Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Enhanced Brain Delivery via Intranasal Administration of Carbamazepine Loaded Solid Lipid Nanoparticles: Optimization, Pharmacokinetic Analysis, In-vitro, and In-vivo Drug Release Study

Author(s): Rajeshwar Kamal Kant Arya*, Juyal Vijay, Dheeraj Bisht, Mohammad Rashid, Abdulmalik Saleh Alfawaz Altamimi, Obaid Afzal and Neeraj Kumar Sethiya

Volume 20, Issue 5, 2023

Published on: 23 September, 2022

Page: [587 - 600] Pages: 14

DOI: 10.2174/1567201819666220519120837

Price: $65

Abstract

Background: Carbamazepine (Cbz) is the first-line drug for epileptic seizures but exhibits fluctuation at the plasma level and side effects after oral administration.To overcome these problems, Cbz should be targeted directly into the brain. Therefore, the current experimental design was aimed to formulate and optimize the Cbz containing solid lipid nanoparticles (SLNs) for brain delivery via intranasal administration to get rid of oral complications associated with Cbz.

Methods: A full factorial design was performed to evaluate the effect of variables (X1 lipid concentration, X2 surfactant concentration, and X3 sonication time) on the response variables (size of nanoparticles, entrapment efficiency, and drug release). A two-level, three-factor design was employed herewith, and eight formulations were developed. Further, the formation of Cbz containing SLNs was characterized by compatibility, particle size, entrapment efficiency, and drug release with the support of Fourier Transform Infra-Red (FTIR), Zeta sizer, Transmission Electron Microscopy (TEM), Ultra-violet (U.V.), and High-Performance Liquid Chromatography (HPLC).

Results: All eight formulations were characterized through particle size, entrapment efficiency, and invitro drug release performance. Out of eight characterized formulations, SN1 showed the most promising results, including particle size of 210 ± 2.14 nm, entrapment efficiency of 42.1 ± 1.09%, and drug release of 61.3 ± 2.02% and considered an optimized batch. Additionally, the optimized batch SN1was further evaluated for an in-vivo study on male Wistar Rats.

Conclusion: The study revealed that a high amount of drug was reached into the brain through intranasal administration compared to the intravenous route. Therefore, it can minimize the unwanted side effects of the Cbz associated with oral administration. The formulation SN1 possesses an excellent drug targeting efficiency of 3.014. Finally, the current experimental work concluded that there is a direct pathway from the intranasal route to the brain. This delivery system can be beneficial for directly delivering CNS-active drugs into the brain.

Keywords: Carbamazepine, SLNs, TEM, FTIR, factorial design, entrapment efficiency, pharmacokinetics analysis.

Graphical Abstract

[1]
Arya, R.K.K.; Juyal, V. Polymer-lipid hybrid nanoparticles for brain targeting through intranasal delivery. J. Drug Deliv. Ther., 2017, 7(4), 129-136.
[http://dx.doi.org/10.22270/jddt.v7i4.1480]
[2]
Serralheiro, A.; Alves, G.; Fortuna, A.; Falcão, A. Intranasal administration of carbamazepine to mice: A direct delivery pathway for brain targeting. Eur. J. Pharm. Sci., 2014, 60, 32-39.
[http://dx.doi.org/10.1016/j.ejps.2014.04.019] [PMID: 24813112]
[3]
Gavini, E.; Hegge, A.B.; Rassu, G.; Sanna, V.; Testa, C.; Pirisino, G.; Karlsen, J.; Giunchedi, P. Nasal administration of carbamazepine using chitosan microspheres: In vitro/in vivo studies. Int. J. Pharm., 2006, 307(1), 9-15.
[http://dx.doi.org/10.1016/j.ijpharm.2005.09.013] [PMID: 16257156]
[4]
Barakat, N.S.; Omar, S.A.; Ahmed, A.A.E. Carbamazepine uptake into rat brain following intra-olfactory transport. J. Pharm. Pharmacol., 2006, 58(1), 63-72.
[http://dx.doi.org/10.1211/jpp.58.1.0008] [PMID: 16393465]
[5]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[6]
Jadhav, K.R.; Gambhire, M.N.; Shaikh, I.M.; Kadam, V.J.; Pisal, S.S. Nasal Drug Delivery System-Factors Affecting and Applications. Curr. Drug Ther., 2006, 2(1), 27-38.
[http://dx.doi.org/10.2174/157488507779422374]
[7]
Chein, Y.W. Novel Drug Delivery Systems, 2nd ed; Marcel Dekker Inc: New York, 1983.
[8]
Martin-Banderas, L.; Holgado, M.A.; Venero, J.L.; Alvarez-Fuentes, J.; Fernández-Arévalo, M. Nanostructures for drug delivery to the brain. Curr. Med. Chem., 2011, 18(34), 5303-5321.
[http://dx.doi.org/10.2174/092986711798184262] [PMID: 22087827]
[9]
Crowe, T.P.; Greenlee, M.H.W.; Kanthasamy, A.G.; Hsu, W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci., 2018, 195, 44-52.
[http://dx.doi.org/10.1016/j.lfs.2017.12.025] [PMID: 29277310]
[10]
Wang, Z.; Xiong, G.; Tsang, W.C.; Schätzlein, A.G.; Uchegbu, I.F. Nose-to-brain delivery. J. Pharmacol. Exp. Ther., 2019, 370(3), 593-601.
[http://dx.doi.org/10.1124/jpet.119.258152] [PMID: 31126978]
[11]
Gizurarson, S.; Thorvaldsson, T.; Sigurdsson, P.; Gunnarsson, E. Selective delivery of insulin into the brain: Intra olfactory absorption. Int. J. Pharm., 1996, 140(1), 77-83.
[http://dx.doi.org/10.1016/0378-5173(96)04579-6]
[12]
Ravi, M.N.V. Handbook of Particulate Drug Delivery; , 2008, 2, pp. 96-161. Available from: http:/www.aspbs.com/drug.htm
[13]
Arya, R.K.K.; Juyal, V.; Kunwar, N. Preparation of carbamazepine chitosan nanoparticles for improving nasal absorption. J. Drug Deliv. Ther., 2015, 5(3), 101-108.
[http://dx.doi.org/10.22270/jddt.v5i3.1090]
[14]
Radaic, A.; de Paula, E.; De Jesus, M. Factorial design and development of solid lipid nanoparticles (SLN) for gene delivery. J. Nanosci. Nanotechnol., 2014, 14, 1-8.
[http://dx.doi.org/10.1166/jnn.2014.9002] [PMID: 26353734]
[15]
Panwar, M.M.S.; Tanwar, Y.S. Factorial design approach for optimization of floating microspheres of diltiazem hydrochloride. Asian J. Pharm., 2015, 9(3), 206-212.
[http://dx.doi.org/10.4103/0973-8398.160318]
[16]
Lokhandwala, H.; Deshpande, A. Kinetic modeling and dissolution profiles comparison: An overview. Int J Pharm Bio Sci, 2013, 4(1), 728-737.
[17]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]
[18]
Liang, N.; Sun, S.; Hong, J.; Tian, J.; Fang, L.; Cui, F. In vivo pharmacokinetics, biodistribution and antitumor effect of paclitaxel-loaded micelles based on α-tocopherol succinate-modified chitosan. Drug Deliv., 2016, 23(8), 2651-2660.
[http://dx.doi.org/10.3109/10717544.2015.1045103] [PMID: 26165423]
[19]
Ren, T.; Xu, N.; Cao, C.; Yuan, W.; Yu, X.; Chen, J.; Ren, J. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J. Biomater. Sci. Polym. Ed., 2009, 20(10), 1369-1380.
[http://dx.doi.org/10.1163/092050609X12457418779185] [PMID: 19622277]
[20]
Sun, W.; Xie, C.; Wang, H.; Hu, Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials, 2004, 25(15), 3065-3071.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.087] [PMID: 14967540]
[21]
Prabhakar, K.; Afzal, S.; Surender, G.; Kishan, V. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharm. Sin. B, 2013, 3(5), 345-353.
[http://dx.doi.org/10.1016/j.apsb.2013.08.001]
[22]
Labhade, S.D.; Gide, P.S.; Saudagar, R. Solid- lipid nanoparticles: A newer approach for formulation and optmization of HMG-CoA reductase inhibitors. Res. J. Pharm. Biol. Chem. Sci., 2013, 4, 1296-1310.
[23]
Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharm Sci., 2016, 11(3), 404-416.
[http://dx.doi.org/10.1016/j.ajps.2015.09.004]
[24]
Akl, M. A.; Kartal-Hodzic, A.; Oksanen, T.; Ismael, H. R.; Afouna, M. M.; Yliperttula, M.; Samy, A. M.; Viitala, T. Factorial design formulation optimization and in vitro characterization of curcuminloaded plga nanoparticles for colon delivery. J Drug Deliv. Sci Technol., 2016, 32(part A), 10-20.
[http://dx.doi.org/10.1016/j.jddst.2016.01.007]
[25]
Yasir, M.; Sara, U.V.S.; Chauhan, I.; Gaur, P.K.; Singh, A.P.; Puri, D. Ameeduzzafar, Ameeduzzafar. solid lipid nanoparticles for nose to brain delivery of donepezil: Formulation, optimization by box–behnken design, in vitro and in vivo evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1838-1851.
[http://dx.doi.org/10.1080/21691401.2017.1394872]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy