Abstract
Background: The M-CAMPTM (Microbiome Computational Analysis for Multi-omic Profiling) Cloud Platform was designed to provide users with an easy-to-use web interface to access best in class microbiome analysis tools. This interface allows bench scientists to conduct bioinformatic analysis on their samples and then download publication-ready graphics and reports.
Objective: In this study, we aim to describe the M-CAMPTM platform and demonstrate that the taxonomic classification is more accurate than previously described methods on a wide range of microbiome samples.
Methods: The core pipeline of the platform is the 16S-seq taxonomic classification algorithm which provides species-level classification of Illumina 16s sequencing. This algorithm uses a novel approach combining alignment and kmer-based taxonomic classification methodologies to produce a highly accurate and comprehensive profile. Additionally, a comprehensive proprietary database combining reference sequences from multiple sources was curated and contained 18056 unique V3-V4 sequences covering 11527 species.
Results and Discussion: The M-CAMPTM 16S taxonomic classification algorithm evaluated 52 sequencing samples from both public and in-house standard sample mixtures with known fractions. The same evaluation process was also performed on 5 well-known 16S taxonomic classification algorithms, including Qiime2, Kraken2, Mapseq, Idtaxa and Spingo, using the same dataset. Results have been discussed in terms of evaluation metrics and classified taxonomic levels.
Conclusion: Compared to current popular publicly accessible classification algorithms, M-CAMPTM 16S taxonomic classification algorithm provides the most accurate species-level classification of 16S rRNA sequencing data.
Keywords: Microbiology, 16S-seq, DNA sequencing, Bioinformatics, Web Application, Benchmarking
[http://dx.doi.org/10.1126/science.1093857] [PMID: 15001713]
[http://dx.doi.org/10.1038/nature02340] [PMID: 14961025]
[http://dx.doi.org/10.1038/s41586-019-1237-9] [PMID: 31142855]
[http://dx.doi.org/10.1038/s41586-019-1236-x] [PMID: 31142858]
[http://dx.doi.org/10.1038/s41591-019-0450-2] [PMID: 31142849]
[http://dx.doi.org/10.1128/mr.51.2.221-271.1987] [PMID: 2439888]
[http://dx.doi.org/10.3390/biom11040530] [PMID: 33918473]
[http://dx.doi.org/10.1038/nmeth.f.303] [PMID: 20383131]
[http://dx.doi.org/10.1186/gb-2014-15-3-r46] [PMID: 24580807]
[http://dx.doi.org/10.1093/bioinformatics/btx517] [PMID: 28961926]
[http://dx.doi.org/10.1186/s12859-015-0747-1] [PMID: 26450747]
[http://dx.doi.org/10.1186/s40168-018-0521-5] [PMID: 30092815]
[http://dx.doi.org/10.7717/peerj.2584] [PMID: 27781170]
[http://dx.doi.org/10.3389/fmicb.2017.01587] [PMID: 28868052]
[http://dx.doi.org/10.1128/AEM.03006-05] [PMID: 16820507]
[PMID: 23193283]
[http://dx.doi.org/10.1093/nar/gkt1244] [PMID: 24288368]
[http://dx.doi.org/10.1371/journal.pone.0117617] [PMID: 25658760]
[http://dx.doi.org/10.1371/journal.pone.0185056] [PMID: 29073143]
[http://dx.doi.org/10.1186/s12859-019-2854-x] [PMID: 31077131]
[http://dx.doi.org/10.1186/s13059-019-1891-0] [PMID: 31779668]
[http://dx.doi.org/10.1093/nar/gkv1189] [PMID: 26553804]
[http://dx.doi.org/10.1111/1755-0998.12428] [PMID: 25959493]
[http://dx.doi.org/10.1038/ismej.2011.41] [PMID: 21472016]
[http://dx.doi.org/10.1093/bioinformatics/btw400] [PMID: 27515739]
[http://dx.doi.org/10.1038/s41592-018-0046-7] [PMID: 29967506]
[http://dx.doi.org/10.1038/s41587-019-0209-9] [PMID: 31341288]
[http://dx.doi.org/10.1093/nar/gku1341] [PMID: 25586220]
[PMID: 27980100]
[http://dx.doi.org/10.1038/nbt.3601] [PMID: 27454739]
[http://dx.doi.org/10.1186/s40168-021-01059-0] [PMID: 34006335]
[http://dx.doi.org/10.1186/s12864-019-6413-7] [PMID: 31898477]
[http://dx.doi.org/10.1093/nar/gkaa568] [PMID: 32633756]
[http://dx.doi.org/10.1186/s12859-020-03667-3] [PMID: 32723290]
[http://dx.doi.org/10.1038/nmeth.4458] [PMID: 28967888]
[http://dx.doi.org/10.1016/j.ygeno.2020.01.017] [PMID: 31987913]
[http://dx.doi.org/10.1021/acs.jproteome.1c00848] [PMID: 34812044]
[http://dx.doi.org/10.1016/j.cell.2019.07.010] [PMID: 31398336]
[http://dx.doi.org/10.1093/molbev/msw046] [PMID: 26921390]
[http://dx.doi.org/10.1097/CM9.0000000000000871] [PMID: 32604176]
[http://dx.doi.org/10.1186/s40168-017-0396-x] [PMID: 29373999]
[http://dx.doi.org/10.1186/gb-2011-12-6-r60] [PMID: 21702898]
[http://dx.doi.org/10.3389/fmicb.2021.670336] [PMID: 34335499]
[http://dx.doi.org/10.1089/omi.2018.0013] [PMID: 29652573]
[http://dx.doi.org/10.3389/fmicb.2019.02407] [PMID: 31708888]
[http://dx.doi.org/10.3389/fped.2019.00518] [PMID: 31921729]
[http://dx.doi.org/10.1093/bioinformatics/btv183] [PMID: 25819674]
[http://dx.doi.org/10.1093/femsec/fiz045] [PMID: 30997495]