Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Short Communication

Evaluation of the Nimbamrithadhi Panchathiktha Kashayam against SARS CoV-2 based on Network Pharmacology and Molecular Docking analysis

Author(s): Maneesha Murali, Bhagyalakshmi Nair, Vishnu V. Radhakrishnan, Aneesh T. Presanna* and Lekshmi R. Nath*

Volume 26, Issue 2, 2023

Published on: 21 July, 2022

Page: [436 - 447] Pages: 12

DOI: 10.2174/1386207325666220519112846

Price: $65

Abstract

Background: Nimbamrithadhi Panchathiktha Kashayam (NPK) is an Ayurvedic formulation of potent plant ingredients with immune-modulating effects and anti-viral activities.

Objectives: The present study is intended to identify the key target involved in immune and inflammatory response against SARS-COV-2 via network pharmacology and also investigates the potent phytoconstituent within NPK in combating or modulating target response via molecular docking.

Methods: Active phytoconstituents of NPK were filtered based on overall bioavailability and druglikeness by Lipinski’s and ADMETOX prediction.

Results: Results indicate that IRF 7 can be selected as an efficient target in regulating immunomodulatory and anti-viral activity via network pharmacology. Molecular docking studies show that apigenin (22.22 Kcal /mol), thiamine (24.89 Kcal /mol) and esculetin (25.21 Kcal /mol) within Nimbamrithadhi Panchathiktha Kashayam(NPK) possess better binding affinity in comparison with standard drug gemcitabine (14.56 Kcal /mol). Even though docking score is more for Esculetin and Thiamine, Apigenin within Solanum Virgianum (Yellow nightshade) and Azadirachta Indica (Neem) is considered as the active phytoconstituent in modulating immune responses and anti-viral activities based on the number and nature of amino acid interaction.

Conclusion: To the best of our knowledge, no scientific validation has been done on NPK against COVID-19. The study indicates that NPK can be a better alternative prophylaxis strategy against SARS-COV-2 infection if further validated via suitable preclinical studies.

Keywords: Nimbamrithadhi Panchathiktha Kashayam, immune and inflammatory response SARS-COV-2, Apigenin, network pharmacology, molecular docking.

« Previous
Graphical Abstract

[1]
Zheng, J. SARS-COV-2: An emerging coronavirus that causes a global threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[2]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[3]
Joseph, S.; Nair, B.; Nath, L.R. The ineluctable role of ACE-2 receptors in SARS COV-2 infection and drug repurposing as a plausible SARS COV-2 therapy: A concise treatise. Curr. Mol. Med., 2021, 21(10), 888-913.
[http://dx.doi.org/10.2174/1573405617666210204212024] [PMID: 33563197]
[4]
Liang, S.; Liu, X.; Zhang, S.; Li, M.; Zhang, Q.; Chen, J. Bind-ing mechanism of inhibitors to SARS-COV-2 main protease deciphered by multiple replica molecular dynamics simula-tions. Phys. Chem. Chem. Phys., 2022, 24(3), 1743-1759.
[http://dx.doi.org/10.1039/D1CP04361G] [PMID: 34985081]
[5]
Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khan-ra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of structural and non-structural proteins and therapeutic targets of SARS-COV-2 for COVID-19. Cells, 2021, 10(4), 821.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[6]
Baby, B.; Devan, A.R.; Nair, B.; Nath, L.R. The impetus of COVID -19 in multiple organ affliction apart from respiratory infection: Pathogenesis, diagnostic measures and current treatment strategY. Infect. Disord. Drug Targets, 2021, 21(4), 514-526.
[http://dx.doi.org/10.2174/1871526520999200905115050] [PMID: 32888278]
[7]
Abdelrahman, Z.; Li, M.; Wang, X. Comparative review of SARS-COV-2, SARS-COV, MERS-CoV, and influenza a res-piratory viruses. Front. Immunol., 2020, 11, 552909.
[http://dx.doi.org/10.3389/fimmu.2020.552909] [PMID: 33013925]
[8]
Wu, J.; Deng, W.; Li, S.; Yang, X. Advances in research on ACE2 as a receptor for 2019-nCoV. Cell. Mol. Life Sci., 2021, 78(2), 531-544.
[http://dx.doi.org/10.1007/s00018-020-03611-x] [PMID: 32780149]
[9]
Bhardwaj, A.; Sapra, L.; Saini, C.; Azam, Z.; Mishra, P.K.; Verma, B.; Mishra, G.C.; Srivastava, R.K. COVID-19: Immu-nology, immunopathogenesis and potential therapies. Int. Rev. Immunol., 2022, 41(2), 171-206.
[http://dx.doi.org/10.1080/08830185.2021.1883600] [PMID: 33641587]
[10]
Dixon, D.C.K.; Ratan, C.; Nair, B.; Mangalath, S.; Abraham, R.; Nath, L.R. RNA sensors as a mechanism of innate im-mune evasion among SARS-COV2, HIV and Nipah viruses. Curr. Protein Pept. Sci., 2021, 22(4), 273-289.
[http://dx.doi.org/10.2174/1389203722666210322142725] [PMID: 33749559]
[11]
Boechat, J.L.; Chora, I.; Morais, A.; Delgado, L. The immune response to SARS-COV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology, 2021, 27(5), 423-437.
[http://dx.doi.org/10.1016/j.pulmoe.2021.03.008] [PMID: 33867315]
[12]
Kang, S.; Tanaka, T.; Inoue, H.; Ono, C.; Hashimoto, S.; Kioi, Y.; Matsumoto, H.; Matsuura, H.; Matsubara, T.; Shimizu, K.; Ogura, H.; Matsuura, Y.; Kishimoto, T. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular en-dothelial cells in cytokine release syndrome. Proc. Natl. Acad. Sci. USA, 2020, 117(36), 22351-22356.
[http://dx.doi.org/10.1073/pnas.2010229117] [PMID: 32826331]
[13]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[14]
Bhaskar, S.; Sinha, A.; Banach, M.; Mittoo, S.; Weissert, R.; Kass, J.S.; Rajagopal, S.; Pai, A.R.; Kutty, S. Cytokine storm in COVID-19-immunopathological mechanisms, clinical con-siderations, and therapeutic approaches: The REPROGRAM consortium position paper. Front. Immunol., 2020, 11, 1648.
[http://dx.doi.org/10.3389/fimmu.2020.01648] [PMID: 32754159]
[16]
Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.P.; Chand, R.P.B.; Aparna, S.R.; Mangalapandi, P.; Samal, A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep., 2018, 8(1), 4329.
[http://dx.doi.org/10.1038/s41598-018-22631-z] [PMID: 29531263]
[17]
Lans, C.; van Asseldonk, T. Dr. Duke’s Phytochemical and ethnobotanical databases, a cornerstone in the validation of ethnoveterinary medicinal plants, as demonstrated by data on pets in british Columbia. Medicinal and Aromatic Plants of North America; Springer: Cham, 2020, pp. 219-246.
[http://dx.doi.org/10.1007/978-3-030-44930-8_10]
[18]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gin-dulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and com-pound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[19]
Prasanth, D.S.; Murahari, M.; Chandramohan, V.; Bhavya, G.; Lakshmana Rao, A.; Panda, S.P.; Rao, G.K.; Chakravarthi, G.; Teja, N.; Suguna Rani, P.; Ashu, G.; Purnadurganjali, C.; Akhil, P.; Vedita Bhavani, G.; Jaswitha, T. In-silico strategies of some selected phytoconstituents from Melissa officinalis as SARS CoV-2 main protease and spike protein (COVID-19) inhibitors. Mol. Simul., 2021, 1-4(6), 457-470.
[http://dx.doi.org/10.1080/08927022.2021.1880576]
[20]
Jin, J.; Chen, B.; Zhan, X.; Zhou, Z.; Liu, H.; Dong, Y. Net-work pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PLoS One, 2021, 16(6), e0252508.
[http://dx.doi.org/10.1371/journal.pone.0252508] [PMID: 34125845]
[21]
Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional Chinese medicine: Review and as-sessment. Front. Pharmacol., 2019, 10, 123.
[http://dx.doi.org/10.3389/fphar.2019.00123] [PMID: 30846939]
[22]
Fan, Q.; Guo, L.; Guan, J.; Chen, J.; Fan, Y.; Chen, Z.; Li, H. Network pharmacology-based study on the mechanism of gegen qinlian decoction against colorectal cancer. Evid. Based Complement. Alternat. Med., 2020, 2020, 8897879.
[http://dx.doi.org/10.1155/2020/8897879] [PMID: 33294000]
[23]
Contreras-Puentes, N.; Mercado-Camargo, J.; Alvíz-Amador, A. In silico study of ginsenoside analogues as possible BACE1 inhibitors involved in Alzheimer’s disease. F1000 Res., 2019, 8, 1169.
[http://dx.doi.org/10.12688/f1000research.19775.1]
[24]
Qasaymeh, R.M.; Rotondo, D.; Oosthuizen, C.B.; Lall, N.; Seidel, V. Predictive binding affinity of plant-derived natural products towards the protein kinase g enzyme of mycobacte-rium tuberculosis (mtpkng). Plants, 2019, 8(11), 477.
[http://dx.doi.org/10.3390/plants8110477] [PMID: 31698813]
[25]
Kalita, J.; Chetia, D.; Rudrapal, M. Molecular docking, drug-likeness studies and ADMET prediction of quinoline imines for antimalarial activity. J. Med. Chem. Drug Des., 2019, 2(1), 1-7.
[http://dx.doi.org/10.16966/2578-9589.133]
[26]
Anjum, F.; Mohammad, T.; Almalki, A.A.; Akhtar, O.; Ab-dullaev, B.; Hassan, M.I. Phytoconstituents and medicinal plants for anticancer drug discovery: Computational identifi-cation of potent inhibitors of PIM1 Kinase. OMICS, 2021, 25(9), 580-590.
[http://dx.doi.org/10.1089/omi.2021.0107] [PMID: 34448628]
[27]
Al-Sehemi, A.G.; Olotu, F.A.; Dev, S.; Pannipara, M.; Soli-man, M.E.; Carradori, S.; Mathew, B. Natural products data-base screening for the discovery of naturally occurring SARS-COV-2 spike glycoprotein blockers. ChemistrySelect, 2020, 5(42), 13309-13317.
[http://dx.doi.org/10.1002/slct.202003349] [PMID: 33363254]
[28]
Bano, I.; Sharif, M.; Alam, S. Genetic drift in the genome of SARS COV-2 and its global health concern. J. Med. Virol., 2022, 94(1), 88-98.
[http://dx.doi.org/10.1002/jmv.27337] [PMID: 34524697]
[29]
Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-COV-2 in-fection. Eur. J. Intern. Med., 2020, 76, 14-20.
[http://dx.doi.org/10.1016/j.ejim.2020.04.037] [PMID: 32336612]
[30]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 323(18), 1824-1836.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[31]
Gharbharan, A.; Jordans, C.C. GeurtsvanKessel, C.; den Hollander, J.G.; Karim, F.; Mollema, F.P.N.; Stalenhoef - Schukken, J.E.; Dofferhoff, A.; Ludwig, I.; Koster, A.; Has-sing, R-J.; Bos, J.C.; van Pottelberge, G.R.; Vlasveld, I.N.; Ammerlaan, H.S.M.; van Leeuwen - Segarceanu, E.M.; Miedema, J.; van der Eerden, M.; Schrama, T.J.; Papageor-giou, G.; te Boekhorst, P.; Swaneveld, F.H.; Mueller, Y.M.; Schreurs, M.W.J.; van Kampen, J.J.A.; Rockx, B.; Okba, N.M.A.; Katsikis, P.D.; Koopmans, M.P.G.; Haagmans, B.L.; Rokx, C.; Rijnders, B.J.A. Effects of potent neutralizing anti-bodies from convalescent plasma in patients hospitalized for severe SARS-COV-2 infection. Nat. Commun., 2021, 12(1), 1-2.
[http://dx.doi.org/10.1038/s41467-021-23469-2] [PMID: 33397941]
[32]
Khuroo, M.S. Chloroquine and hydroxychloroquine in coro-navirus disease 2019 (COVID-19). Facts, fiction and the hype: A critical appraisal. Int. J. Antimicrob. Agents, 2020, 56(3), 106101.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106101] [PMID: 32687949]
[33]
Martinez, M.A. Lack of effectiveness of repurposed drugs for COVID-19 treatment. Front. Immunol., 2021, 12, 635371.
[http://dx.doi.org/10.3389/fimmu.2021.635371] [PMID: 33777024]
[34]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and po-tential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[35]
Lee, K.; Kim, D.E.; Jang, K.S.; Kim, S.J.; Cho, S.; Kim, C. Gemcitabine, a broad-spectrum antiviral drug, suppresses en-terovirus infections through innate immunity induced by the inhibition of pyrimidine biosynthesis and nucleotide deple-tion. Oncotarget, 2017, 8(70), 115315-115325.
[http://dx.doi.org/10.18632/oncotarget.23258] [PMID: 29383162]
[36]
Kumar, P.; Kumar, M.; Bedi, O.; Gupta, M.; Kumar, S.; Jaiswal, G.; Rahi, V.; Yedke, N.G.; Bijalwan, A.; Sharma, S.; Jamwal, S. Role of vitamins and minerals as immunity boost-ers in COVID-19. Inflammopharmacology, 2021, 29(4), 1001-1016.
[http://dx.doi.org/10.1007/s10787-021-00826-7] [PMID: 34110533]
[37]
Lauxmann, M.A.; Santucci, N.E.; Autrán-Gómez, A.M. The SARS-COV-2 coronavirus and the COVID-19 outbreak. Int. Braz J Urol, 2020, 46(Suppl. 1), 6-18.
[http://dx.doi.org/10.1590/s1677-5538.ibju.2020.s101] [PMID: 32549071]
[38]
Adithya, J.; Nair, B.; Aishwarya, T.S.; Nath, L.R. The plausi-ble role of Indian traditional medicine in combating corona-virus (SARS-COV 2): A mini-review. Curr. Pharm. Biotechnol., 2021, 22(7), 906-919.
[http://dx.doi.org/10.2174/1389201021666200807111359] [PMID: 32767920]
[39]
Castelli, V.; Cimini, A.; Ferri, C. Cytokine storm in COVID-19: when you come out of the storm, you won’t be the same person who walked in. Front. Immunol., 2020, 11, 2132.
[http://dx.doi.org/10.3389/fimmu.2020.02132] [PMID: 32983172]
[40]
Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-COV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev., 202O, 54, 62-75.
[41]
Qian, S.; Fan, W.; Qian, P.; Zhang, D.; Wei, Y.; Chen, H.; Li, X. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses, 2015, 7(4), 1613-1626.
[http://dx.doi.org/10.3390/v7041613] [PMID: 25835532]
[42]
Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; Antolak, H.; Azzini, E.; Setzer, W.N.; Martins, N. The therapeutic potential of apigenin. Int. J. Mol. Sci., 2019, 20(6), 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[43]
Zhang, Q.; Bastard, P.; Bolze, A.; Jouanguy, E.; Zhang, S.Y.; Cobat, A.; Notarangelo, L.D.; Su, H.C.; Abel, L.; Casanova, J.L.; Casanova, J.L. Life-threatening COVID-19: Defective in-terferons unleash excessive inflammation. Med.(N Y), 2020, 1(1), 14-20.
[http://dx.doi.org/10.1016/j.medj.2020.12.001] [PMID: 33363283]
[44]
Bagheri, A.; Moezzi, S.M.I.; Mosaddeghi, P. Nadimi Parash-kouhi, S.; Fazel Hoseini, S.M.; Badakhshan, F.; Neg-ahdaripour, M. Interferon-inducer antivirals: Potential candi-dates to combat COVID-19. Int. Immunopharmacol., 2021, 91, 107245.
[http://dx.doi.org/10.1016/j.intimp.2020.107245] [PMID: 33348292]
[45]
Shakoor, H.; Feehan, J.; Mikkelsen, K.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Stojanovska, L.; Apostolopoulos, V. Be well: A potential role for vitamin B in COVID-19. Maturitas, 2021, 144, 108-111.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.007] [PMID: 32829981]
[46]
Hamoda, A.M.; Fayed, B.; Ashmawy, N.S.; El-Shorbagi, A.A.; Hamdy, R.; Soliman, S.S.M. Marine sponge is a prom-ising natural source of anti-SARS-COV-2 scaffold. Front. Pharmacol., 2021, 12, 666664.
[http://dx.doi.org/10.3389/fphar.2021.666664] [PMID: 34079462]
[47]
Khanal, P.; Duyu, T.; Patil, B.M.; Dey, Y.N.; Pasha, I.; Wan-jari, M.; Gurav, S.S.; Maity, A. Network pharmacology of AYUSH recommended immune-boosting medicinal plants against COVID-19. J. Ayurveda Integr. Med., 2022, 13(1), 100374.
[http://dx.doi.org/10.1016/j.jaim.2020.11.004] [PMID: 33250601]
[48]
Banerjee, S.; Kar, A.; Mukherjee, P.K.; Haldar, P.K.; Sharma, N.; Katiyar, C.K. Immunoprotective potential of Ayurvedic herb Kalmegh (Andrographis paniculata) against respiratory viral infections - LC-MS/MS and network pharmacology analysis. Phytochem. Anal., 2021, 32(4), 629-639.
[http://dx.doi.org/10.1002/pca.3011] [PMID: 33167083]
[49]
Chikhale, R.; Sinha, S.K.; Wanjari, M.; Gurav, N.S.; Ayyanar, M.; Prasad, S.; Khanal, P.; Dey, Y.N.; Patil, R.B.; Gurav, S.S. Computational assessment of saikosaponins as adjuvant treatment for COVID-19: Molecular docking, dynamics, and network pharmacology analysis. Mol. Divers., 2021, 25(3), 1889-1904.
[http://dx.doi.org/10.1007/s11030-021-10183-w] [PMID: 33492566]
[50]
Kumar, T.D.; Devi, S.M.S.; Kumar, U.S.; Sherlin, A.; Mathew, A.; Lakshmipriya, M.; Sathiyarajeswaran, P.; Gnanasambandan, R.; Siva, R.; Magesh, R.; Doss, G.B.C. Understanding the activating mechanism of the immune sys-tem against COVID-19 by Traditional Indian Medicine: Net-work pharmacology approach. Adv. Protein Chem. Struct. Biol., 2022, 129, 275-379.
[http://dx.doi.org/10.1016/bs.apcsb.2021.11.007] [PMID: 35305722]
[51]
Noor, H.; Ikram, A.; Rathinavel, T.; Kumarasamy, S.; Nasir Iqbal, M.; Bashir, Z. Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treat-ing COVID-19 - a computational modeling. J. Biomol. Struct. Dyn., 2021, 1-16.
[http://dx.doi.org/10.1080/07391102.2021.1873190] [PMID: 33491580]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy