, E.A.; Zhang, D. Machine learning for biochemical engineering: A review. Biochem. Eng. J., 2021, 172, 108054.
[http://dx.doi.org/10.1016/j.bej.2021.108054]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy