Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Sulfonium Lipids: Synthesis and Evaluation as DNA Delivery Vectors

Author(s): Jing Li*, Lei Zhang, Yanjie Lu, Yue Lin, Kun Yang, Xiaodong Zhou and Guinan Shen

Volume 20, Issue 7, 2023

Published on: 02 August, 2022

Page: [951 - 960] Pages: 10

DOI: 10.2174/1567201819666220519122622

Price: $65

conference banner
Abstract

Background: Cationic lipids can be used as nonviral vectors in gene delivery therapy. Most cationic lipids contain quaternary ammonium that can bind to negative phosphates of the plasmid. In this study, sulfonium—a trialkylated sulfur cation was adopted in the synthesis of a series of cationic lipids which were evaluated for their ability to function as gene delivery vectors.

Methods: The sulfonium lipids were synthesized by condensing cyclic thioether and aliphatic carbon chains with ethoxy linkage and the structure was characterized by NMR and mass. The DNA condensing abilities of sulfonium lipids were evaluated using a gel retardation experiment. Sulfonium lipids/ DNA condensates were measured for particle size and Zeta potential. The cytotoxicity of sulfoniums was evaluated with the MTT assay. The intracellular uptake of sulfonium lipid/DNA complexes was observed with a fluorescence microscope.

Results: The results showed that the sulfonium head can effectively bind to the phosphate of DNA. When the S/P ratio is larger than 10/1, sulfonium lipids with longer carbon chains can completely condense DNA to form a nanoparticle with particle size ranging from 135 nm to 155 nm and zeta potential ranging from 28 mV to 42 mV. The IC50 of sulfonium lipids on HepG2 cells ranged from 2.37 μg/mL to 3.67 μg/mL. Cellular uptake experiments showed that sulfonium lipids/DNA condensate can be taken into cells.

Conclusion: Sulfonium lipids can effectively condense DNA and transfer DNA into cells. The sulfonium compound is worth further development to reduce the cytotoxicity and increase the transfection rate as gene vectors.

Keywords: Non-viral vector, cationic lipids, sulfonium, gene delivery, DNA, quaternary ammonium.

[1]
Sun, W.; Shi, Q.; Zhang, H.; Yang, K.; Ke, Y.; Wang, Y.; Qiao, L. Advances in the techniques and methodologies of cancer gene therapy. Discov. Med., 2019, 27(146), 45-55.
[PMID: 30721651]
[2]
Boudes, P.F. Gene therapy as a new treatment option for inherited monogenic diseases. Eur. J. Intern. Med., 2014, 25(1), 31-36.
[http://dx.doi.org/10.1016/j.ejim.2013.09.009] [PMID: 24129166]
[3]
Mason, D.; Chen, Y.Z.; Krishnan, H.V.; Sant, S. Cardiac gene therapy: Recent advances and future directions. J. Control. Release, 2015, 215, 101-111.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.001] [PMID: 26254712]
[4]
Cheever, T.R.; Berkley, D.; Braun, S.; Brown, R.H.; Byrne, B.J.; Chamberlain, J.S.; Cwik, V.; Duan, D.; Federoff, H.J.; High, K.A.; Kaspar, B.K.; Klinger, K.W.; Larkindale, J.; Lincecum, J.; Mavilio, F.; McDonald, C.L.; McLaughlin, J.; Weiss McLeod, B.; Mendell, J.R.; Nuckolls, G.; Stedman, H.H.; Tagle, D.A.; Vandenberghe, L.H.; Wang, H.; Wernett, P.J.; Wilson, J.M.; Porter, J.D.; Gubitz, A.K. Perspectives on best practices for gene therapy programs. Hum. Gene Ther., 2015, 26(3), 127-133.
[http://dx.doi.org/10.1089/hum.2014.147] [PMID: 25654329]
[5]
Stevens, D.; Claborn, M.K.; Gildon, B.L.; Kessler, T.L.; Walker, C. Onasemnogene abeparvovec-xioi: Gene therapy for spinal muscular atrophy. Ann. Pharmacother., 2020, 54(10), 1001-1009.
[http://dx.doi.org/10.1177/1060028020914274] [PMID: 32204605]
[6]
Farris, E.; Brown, D.M.; Ramer-Tait, A.E.; Pannier, A.K. Micro- and nanoparticulates for DNA vaccine delivery. Exp. Biol. Med. (Maywood), 2016, 241(9), 919-929.
[http://dx.doi.org/10.1177/1535370216643771] [PMID: 27048557]
[7]
Wirth, T.; Parker, N.; Ylä-Herttuala, S. History of gene therapy. Gene, 2013, 525(2), 162-169.
[http://dx.doi.org/10.1016/j.gene.2013.03.137] [PMID: 23618815]
[8]
Liu, L.; Yang, J.; Men, K.; He, Z.; Luo, M.; Qian, Z.; Wei, X.; Wei, Y. Current status of nonviral vectors for gene therapy in China. Hum. Gene Ther., 2018, 29(2), 110-120.
[http://dx.doi.org/10.1089/hum.2017.226] [PMID: 29320893]
[9]
Draghici, B.; Ilies, M.A. Synthetic nucleic acid delivery systems: Present and perspectives. J. Med. Chem., 2015, 58(10), 4091-4130.
[http://dx.doi.org/10.1021/jm500330k] [PMID: 25658858]
[10]
Cao, H.; Molday, R.S.; Hu, J. Gene therapy: Light is finally in the tunnel. Protein Cell, 2011, 2(12), 973-989.
[http://dx.doi.org/10.1007/s13238-011-1126-y] [PMID: 22231356]
[11]
Begum, A.A.; Toth, I.; Hussein, W.M.; Moyle, P.M. Advances in targeted gene delivery. Curr. Drug Deliv., 2019, 16(7), 588-608.
[http://dx.doi.org/10.2174/1567201816666190529072914] [PMID: 31142250]
[12]
Katz, M.G.; Fargnoli, A.S.; Williams, R.D.; Bridges, C.R. Gene therapy delivery systems for enhancing viral and nonviral vectors for cardiac diseases: Current concepts and future applications. Hum. Gene Ther., 2013, 24(11), 914-927.
[http://dx.doi.org/10.1089/hum.2013.2517] [PMID: 24164239]
[13]
Hardee, C.L.; Arévalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in non-viral DNA vectors for gene therapy. Genes (Basel), 2017, 8(2), 65.
[http://dx.doi.org/10.3390/genes8020065] [PMID: 28208635]
[14]
Chen, L.; Bai, M.; Du, R.; Wang, H.; Deng, Y.; Xiao, A.; Gan, X. The non-viral vectors and main methods of loading siRNA onto the titanium implants and their application. J. Biomater. Sci. Polym. Ed., 2020, 31(16), 2152-2168.
[http://dx.doi.org/10.1080/09205063.2020.1793706] [PMID: 32646287]
[15]
Quijano, E.; Bahal, R.; Ricciardi, A.; Saltzman, W.M.; Glazer, P.M. Therapeutic peptide nucleic acids: Principles, limitations, and opportunities. Yale J. Biol. Med., 2017, 90(4), 583-598.
[PMID: 29259523]
[16]
Hou, K.K.; Pan, H.; Schlesinger, P.H.; Wickline, S.A. A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol. Adv., 2015, 33(6 Pt 1), 931-940.
[http://dx.doi.org/10.1016/j.biotechadv.2015.05.005] [PMID: 26025036]
[17]
Wahane, A.; Waghmode, A.; Kapphahn, A.; Dhuri, K.; Gupta, A.; Bahal, R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules, 2020, 25(12), 2866.
[http://dx.doi.org/10.3390/molecules25122866] [PMID: 32580326]
[18]
Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 2014, 15(8), 541-555.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[19]
Hart, S.L. Lipid carriers for gene therapy. Curr. Drug Deliv., 2005, 2(4), 423-428.
[http://dx.doi.org/10.2174/156720105774370230] [PMID: 16305445]
[20]
Zhu, L.; Mahato, R.I. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin. Drug Deliv., 2010, 7(10), 1209-1226.
[http://dx.doi.org/10.1517/17425247.2010.513969] [PMID: 20836625]
[21]
Hattori, Y.; Hu, S.; Onishi, H. Effects of cationic lipids in cationic liposomes and disaccharides in the freeze-drying of siRNA lipoplexes on gene silencing in cells by reverse transfection. J. Liposome Res., 2020, 30(3), 235-245.
[http://dx.doi.org/10.1080/08982104.2019.1630643] [PMID: 31185779]
[22]
Madni, A.; Sarfraz, M.; Rehman, M.; Ahmad, M.; Akhtar, N.; Ahmad, S.; Tahir, N.; Ijaz, S.; Al-Kassas, R.; Löbenberg, R. Liposomal drug delivery: A versatile platform for challenging clinical applications. J. Pharm. Pharm. Sci., 2014, 17(3), 401-426.
[http://dx.doi.org/10.18433/J3CP55] [PMID: 25224351]
[23]
Ma, B.; Zhang, S.; Jiang, H.; Zhao, B.; Lv, H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J. Control. Release, 2007, 123(3), 184-194.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.022] [PMID: 17913276]
[24]
Khodaverdi, H.; Zeini, M.S.; Moghaddam, M.M.; Vazifedust, S.; Akbariqomi, M.; Tebyanian, H. Lipid-based nanoparticles for targeted delivery of the anti-cancer drugs: A Review. Curr. Drug Deliv., 2022, 19.
[http://dx.doi.org/10.2174/1567201819666220117102658] [PMID: 35078396]
[25]
Muñoz-Úbeda, M.; Misra, S.K.; Barrán-Berdón, A.L.; Datta, S.; Aicart-Ramos, C.; Castro-Hartmann, P.; Kondaiah, P.; Junquera, E.; Bhattacharya, S.; Aicart, E. How does the spacer length of cationic gemini lipids influence the lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene therapy. Biomacromolecules, 2012, 13(12), 3926-3937.
[http://dx.doi.org/10.1021/bm301066w] [PMID: 23130552]
[26]
Ghosh, S.; Ray, A.; Pramanik, N. Self-assembly of surfactants: An overview on general aspects of amphiphiles. Biophys. Chem., 2020, 265106429
[http://dx.doi.org/10.1016/j.bpc.2020.106429] [PMID: 32693319]
[27]
Zylberberg, C.; Gaskill, K.; Pasley, S.; Matosevic, S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther., 2017, 24(8), 441-452.
[http://dx.doi.org/10.1038/gt.2017.41] [PMID: 28504657]
[28]
Junquera, E.; Aicart, E. Cationic lipids as transfecting agents of DNA in gene therapy. Curr. Top. Med. Chem., 2014, 14(5), 649-663.
[http://dx.doi.org/10.2174/1568026614666140118203128] [PMID: 24444161]
[29]
Le Gall, T.; Loizeau, D.; Picquet, E.; Carmoy, N.; Yaouanc, J.J.; Burel-Deschamps, L.; Delépine, P.; Giamarchi, P.; Jaffrès, P.A.; Lehn, P.; Montier, T. A novel cationic lipophosphoramide with diunsaturated lipid chains: Synthesis, physicochemical properties, and transfection activities. J. Med. Chem., 2010, 53(4), 1496-1508.
[http://dx.doi.org/10.1021/jm900897a] [PMID: 20112994]
[30]
Feliciano, J.A.; Leitgeb, A.J.; Schrank, C.L.; Allen, R.A.; Minbiole, K.P.C.; Wuest, W.M.; Carden, R.G. Trivalent sulfonium compounds (TSCs): Tetrahydrothiophene-based amphiphiles exhibit similar antimicrobial activity to analogous ammonium-based amphiphiles. Bioorg. Med. Chem. Lett., 2021, 37127809
[http://dx.doi.org/10.1016/j.bmcl.2021.127809] [PMID: 33516911]
[31]
Lu, L.; Li, X.; Yang, Y.; Xie, W. Recent progress in the construction of natural de-O-Sulfonated sulfonium sugars with antidiabetic activities. Chemistry, 2019, 25(59), 13458-13471.
[http://dx.doi.org/10.1002/chem.201902562] [PMID: 31314135]
[32]
Guan, D.; Chen, F.; Qiu, Y.; Jiang, B.; Gong, L.; Lan, L.; Huang, W. Sulfonium, an underestimated moiety for structural modification, alters the antibacterial profile of vancomycin against multidrug-resistant bacteria. Angew. Chem. Int. Ed. Engl., 2019, 58(20), 6678-6682.
[http://dx.doi.org/10.1002/anie.201902210] [PMID: 30908776]
[33]
Zhu, D.; Yan, H.; Liu, X.; Xiang, J.; Zhou, Z.; Tang, J.; Liu, X.; Shen, Y. Intracellularly disintegratable polysulfoniums for efficient gene delivery. Adv. Funct. Mater., 2017, 27(16)1606826
[http://dx.doi.org/10.1002/adfm.201606826]
[34]
Ghosh, Y.K.; Visweswariah, S.S.; Bhattacharya, S. Nature of linkage between the cationic headgroup and cholesteryl skeleton controls gene transfection efficiency. FEBS Lett., 2000, 473(3), 341-344.
[http://dx.doi.org/10.1016/S0014-5793(00)01558-1] [PMID: 10818237]
[35]
Gao, Y.; Böhmer, V.I.; Zhou, D.; Zhao, T.; Wang, W.; Paulusse, J.M. Main-chain degradable single-chain cyclized polymers as gene delivery vectors. J. Control. Release, 2016, 244(Pt B), 375-383.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.046] [PMID: 27476610]
[36]
Zhao, Y.N.; Piao, Y.Z.; Zhang, C.M.; Jiang, Y.M.; Liu, A.; Cui, S.H.; Zhi, D.F.; Zhen, Y.H.; Zhang, S.B. Replacement of quaternary ammonium headgroups by tri-ornithine in cationic lipids for the improvement of gene delivery in vitro and in vivo. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(39), 7963-7973.
[http://dx.doi.org/10.1039/C7TB01915G] [PMID: 32264197]
[37]
Zheng, Y.; Guo, Y.; Li, Y.; Wu, Y.; Zhang, L.; Yang, Z. A novel gemini-like cationic lipid for the efficient delivery of siRNA. New J. Chem., 2014, 38(10), 4952-4962.
[http://dx.doi.org/10.1039/C4NJ00531G]
[38]
Bhattacharya, S.; Bajaj, A. Advances in gene delivery through molecular design of cationic lipids. Chem. Commun. (Camb.), 2009, 31(31), 4632-4656.
[http://dx.doi.org/10.1039/b900666b] [PMID: 19641799]
[39]
Kedika, B.; Patri, S.V. Synthesis and gene transfer activities of novel serum compatible reducible tocopherol-based cationic lipids. Mol. Pharm., 2012, 9(5), 1146-1162.
[http://dx.doi.org/10.1021/mp200435y] [PMID: 22428703]
[40]
de Jesus, M.B.; Ferreira, C.V.; de Paula, E.; Hoekstra, D.; Zuhorn, I.S. Design of solid lipid nanoparticles for gene delivery into prostate cancer. J. Control. Release, 2010, 148(1), e89-e90.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.065] [PMID: 21529650]
[41]
Gosangi, M.; Ravula, V.; Rapaka, H.; Patri, S.V. α-Tocopherol-anchored gemini lipids with delocalizable cationic head groups: The effect of spacer length on DNA compaction and transfection properties. Org. Biomol. Chem., 2021, 19(20), 4565-4576.
[http://dx.doi.org/10.1039/D1OB00475A] [PMID: 33954315]
[42]
Banerjee, R.; Das, P.K.; Srilakshmi, G.V.; Chaudhuri, A.; Rao, N.M. Novel series of non-glycerol-based cationic transfection lipids for use in liposomal gene delivery. J. Med. Chem., 1999, 42, 4292-4299.
[43]
Van Der Woude, I.R.; Wagenaar, A.; Meekel, A.A.P.; Ter Beest, M.B.A.; Ruiters, M.H.J.; Engberts, J.B.F.N.; Hoekstra, D. Novel pyridinium surfactants for efficient, nontoxic in vitrogene delivery. Proc. Natl. Acad. Sci. USA, 1997, 94, 1160-1165.
[44]
Mével, M.; Neveu, C.; Gonçalves, C.; Yaouanc, J.J.; Pichon, C.; Jaffrès, P.A.; Midoux, P. Novel neutral imidazole-lipophosphoramides for transfection assays. Chem. Commun. (Camb.), 2008, 27(27), 3124-3126.
[http://dx.doi.org/10.1039/b805226c] [PMID: 18594716]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy