Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

An Updated Account on Formulations and Strategies for the Treatment of Burn Infection – A Review

Author(s): Mohit Kumar, Syed Mahmood and Uttam Kumar Mandal*

Volume 28, Issue 18, 2022

Published on: 15 July, 2022

Page: [1480 - 1492] Pages: 13

DOI: 10.2174/1381612828666220519145859

Price: $65

conference banner
Abstract

Background: Burn injury is considered one of the critical injuries of the skin. According to WHO (World Health Organization), approximately 3,00,000 deaths are caused each year mainly due to fire burns, with additional deaths attributed to heat and other causes of burn e.g., electric devices, chemical materials, radioactive rays, etc. More than 95% of burn injuries occur in developing countries.

Introduction: Burn injuries have been a prominent topic of discussion in this present era of advancements. Burns is one of the common and devastating forms of trauma. Burn injuries are involved in causing severe damage to skin tissues and various other body parts triggered particularly by fire, blaze, or exposure to chemicals and heated substances. They leave a long-lasting negative impact on the patients in terms of their physical and mental health.

Methods: The various methods and bioactive hydrogels, a viable and widely utilised approach for treating chronic wounds, remain a bottleneck. Many traditional approaches such as woven material, conventional antimicrobial agents, hydrogel sheets, and creams are utilised in wound healing. Nowadays, lipid-based nanoparticles, nanofibres systems, and foam-based formulations heal the wound.

Result: The prepared formulation showed wound healing activity when tested on rat model. The nanofibres containing SSD help in the burn-wound healing study on Male Sprague Dawley (SD) rats. The healing effect on rats was examined by western blot analysis, digital camera observation, and histological analyses.

Conclusion: Burn is also considered the most grievous form of trauma. Nowadays, several large and foambased formulations are used in wound healing, which heals the wound better than previously existing formulations and is less prone to secondary infection. Recently, nanofiber delivery systems have piqued the interest of academics as well as researchers because of its unique advantages and features, which include an extraordinarily high surface to volume ratio, a highly porous structure, and tiny pore size.

Keywords: Microbial agent, wound healing, drug delivery, hydrogel, nanoparticles, nanofibre.

[1]
Shakerimoghaddam A, Razavi D, Rahvar F, et al. Evaluate the effect of zinc oxide and silver nanoparticles on biofilm and icaA gene expression in methicillin-resistant Staphylococcus aureus isolated from burn wound infection. J Burn Care Res 2020; 41(6): 1253-9.
[http://dx.doi.org/10.1093/jbcr/iraa085] [PMID: 32479611]
[2]
Kumar S, Ali W, Verma AK, Pandey A, Rathore S. Epidemiology and mortality of burns in the Lucknow Region, India--a 5 year study. Burns 2013; 39(8): 1599-605.
[http://dx.doi.org/10.1016/j.burns.2013.04.008] [PMID: 23663899]
[3]
Burd DAR. An Epidemiological Study of Hospitalized Burns Patients in Hong Kong. Hong Kong: The Chinese University of Hong Kong 2020.
[4]
Association AB. Burn incidence and treatment in the United States: 2016 Burn Incid Fact Sheet 2016 Available from: https://ameriburn.org/who-we-are/media/burn-incidence-fact-sheet/
[5]
Pruitt BA, Wolf SE, Mason AD. Epidemiological, demographic, and outcome characteristics of burn injury. Total Burn care 2012; 4: 15-45.
[http://dx.doi.org/10.1016/B978-1-4377-2786-9.00003-5]
[6]
Ahrenholz DH, Clayton MC, Solem LD. Burns and wound management. Otolaryngol Clin North Am 1995; 28(5): 1039-55.
[http://dx.doi.org/10.1016/S0030-6665(20)30474-6] [PMID: 8559571]
[7]
Chen G-Y, Chang C-P, Wang P-H. Burn wound and therapeutic challenge. J Chin Med Assoc 2019; 82(10): 748-9.
[http://dx.doi.org/10.1097/JCMA.0000000000000172]
[8]
Laurie CD, Hogan BK, Murray CK, et al. Contribution of bacterial and viral infections to attributable mortality in patients with severe burns An autopsy series burns 2010; 36(6): 773-9.
[9]
Pruitt BA Jr. Reflection: Evolution of the field over seven decades. Surg Clin North Am 2014; 94(4): 721-40.
[http://dx.doi.org/10.1016/j.suc.2014.05.001] [PMID: 25085084]
[10]
Branski LK, Al-Mousawi A, Rivero H, Jeschke MG, Sanford AP, Herndon DN. Emerging infections in burns. Surg Infect (Larchmt) 2009; 10(5): 389-97.
[http://dx.doi.org/10.1089/sur.2009.024] [PMID: 19810827]
[11]
Azzopardi EA, Azzopardi E, Camilleri L, et al. Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis. PLoS One 2014; 9(4): e95042.
[http://dx.doi.org/10.1371/journal.pone.0095042] [PMID: 24751699]
[12]
Issler-Fisher AC, Fakin RM, Fisher OM, et al. Microbiological findings in burn patients treated in a general versus a designated intensive care unit: Effect on length of stay. Burns 2016; 42(8): 1805-18.
[http://dx.doi.org/10.1016/j.burns.2016.06.019] [PMID: 27372144]
[13]
Bang RL, Sharma PN, Sanyal SC, Bang S, Ebrahim MK. Burn septicaemia in Kuwait: Associated demographic and clinical factors. Med Princ Pract 2004; 13(3): 136-41.
[http://dx.doi.org/10.1159/000076952] [PMID: 15073425]
[14]
Norbury W, Herndon DN, Tanksley J, Jeschke MG, Finnerty CC. Infection in Burns. Surg Infect (Larchmt) 2016; 17(2): 250-5.
[http://dx.doi.org/10.1089/sur.2013.134] [PMID: 26978531]
[15]
Singh S, Young A, McNaught C-E. The physiology of wound healing. Surg 2017; 35(9): 473-7.
[16]
Mihai MM, Dima MB, Dima B, et al. Nanomaterials for wound healing and infection control. Materials (Basel) 2019; 12(13): 2176.
[17]
Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev 2018; 127: 46-57.
[http://dx.doi.org/10.1016/j.addr.2017.09.015] [PMID: 28939377]
[18]
Souto EB, Ribeiro AF, Ferreira MI, et al. New nanotechnologies for the treatment and repair of skin burns infections. Int J Mol Sci 2020; 21(2): 393.
[http://dx.doi.org/10.3390/ijms21020393] [PMID: 31936277]
[19]
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123: 33-64.
[http://dx.doi.org/10.1016/j.addr.2017.08.001] [PMID: 28782570]
[20]
Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 2009; 49(10): 1541-9.
[http://dx.doi.org/10.1086/644732] [PMID: 19842981]
[21]
Mertens DM, Jenkins ME, Warden GD. Outpatient burn management. Nurs Clin North Am 1997; 32(2): 343-64.
[PMID: 9115481]
[22]
Hettiaratchy S, Papini R. Initial management of a major burn: II--assessment and resuscitation. BMJ 2004; 329(7457): 101-3.
[http://dx.doi.org/10.1136/bmj.329.7457.101] [PMID: 15242917]
[23]
Waitzman AA, Neligan PC. How to manage burns in primary care. Can Fam Physician 1993; 39: 2394-400.
[PMID: 8268745]
[24]
Wasiak J, Cleland H, Campbell F, et al. Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev 2013; 2013(3): CD002106.
[http://dx.doi.org/10.1002/14651858.CD002106.pub4]
[25]
Kucan JO, Smoot EC. Five percent mafenide acetate solution in the treatment of thermal injuries. J Burn Care Rehabil 1993; 14(2 Pt 1): 158-63.
[http://dx.doi.org/10.1097/00004630-199303000-00006] [PMID: 8501103]
[26]
Norman D. The use of povidone-iodine in superficial partial-thickness burns. Br J Nurs 2003; 12(Sup1): 30-6.
[http://dx.doi.org/10.12968/bjon.2003.12.Sup1.11250]
[27]
Saeidinia A, Keihanian F, Lashkari AP, et al. Partial-thickness burn wounds healing by topical treatment: A randomized controlled com-parison between silver sulfadiazine and centiderm. Medicine (Baltimore) 2017; 96(9): e6168.
[http://dx.doi.org/10.1097/MD.0000000000006168] [PMID: 28248871]
[28]
Jalilimanesh M, Azhdari M, Mirjalili A, Mozaffari MA, Hekmatimoghaddam S. The comparison of clinical and histopathological effects of topical Psyllium (Plantago ovata) powder and silver sulfadiazine on second-degree burn wound healing in rats. World J Plast Surg 2021; 10(1): 96-103.
[http://dx.doi.org/10.29252/wjps.10.1.96] [PMID: 33833960]
[29]
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regul Toxicol Pharmacol 2018; 98: 257-67.
[http://dx.doi.org/10.1016/j.yrtph.2018.08.007] [PMID: 30125612]
[30]
Oaks RJ, Cindass R. Silver Sulfadiazine StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[31]
Dawoud MHS, Yassin GE, Ghorab DM, Morsi NM. Insulin mucoadhesive liposomal gel for wound healing: A formulation with sus-tained release and extended stability using quality by design approach. AAPS PharmSciTech 2019; 20(4): 158.
[http://dx.doi.org/10.1208/s12249-019-1363-6] [PMID: 30963353]
[32]
Sulekha B, Avin G. Topical spray of silver sulfadiazine for wound healing. J Chem Pharm Res 2016; 8(7): 492-8.
[33]
Frank R. Are aerosol sprays hazardous? Am Rev Respir Dis 1975; 112(4): 485-9.
[34]
Patil PP, Reagan MR, Bohara RA. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int J Biol Macromol 2020; 164: 4613-27.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.041] [PMID: 32814099]
[35]
Lee W-Y, Um IC, Kim M-K, Kwon KJ, Kim SG, Park YW. Effectiveness of woven silk dressing materials on full-skin thickness burn wounds in rat model. Maxillofac Plast Reconstr Surg 2014; 36(6): 280-4.
[http://dx.doi.org/10.14402/jkamprs.2014.36.6.280] [PMID: 27489847]
[36]
Kanokpanont S, Damrongsakkul S, Ratanavaraporn J, Aramwit P. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing. Int J Pharm 2012; 436(1-2): 141-53.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.046] [PMID: 22771972]
[37]
Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of silk fibroin use in wound dressings. Trends Biotechnol 2018; 36(9): 907-22.
[http://dx.doi.org/10.1016/j.tibtech.2018.04.004] [PMID: 29764691]
[38]
Qin Y. Medical textile materials. Woodhead Publishing 2015.
[39]
Murphy PS, Evans GRD. Advances in wound healing: A review of current wound healing products. Plast Surg Int 2012; 2012: 190436.
[http://dx.doi.org/10.1155/2012/190436]
[40]
Flin&ec Grgac S, Tarbuk A, Dekani& T, Sujka W, Draczy&ski Z. The chitosan implementation into cotton and polyester/cotton blend fab-rics. Materials (Basel) 2020; 13(7): 1616.
[http://dx.doi.org/10.3390/ma13071616] [PMID: 32244687]
[41]
Rajendran NK, Kumar SSD, Houreld NN, et al. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 2018; 44: 421-30.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[42]
Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci 2019; 7(7): 2652-74.
[http://dx.doi.org/10.1039/C9BM00423H] [PMID: 31094374]
[43]
Naderi N, Karponis D, Mosahebi A, et al. Nanoparticles in wound healing from hope to promise, from promise to routine Front Biosci - Landmark 2018; (7): 1038-59.
[44]
Deodato B, Arsic N, Zentilin L, et al. Recombinant AAV vector encoding human VEGF165 enhances wound healing. Gene Ther 2002; 9(12): 777-85.
[http://dx.doi.org/10.1038/sj.gt.3301697] [PMID: 12040459]
[45]
Partoazar A, Kianvash N, Darvishi MH, Nasoohi S, Rezayat SM, Bahador A. Ethosomal curcumin promoted wound healing and reduced bacterial flora in second degree burn in rat. Drug Res (Stuttg) 2016; 66(12): 660-5.
[http://dx.doi.org/10.1055/s-0042-114034] [PMID: 27626605]
[46]
Sohrabi S, Haeri A, Mahboubi A, Mortazavi A, Dadashzadeh S. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicro-bial hybrid system for burn infection. Int J Biol Macromol 2016; 85: 625-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.013] [PMID: 26794314]
[47]
Morsi NM, Abdelbary GA, Ahmed MA. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: Development and in vitro/in vivo characterization. Eur J Pharm Biopharm 2014; 86(2): 178-89.
[http://dx.doi.org/10.1016/j.ejpb.2013.04.018] [PMID: 23688805]
[48]
Nguyen TTT, Ghosh C, Hwang S-G, et al. Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci 2013; 48(20): 7125-33.
[http://dx.doi.org/10.1007/s10853-013-7527-y]
[49]
Jeong L, Kim MH, Jung J-Y, Min BM, Park WH. Effect of silk fibroin nanofibers containing silver sulfadiazine on wound healing. Int J Nanomedicine 2014; 9: 5277-87.
[PMID: 25484581]
[50]
Barkat MA. Harshita, Pottoo FH, Singh SP, Ahmad FJ. Therapeutic intervention of Aloe gel containing nano-sized and Micron-sized silver sulfadiazine gel on second-degree burn: A comparative study. Int J Low Extrem Wounds 2018; 17(3): 176-83.
[http://dx.doi.org/10.1177/1534734618791860] [PMID: 30111204]
[51]
Yahya EB, Jummaat F, Amirul AA, et al. A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics (Basel) 2020; 9(10): 648.
[http://dx.doi.org/10.3390/antibiotics9100648] [PMID: 32998197]
[52]
Bello AB, Kim D, Kim D, Park H, Lee SH. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applica-tions. Tissue Eng Part B Rev 2020; 26(2): 164-80.
[http://dx.doi.org/10.1089/ten.teb.2019.0256] [PMID: 31910095]
[53]
Torkaman S, Rahmani H, Ashori A, Najafi SHM. Modification of chitosan using amino acids for wound healing purposes: A review. Carbohydr Polym 2021; 258: 117675.
[http://dx.doi.org/10.1016/j.carbpol.2021.117675] [PMID: 33593551]
[54]
Fujita M, Ishihara M, Morimoto Y, et al. Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res 2005; 126(1): 27-33.
[http://dx.doi.org/10.1016/j.jss.2004.12.025] [PMID: 15916971]
[55]
Wang T, Zhu X, Xue X, et al. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 2012; 88(1): 75-83.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.069]
[56]
Zheng Y, Liang Y, Zhang D, et al. Gelatin-based hydrogels blended with gellan as an injectable wound dressing. ACS Omega 2018; 3(5): 4766-75.
[http://dx.doi.org/10.1021/acsomega.8b00308] [PMID: 30023901]
[57]
Lei J, Li X, Wang S, et al. Facile fabrication of biocompatible gelatin-based self-healing hydrogels. ACS Appl Polym Mater 2019; 1(6): 1350-8.
[http://dx.doi.org/10.1021/acsapm.9b00143]
[58]
Pereira GG, Guterres SS, Balducci AG, et al. Polymeric films loaded with vitamin E and Aloe vera for topical application in the treatment of burn wounds. BioMed Res Int 2014; 2014: 641590.
[59]
Nunes PS, Rabelo AS, Souza JC, et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int J Pharm 2016; 513(1-2): 473-82.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.040] [PMID: 27633280]
[60]
Ito K, Saito A, Fujie T, et al. Sustainable antimicrobial effect of silver sulfadiazine-loaded nanosheets on infection in a mouse model of partial-thickness burn injury. Acta Biomater 2015; 24: 87-95.
[http://dx.doi.org/10.1016/j.actbio.2015.05.035] [PMID: 26079191]
[61]
Morgado PI, Miguel SP, Correia IJ, Aguiar-Ricardo A. Ibuprofen loaded PVA/chitosan membranes: A highly efficient strategy towards an improved skin wound healing. Carbohydr Polym 2017; 159: 136-45.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.029] [PMID: 28038742]
[62]
Sezer AD. Hatipo&lu F, Cevher E, O&urtan Z, Ba& AL, Akbu&a J. Chitosan film containing fucoidan as a wound dressing for dermal burn healing: Preparation and in vitro/in vivo evaluation. AAPS PharmSciTech 2007; 8(2): 39.
[http://dx.doi.org/10.1208/pt0802039] [PMID: 17622117]
[63]
Nguyen VC, Nguyen VB, Hsieh M-F. Curcumin-loaded chitosan/gelatin composite sponge for wound healing application. Int J Polym Sci 2013; 2013: 106570.
[64]
Pei Z, Sun Q, Sun X, Wang Y, Zhao P. Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethylchitosan composite sponge as anti-bacterial wound dressing. Biomed Mater Eng 2015; 26(s1)(Suppl. 1): S111-8.
[http://dx.doi.org/10.3233/BME-151296] [PMID: 26405868]
[65]
Sanad RA-B, Abdel-Bar HM. Chitosan-hyaluronic acid composite sponge scaffold enriched with andrographolide-loaded lipid nanoparti-cles for enhanced wound healing. Carbohydr Polym 2017; 173: 441-50.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.098] [PMID: 28732886]
[66]
Wang L, Zhang X, Yang K, et al. A novel double&crosslinking&double &network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment. Adv Funct Mater 2020; 30(1): 1904156.
[http://dx.doi.org/10.1002/adfm.201904156]
[67]
Op ’t Veld RC, Walboomers XF, Jansen JA, Wagener FADTG. Design considerations for hydrogel wound dressings: Strategic and mo-lecular advances. Tissue Eng Part B Rev 2020; 26(3): 230-48.
[http://dx.doi.org/10.1089/ten.teb.2019.0281] [PMID: 31928151]
[68]
Madaghiele M, Demitri C, Sannino A, et al. Polymeric hydrogels for burn wound care& Advanced skin wound dressings and regenerative templates. Burns Trauma 2014; 2(4): 153-61.
[69]
Rathinamoorthy R, Sasikala L. In vivo-Wound healing studies of Leptospermum scoparium honey loaded chitosan bioactive wound dressing. Wound Med 2019; 26(1): 100162.
[http://dx.doi.org/10.1016/j.wndm.2019.100162]
[70]
El-Kased RF, Amer RI, Attia D, Elmazar MM. Honey-based hydrogel: In vitro and comparative In vivo evaluation for burn wound heal-ing. Sci Rep 2017; 7(1): 9692.
[http://dx.doi.org/10.1038/s41598-017-08771-8] [PMID: 28851905]
[71]
Huang W, Wang Y, Huang Z, et al. On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nano-crystal for deep partial thickness burn wound healing. ACS Appl Mater Interfaces 2018; 10(48): 41076-88.
[http://dx.doi.org/10.1021/acsami.8b14526] [PMID: 30398062]
[72]
Chakavala SR, Patel NG, Pate NVI, Thakkar VT, Patel KV, Gandhi TR. Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns. J Pharm Bioallied Sci 2012; 4(Suppl. 1): S54-6.
[http://dx.doi.org/10.4103/0975-7406.94131] [PMID: 23066206]
[73]
Zhu C, Zhao J, Kempe K, et al. A hydrogel&based localized release of Colistin for antimicrobial treatment of burn wound infection. Macromol Biosci 2017; 17(2): 1600320.
[http://dx.doi.org/10.1002/mabi.201600320] [PMID: 27619320]
[74]
Roy DC, Tomblyn S, Isaac KM, et al. Ciprofloxacin-loaded keratin hydrogels reduce infection and support healing in a porcine partial-thickness thermal burn. Wound Repair Regen 2016; 24(4): 657-68.
[http://dx.doi.org/10.1111/wrr.12449] [PMID: 27238250]
[75]
Gupta A, Upadhyay NK, Parthasarathy S, et al. Nitrofurazone&loaded PVA–PEG semi&IPN for application as hydrogel dressing for nor-mal and burn wounds. J Appl Polym Sci 2013; 128(6): 4031-9.
[http://dx.doi.org/10.1002/app.38594]
[76]
Yasasvini S, Anusa RS. VedhaHari BN, Prabhu PC, RamyaDevi D. Topical hydrogel matrix loaded with Simvastatin microparticles for enhanced wound healing activity. Mater Sci Eng C 2017; 72: 160-7.
[http://dx.doi.org/10.1016/j.msec.2016.11.038] [PMID: 28024572]
[77]
Catanzano O, D’Esposito V, Pulcrano G, et al. Ultrasmall silver nanoparticles loaded in alginate–hyaluronic acid hybrid hydrogels for treating infected wounds. Int J Polym Mater Polym Biomater 2017; 66(12): 626-34.
[http://dx.doi.org/10.1080/00914037.2016.1252358]
[78]
Bagher Z, Ehterami A, Safdel MH, et al. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol 2020; 55: 101379.
[http://dx.doi.org/10.1016/j.jddst.2019.101379]
[79]
Liu Q, Huang Y, Lan Y, et al. Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate micro-spheres into a CMCS-PVA hydrogel. J Tissue Eng Regen Med 2017; 11(5): 1562-73.
[http://dx.doi.org/10.1002/term.2057] [PMID: 26118827]
[80]
Liang Y, Chen B, Li M, He J, Yin Z, Guo B. Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing. Biomacromolecules 2020; 21(5): 1841-52.
[http://dx.doi.org/10.1021/acs.biomac.9b01732] [PMID: 32388998]
[81]
Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine (Lond) 2017; 12(11): 1335-52.
[http://dx.doi.org/10.2217/nnm-2017-0017] [PMID: 28520509]
[82]
Leung CM, Dhand C, Mayandi V, et al. Wound healing properties of magnesium mineralized antimicrobial nanofibre dressings contain-ing chondroitin sulphate - a comparison between blend and core-shell nanofibres. Biomater Sci 2020; 8(12): 3454-71.
[http://dx.doi.org/10.1039/D0BM00530D] [PMID: 32420550]
[83]
Jiang J, Chen G, Shuler FD, Wang CH, Xie J. Local sustained delivery of 25-hydroxyvitamin D 3 for production of antimicrobial pep-tides. Pharm Res 2015; 32(9): 2851-62.
[http://dx.doi.org/10.1007/s11095-015-1667-5] [PMID: 25773720]
[84]
Sheikh FA, Ju HW, Lee JM, et al. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomedicine 2015; 11(3): 681-91.
[http://dx.doi.org/10.1016/j.nano.2014.11.007] [PMID: 25555351]
[85]
Bonvallet PP, Schultz MJ, Mitchell EH, et al. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds. PLoS One 2015; 10(3): e0122359.
[http://dx.doi.org/10.1371/journal.pone.0122359] [PMID: 25793720]
[86]
Heo DN, Yang DH, Lee JB, et al. Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J Biomed Nanotechnol 2013; 9(3): 511-5.
[http://dx.doi.org/10.1166/jbn.2013.1509] [PMID: 23621008]
[87]
Ramalingam R, Dhand C, Mayandi V, et al. Core-Shell Structured antimicrobial nanofiber dressings containing herbal extract and antibi-otics combination for the prevention of biofilms and promotion of cutaneous wound healing. ACS Appl Mater Interfaces 2021; 13(21): 24356-69.
[http://dx.doi.org/10.1021/acsami.0c20642] [PMID: 34024104]
[88]
Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng Transl Med 2021; 7(1): e10254.
[PMID: 35111951]
[89]
Bayat S, Amiri N, Pishavar E, Kalalinia F, Movaffagh J, Hashemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci 2019; 229: 57-66.
[http://dx.doi.org/10.1016/j.lfs.2019.05.028] [PMID: 31085247]
[90]
Varesano A, Carletto RA, Mazzuchetti G. Experimental investigations on the multi-jet electrospinning process. J Mater Process Technol 2009; 209(11): 5178-85.
[http://dx.doi.org/10.1016/j.jmatprotec.2009.03.003]
[91]
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014; 185: 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[92]
Goodhead A. Clinical efficacy of Comfeel plus transparent dressing. Br J Nurs 2002; 11(4): 284-287,286-287.
[http://dx.doi.org/10.12968/bjon.2002.11.4.10082] [PMID: 11873220]
[93]
Skórkowska-Telichowska K, Czemplik M, Kulma A, Szopa J. The local treatment and available dressings designed for chronic wounds. J Am Acad Dermatol 2013; 68(4): e117-26.
[http://dx.doi.org/10.1016/j.jaad.2011.06.028] [PMID: 21982060]
[94]
Kalalinia F, Aamiri N, Bayat S, et al. 671 Burn wound healing effect of bromelain-loaded chitosan nanofibers. J Burn Care Res 2021; 42(Suppl. 1): S192-2.
[http://dx.doi.org/10.1093/jbcr/irab032.317]
[95]
Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimiza-tion of fabrication parameters. J Biomed Mater Res B Appl Biomater 2004; 70(2): 286-96.
[http://dx.doi.org/10.1002/jbm.b.30041] [PMID: 15264311]
[96]
Zong X, Kim K, Fang D, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer (Guildf) 2002; 43(16): 4403-12.
[http://dx.doi.org/10.1016/S0032-3861(02)00275-6]
[97]
Bui HT, Chung OH, Dela Cruz J, et al. Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromol Res 2014; 22(12): 1288-96.
[http://dx.doi.org/10.1007/s13233-014-2179-6]
[98]
Soscia DA, Raof NA, Xie Y, et al. Antibiotic&loaded PLGA nanofibers for wound healing applications. Adv Eng Mater 2010; 12(4): B83-8.
[http://dx.doi.org/10.1002/adem.200980016]
[99]
Nitanan T, Akkaramongkolporn P, Rojanarata T, Ngawhirunpat T, Opanasopit P. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials. Int J Pharm 2013; 448(1): 71-8.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.011] [PMID: 23510799]
[100]
Amiri N, Ajami S, Shahroodi A, et al. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol 2020; 162: 645-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.195] [PMID: 32585266]
[101]
Atiyeh BS, Costagliola M, Hayek SN, et al. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 2007; 33(2): 139-48.
[102]
Coley R. Composition for burn treatment US 20110165276A1 2011.
[103]
Wooley RE, Ritchie BW, Kemp DT, Capomacchia AC, Burnley V V. Methods and compositions for promoting wound healing. US 9314482B2 2015.
[104]
Sharp DJ, Charafeddine R. Fidgetin-like 2 as a target to enhance wound healing. US 10808250B2 2020.
[105]
Prozillo L. Composition and method for treating burns and regenerating burn wound tissue. US 20030008830A1 2003.
[106]
Al-Mutawaa MGM. Ointment for healing burns and wounds. US 8741353B1 2014.
[107]
Hnat TM. Method and composition for treatment of wounds and burns. US 7597911B2 2009.
[108]
Larsen K, Jensen FR, Mortensen MW. Dry composition for use in haemostasis and wound healing. US 11046818B2 2020.
[109]
Kim M-H, Safadi F, Yu B. Gpnmb compositions for treatment of skin wounds. W02017180862A1 2017.
[110]
Pushpangadan P, Mehrotra S, Rawat AKS, Rao CV, Ojha SK, Aziz I. Herbal composition for cuts, burns and wounds. US 7344737B2 2008.
[111]
Ryu HS, Park JK, Seo JH, Lee YK. Antimicrobial woundcovering material and method for manufacturing same. US 9610378B2 2017.
[112]
Denstman SC. Dressing for application to a wound or burn. US 20140330192A1 2014.
[113]
Serafica G, Mormino R, Oster GA, Lentz KE, Koehler K. Microbial cellulose wound dressing for treating chronic wounds. US 7704523B2 2010.
[114]
Chen J-Y, Wu C-J, Huang H-N. Composition for use in wound healing in burns. US 9750844B2 2017.
[115]
Chen M, Woodley D. Method for promoting wound healing. US 20200291095A1 2020.
[116]
McAnulty JF, Murphy C, Abbott N. Methods and compositions for wound healing. US 202010186891A1 2021.
[117]
Prabhune Murphy A, Vijay MS, Agawane Bharat S. A novel pharmaceutical wound healing composition. WO 2017/051433A1 2017.
[118]
Fox CL Jr, Keith AD, Snipes W. Polymeric diffusion burn matrix and method of use. US 4579731A 1986.
[119]
Chertorizhsky EA, Ovchinnikov MV, Kleimenov AV. Method for accelerated healing of burn wounds. US 20210161993A1 2021.
[120]
Gonzalez H Jr. Bandage apparatus for treating burns. US 4139004A 1979.
[121]
Rangabhatla GSVP, Rangabhatla SLA, Ayalasomayajula RP. Scaffold compositions for tissue repair. US 10583216B2 2020.
[122]
Choi SH. Composition for relieving and treating burns and bedsores. US 20200230179A1 2020.
[123]
Mondal R, Wiles TC, Valenta P, Rogers JA, Michaels EW, Miller RD. Wound dressing system. US 2020010796A1 2020.
[124]
Basara M, Watkins MJ, Bracke J. Formulation for treating chronic wounds. US 20210161841A1 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy