Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Perspective

Dephosphorylation Targeting Chimaera (DEPTAC): Targeting Tau Proteins in Tauopathies

Author(s): Andrea Soumbasis, Mohamed A. Eldeeb*, Mohamed A. Ragheb and Cornelia E. Zorca

Volume 23, Issue 3, 2022

Published on: 09 June, 2022

Page: [129 - 132] Pages: 4

DOI: 10.2174/1389203723666220519154229

Abstract

One salient hallmark of neurodegeneration is the accumulation of toxic protein aggregates in neuronal cells. This proteotoxicity culminates in the deterioration of neuronal function. In AD and related tauopathies, the microtubule-associated protein tau becomes hyperphosphorylated. Hyperphosphorylated tau forms neurofibrillary tangles (NFTs) within neurons, which constitute a unique feature of tauopathies, including AD. A recent study has exploited a novel molecular strategy to counteract hyperphosphorylated tau and enhance its degradation. Analogous to the PROTAC methodology, a novel dephosphorylation targeting chimera (DEPTAC) was designed to promote the molecular interaction between tau and phosphatase, which, in turn, augments its degradation. Herein, we briefly discuss this novel finding and its potential therapeutic implications.

Keywords: Protein degradation, protein quality control, Alzheimer's disease, neurodegeneration, tau, taupathies, targeted degradation, phsophorylation.

Next »
[1]
Zhang, X.X.; Tian, Y.; Wang, Z.T.; Ma, Y.H.; Tan, L.; Yu, J.T. The epidemiology of Alzheimer’s Disease modifiable risk factors and pre-vention. J. Prev. Alzheimers Dis., 2021, 8(3), 313-321.
[PMID: 34101789]
[2]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y-C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913] [PMID: 3088567]
[3]
Goedert, M.; Spillantini, M. Neurodegenerative alphasynucleinopathies and tauopathies. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 2006. Elsevier.
[4]
Iqbal, K.; Liu, F.; Gong, C-X. Tau and neurodegenerative disease: The story so far. Nat. Rev. Neurol., 2016, 12(1), 15-27.
[http://dx.doi.org/10.1038/nrneurol.2015.225] [PMID: 26635213]
[5]
Cvijic, M.E.; Sum, C.S.; Alt, A.; Zhang, L. GPCR profiling: From hits to leads and from genotype to phenotype. Drug Discov. Today. Technol., 2015, 18, 30-37.
[http://dx.doi.org/10.1016/j.ddtec.2015.10.005] [PMID: 26723890]
[6]
Schapira, M.; Calabrese, M.F.; Bullock, A.N.; Crews, C.M. Targeted protein degradation: Expanding the toolbox. Nat. Rev. Drug Discov., 2019, 18(12), 949-963.
[http://dx.doi.org/10.1038/s41573-019-0047-y] [PMID: 31666732]
[7]
Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30.
[http://dx.doi.org/10.1002/cbf.3369] [PMID: 30604499]
[8]
Chu, T-T.; Gao, N.; Li, Q-Q.; Chen, P-G.; Yang, X-F.; Chen, Y-X.; Zhao, Y-F.; Li, Y-M. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol., 2016, 23(4), 453-461.
[http://dx.doi.org/10.1016/j.chembiol.2016.02.016] [PMID: 27105281]
[9]
Litersky, J.M.; Johnson, G.V. Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain. J. Biol. Chem., 1992, 267(3), 1563-1568.
[http://dx.doi.org/10.1016/S0021-9258(18)45982-0] [PMID: 1730702]
[10]
Luo, H-B.; Xia, Y-Y.; Shu, X-J.; Liu, Z-C.; Feng, Y.; Liu, X-H.; Yu, G.; Yin, G.; Xiong, Y-S.; Zeng, K.; Jiang, J.; Ye, K.; Wang, X.C.; Wang, J.Z. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc. Natl. Acad. Sci. USA, 2014, 111(46), 16586-16591.
[http://dx.doi.org/10.1073/pnas.1417548111] [PMID: 25378699]
[11]
Bauman, A.L.; Scott, J.D. Kinase- and phosphatase-anchoring proteins: Harnessing the dynamic duo. Nat. Cell Biol., 2002, 4(8), E203-E206.
[http://dx.doi.org/10.1038/ncb0802-e203] [PMID: 12149635]
[12]
Zheng, J.; Tian, N.; Liu, F.; Zhang, Y.; Su, J.; Gao, Y.; Deng, M.; Wei, L.; Ye, J.; Li, H.; Wang, J.Z. A novel dephosphorylation targeting chimera selectively promoting tau removal in tauopathies. Signal Transduct. Target. Ther., 2021, 6(1), 269.
[http://dx.doi.org/10.1038/s41392-021-00669-2] [PMID: 34262014]
[13]
Yamazoe, S.; Tom, J.; Fu, Y.; Wu, W.; Zeng, L.; Sun, C.; Liu, Q.; Lin, J.; Lin, K.; Fairbrother, W.J.; Staben, S.T. Heterobifunctional mole-cules induce dephosphorylation of kinases–a proof of concept study. J. Med. Chem., 2020, 63(6), 2807-2813.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01167] [PMID: 31874036]
[14]
Sontag, E.; Nunbhakdi-Craig, V.; Lee, G.; Bloom, G.S.; Mumby, M.C. Regulation of the phosphorylation state and microtubule-binding activity of Tau by protein phosphatase 2A. Neuron, 1996, 17(6), 1201-1207.
[http://dx.doi.org/10.1016/S0896-6273(00)80250-0] [PMID: 8982166]
[15]
Wang, J-Z.; Gong, C-X.; Zaidi, T.; Grundke-Iqbal, I.; Iqbal, K. Dephosphorylation of Alzheimer paired helical filaments by protein phos-phatase-2A and -2B. J. Biol. Chem., 1995, 270(9), 4854-4860.
[http://dx.doi.org/10.1074/jbc.270.9.4854] [PMID: 7876258]
[16]
Wang, X.; Garvanska, D.H.; Nasa, I.; Ueki, Y.; Zhang, G.; Kettenbach, A.N.; Peti, W.; Nilsson, J.; Page, R. A dynamic charge-charge inter-action modulates PP2A:B56 substrate recruitment. eLife, 2020, 9, e55966.
[http://dx.doi.org/10.7554/eLife.55966] [PMID: 32195664]
[17]
Tracy, T.E.; Gan, L. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. Curr. Opin. Neurobiol., 2018, 51, 134-138.
[http://dx.doi.org/10.1016/j.conb.2018.04.027] [PMID: 29753269]
[18]
Sontag, J-M.; Sontag, E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front. Mol. Neurosci., 2014, 7, 16.
[http://dx.doi.org/10.3389/fnmol.2014.00016] [PMID: 24653673]
[19]
Velazquez, R.; Ferreira, E.; Tran, A.; Turner, E.C.; Belfiore, R.; Branca, C.; Oddo, S. Acute tau knockdown in the hippocampus of adult mice causes learning and memory deficits. Aging Cell, 2018, 17(4), e12775.
[http://dx.doi.org/10.1111/acel.12775] [PMID: 29749079]
[20]
Samra, E.B.; Buhagiar-Labarchède, G.; Machon, C.; Guitton, J.; Onclercq-Delic, R.; Green, M.R.; Alibert, O.; Gazin, C.; Veaute, X.; Amor-Guéret, M. A role for Tau protein in maintaining ribosomal DNA stability and cytidine deaminase-deficient cell survival. Nat. Commun., 2017, 8(1), 1-14.
[http://dx.doi.org/10.1038/s41467-017-00633-1] [PMID: 28232747]
[21]
Dawson, H.N.; Ferreira, A.; Eyster, M.V.; Ghoshal, N.; Binder, L.I.; Vitek, M.P. Inhibition of neuronal maturation in primary hippocampal neurons from τ deficient mice. J. Cell Sci., 2001, 114(Pt 6), 1179-1187.
[http://dx.doi.org/10.1242/jcs.114.6.1179] [PMID: 11228161]
[22]
Chang, C-W.; Evans, M.D.; Yu, X.; Yu, G-Q.; Mucke, L. Tau reduction affects excitatory and inhibitory neurons differently, reduces exci-tation/inhibition ratios, and counteracts network hypersynchrony. Cell Rep., 2021, 37(3), 109855.
[http://dx.doi.org/10.1016/j.celrep.2021.109855] [PMID: 34686344]
[23]
Ittner, A.; Chua, S.W.; Bertz, J.; Volkerling, A.; van der Hoven, J.; Gladbach, A.; Przybyla, M.; Bi, M.; van Hummel, A.; Stevens, C.H.; Ippati, S.; Suh, L.S.; Macmillan, A.; Sutherland, G.; Kril, J.J.; Silva, A.P.; Mackay, J.P.; Poljak, A.; Delerue, F.; Ke, Y.D.; Ittner, L.M. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice. Science, 2016, 354(6314), 904-908.
[http://dx.doi.org/10.1126/science.aah6205] [PMID: 27856911]
[24]
Ittner, A.; Asih, P.R.; Tan, A.R.P.; Prikas, E.; Bertz, J.; Stefanoska, K.; Lin, Y.; Volkerling, A.M.; Ke, Y.D.; Delerue, F.; Ittner, L.M. Re-duction of advanced tau-mediated memory deficits by the MAP kinase p38γ. Acta Neuropathol., 2020, 140(3), 279-294.
[http://dx.doi.org/10.1007/s00401-020-02191-1] [PMID: 32725265]

© 2024 Bentham Science Publishers | Privacy Policy