Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Alantolactone Inhibits Melanoma Cell Culture Viability and Migration and Promotes Apoptosis by Inhibiting Wnt/β-Catenin Signaling

Author(s): Lingzhao Zhang, Jiayi Chen, Yangmei Chen, Daopei Zou, Yihuan Pu, Mengqi Wei, Yanran Huang, Yuxin Li, Qing Huang and Jin Chen*

Volume 23, Issue 1, 2023

Published on: 27 August, 2022

Page: [94 - 104] Pages: 11

DOI: 10.2174/1871520622666220519100054

Price: $65

conference banner
Abstract

Background: Melanoma is a highly invasive and metastatic malignant tumor originating from melanocytes and is associated with a poor prognosis. Surgical resection and chemotherapy are currently the main therapeutic options for malignant melanoma; however, their efficacy is poor, highlighting the need for the development of new, safe, and effective drugs for the treatment of this cancer.

Objective: To investigate the effects of alantolactone (ALT) on the proliferative, migratory, invasive, and apoptotic ability of malignant melanoma cells and explore its potential anticancer mechanism.

Methods: Melanoma cells (A375 and B16) were treated with different concentrations (4, 6, 8, and 10 μmol/L) of ALT, with DMSO and no treatment serving as controls. The effects of the different concentrations of the drug on cell proliferation were assessed by crystal violet staining and CCK-8 assay. The effects on cell migration and invasion were detected by wound healing and Transwell assays, respectively. Flow cytometry was used to evaluate the effects of the drug on apoptosis and the cell cycle. ALT target genes in melanoma were screened using network pharmacology. Western blotting was used to measure the expression levels of the proliferation-related protein PCNA; the apoptosisrelated proteins Bax, Bcl-2, and caspase-3; the invasion and metastasis-related proteins MMP-2, MMP-7, MMP-9, vimentin, E-cadherin, and N-cadherin; and the canonical Wnt signaling pathway-related proteins β-catenin, c-Myc, and p-GSK3β. In addition, an l model of melanoma was established by the subcutaneous injection of A375 melanoma cells into nude mice, following which the effects of ALT treatment on malignant melanoma were determined in vivo.

Results: Compared with the controls, the proliferative, migratory, and invasive capacity of ALT-treated melanoma cells was significantly inhibited, whereas apoptosis was enhanced (P<0.01), showing effects that were exerted in a dose-dependent manner. The expression levels of the pro-apoptotic proteins Bax and caspase-3, as well as those of the interstitial marker E-cadherin, were upregulated in melanoma cells irrespective of the ALT concentration (P<0.05). In contrast, the expression levels of the anti-apoptotic protein Bcl-2, the proliferation-related protein PCNA, and the invasion and metastasis-related proteins MMP-2, MMP-7, MMP-9, N-cadherin, and vimentin were downregulated (P<0.05). The network pharmacology results indicated that GSK3β may be a key ALT target in melanoma. Meanwhile, western blotting assays showed that ALT treatment markedly suppressed the expression of β-catenin as well as that of its downstream effector c-Myc, and could also inhibit GSK3β phosphorylation.

Conclusion: ALT can effectively inhibit the culture viability, migration, and invasion of A375 and B16 melanoma cells while also promoting their apoptosis. ALT may exert its anti-melanoma effects by inhibiting the Wnt/β-catenin signaling pathway. Combined, our data indicate that ALT has the potential as an effective and safe therapeutic drug for the treatment of melanoma.

Keywords: Melanoma, alantolactone, anti-tumor, Wnt/β-catenin, Chinese medicinal herb, cell culture, apoptosis.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics CA. Cancer J. Clin.,
[2]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[3]
Turner, N.; Ware, O.; Bosenberg, M. Genetics of metastasis: Melanoma and other cancers. Clin. Exp. Metastasis, 2018, 35(5-6), 379-391.
[http://dx.doi.org/10.1007/s10585-018-9893-y] [PMID: 29722002]
[4]
Rubin, K.M.; Lawrence, D.P. Your patient with melanoma: Staging, prognosis, and treatment. Oncology (Williston Park), 2009, 23(8), 13-21.
[PMID: 19860037]
[5]
Eggermont, A.M.; Schadendorf, D. Melanoma and immunotherapy. Hematol. Oncol. Clin. North Am., 2009, 23(3), 547-564 ix-x.
[http://dx.doi.org/10.1016/j.hoc.2009.03.009] [PMID: 19464602]
[6]
Konishi, T.; Shimada, Y.; Nagao, T.; Okabe, H.; Konoshima, T. Antiproliferative sesquiterpene lactones from the roots of Inula helenium. Biol. Pharm. Bull., 2002, 25(10), 1370-1372.
[http://dx.doi.org/10.1248/bpb.25.1370] [PMID: 12392098]
[7]
Zhang, J.; Shen, L.; Li, X.; Song, W.; Liu, Y.; Huang, L. Nanoformulated codelivery of quercetin and alantolactone promotes an antitumor response through synergistic immunogenic cell death for microsatellite-stable colorectal cancer. ACS Nano, 2019, 13(11), 12511-12524.
[http://dx.doi.org/10.1021/acsnano.9b02875] [PMID: 31664821]
[8]
Liu, J.; Yang, Z.; Kong, Y.; He, Y.; Xu, Y.; Cao, X. Antitumor activity of alantolactone in lung cancer cell lines NCI-H1299 and Anip973. Food Biochem., 2019, 43(9), e12972.
[http://dx.doi.org/10.1111/jfbc.12972] [PMID: 31489665]
[9]
Cui, L.; Bu, W.; Song, J.; Feng, L.; Xu, T.; Liu, D.; Ding, W.; Wang, J.; Li, C.; Ma, B.; Luo, Y.; Jiang, Z.; Wang, C.; Chen, J.; Hou, J.; Yan, H.; Yang, L.; Jia, X. Apoptosis induction by alantolactone in breast cancer MDA-MB-231 cells through reactive oxygen species-mediated mitochondrion-dependent pathway. Arch. Pharm. Res., 2018, 41(3), 299-313.
[http://dx.doi.org/10.1007/s12272-017-0990-2] [PMID: 29214600]
[10]
He, R.; Shi, X.; Zhou, M.; Zhao, Y.; Pan, S.; Zhao, C.; Guo, X.; Wang, M.; Li, X.; Qin, R. Alantolactone induces apoptosis and improves chemosensitivity of pancreatic cancer cells by impairment of autophagy-lysosome pathway via targeting TFEB. Toxicol. Appl. Pharmacol., 2018, 356, 159-171.
[http://dx.doi.org/10.1016/j.taap.2018.08.003] [PMID: 30086361]
[11]
He, Y.; Cao, X.; Kong, Y.; Wang, S.; Xia, Y.; Bi, R.; Liu, J. Apoptosis-promoting and migration-suppressing effect of alantolactone on gastric cancer cell lines BGC-823 and SGC-7901 via regulating p38MAPK and NF-κB pathways. Hum. Exp. Toxicol., 2019, 38(10), 1132-1144.
[http://dx.doi.org/10.1177/0960327119855128] [PMID: 31203647]
[12]
Zhang, Y.; Zhao, Y.; Ran, Y.; Guo, J.; Cui, H.; Liu, S. Alantolactone exhibits selective antitumor effects in HELA human cervical cancer cells by inhibiting cell migration and invasion, G2/M cell cycle arrest, mitochondrial mediated apoptosis and targeting Nf-kB signalling pathway. J. BUON, 2019, 24(6), 2310-2315.
[PMID: 31983099]
[13]
González-Magaña, A.; Blanco, F.J. Human PCNA structure, function and interactions. Biomolecules, 2020, 10(4), 570.
[http://dx.doi.org/10.3390/biom10040570] [PMID: 32276417]
[14]
Gajos-Michniewicz, A.; Czyz, M. WNT signaling in melanoma. Int. J. Mol. Sci., 2020, 21(14), 4852.
[http://dx.doi.org/10.3390/ijms21144852] [PMID: 32659938]
[15]
Damsky, W.E.; Theodosakis, N.; Bosenberg, M. Melanoma metastasis: New concepts and evolving paradigms. Oncogene, 2014, 33(19), 2413-2422.
[http://dx.doi.org/10.1038/onc.2013.194] [PMID: 23728340]
[16]
Rebecca, V.W.; Somasundaram, R.; Herlyn, M. Pre-clinical modeling of cutaneous melanoma. Nat. Commun., 2020, 11(1), 2858.
[http://dx.doi.org/10.1038/s41467-020-15546-9] [PMID: 32504051]
[17]
Babaei, G.; Gholizadeh-Ghaleh Aziz, S.; Rajabi Bazl, M.; Khadem Ansari, M.H. A comprehensive review of anticancer mechanisms of action of Alantolactone. Biomed. Pharmacother., 2021, 136, 111231.
[http://dx.doi.org/10.1016/j.biopha.2021.111231] [PMID: 33454597]
[18]
Rasul, A.; Khan, M.; Ali, M.; Li, J.; Li, X. Targeting apoptosis pathways in cancer with alantolactone and isoalantolactone. ScientificWorldJournal, 2013, 2013, 248532.
[http://dx.doi.org/10.1155/2013/248532] [PMID: 24288468]
[19]
Ben-Izhak, O.; Bar-Chana, M.; Sussman, L.; Dobiner, V.; Sandbank, J.; Cagnano, M.; Cohen, H.; Sabo, E. Ki67 antigen and PCNA proliferation markers predict survival in anorectal malignant melanoma. Histopathology, 2002, 41(6), 519-525.
[http://dx.doi.org/10.1046/j.1365-2559.2002.01444.x] [PMID: 12460204]
[20]
Ledgerwood, E.C.; Morison, I.M. Targeting the apoptosome for cancer therapy. Clin. Cancer Res., 2009, 15(2), 420-424.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1172] [PMID: 19147745]
[21]
Matthews, G.M.; Newbold, A.; Johnstone, R.W. Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv. Cancer Res., 2012, 116, 165-197.
[http://dx.doi.org/10.1016/B978-0-12-394387-3.00005-7] [PMID: 23088871]
[22]
Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 47-59.
[http://dx.doi.org/10.1038/nrm2308] [PMID: 18097445]
[23]
Morrill, S.; He, D.Z.Z. Apoptosis in inner ear sensory hair cells. J. Otol., 2017, 12(4), 151-164.
[http://dx.doi.org/10.1016/j.joto.2017.08.001] [PMID: 29937851]
[24]
Yang, C.; Zhang, L.; Huang, H.; Yuan, X.; Zhang, P.; Ye, C.; Wei, M.; Huang, Y.; Luo, X.; Luo, J. Alantolactone inhibits proliferation, metastasis and promotes apoptosis of human osteosarcoma cells by suppressing Wnt/β-catenin and MAPKs signaling pathways. Genes Dis., 2020, 9(2), 466-478.
[http://dx.doi.org/10.1016/j.gendis.2020.07.014] [PMID: 35224161]
[25]
Diepenbruck, M.; Christofori, G. Epithelial-mesenchymal transition (EMT) and metastasis: Yes, no, maybe? Curr. Opin. Cell Biol., 2016, 43, 7-13.
[http://dx.doi.org/10.1016/j.ceb.2016.06.002] [PMID: 27371787]
[26]
Yang, G.J.; Wang, W.; Lei, P.M.; Leung, C.H.; Ma, D.L. A 7-methoxybicoumarin derivative selectively inhibits BRD4 BD2 for anti-melanoma therapy. Int. J. Biol. Macromol., 2020, 164, 3204-3220.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.194] [PMID: 32860796]
[27]
Scheau, C.; Badarau, I.A.; Costache, R.; Caruntu, C.; Mihai, G.L.; Didilescu, A.C.; Constantin, C.; Neagu, M. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal. Cell. Pathol. (Amst.), 2019, 2019, 9423907.
[http://dx.doi.org/10.1155/2019/9423907] [PMID: 31886121]
[28]
Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M.J. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[29]
Couri, T.; Pillai, A. Goals and targets for personalized therapy for HCC. Hepatol. Int., 2019, 13(2), 125-137.
[http://dx.doi.org/10.1007/s12072-018-9919-1] [PMID: 30600478]
[30]
Jin, S.; Borkhuu, O.; Bao, W.; Yang, Y.T. Signaling pathways in thyroid cancer and their therapeutic implications. J. Clin. Med. Res., 2016, 8(4), 284-296.
[http://dx.doi.org/10.14740/jocmr2480w] [PMID: 26985248]
[31]
Uka, R.; Britschgi, C.; Krättli, A.; Matter, C.; Mihic, D.; Okoniewski, M.J.; Gualandi, M.; Stupp, R.; Cinelli, P.; Dummer, R.; Levesque, M.P.; Shakhova, O. Temporal activation of WNT/β-catenin signaling is sufficient to inhibit SOX10 expression and block melanoma growth. Oncogene, 2020, 39(20), 4132-4154.
[http://dx.doi.org/10.1038/s41388-020-1267-7] [PMID: 32238882]
[32]
Demunter, A.; Libbrecht, L.; Degreef, H.; De Wolf-Peeters, C.; van den Oord, J.J. Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod. Pathol., 2002, 15(4), 454-461.
[http://dx.doi.org/10.1038/modpathol.3880546] [PMID: 11950921]
[33]
Damsky, W.E. Curley, D.P.; Santhanakrishnan, M.; Rosenbaum, L.E.; Platt, J.T.; Gould Rothberg, B.E.; Taketo, M.M.; Dankort, D.; Rimm, D.L.; McMahon, M.; Bosenberg, M. β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell, 2011, 20(6), 741-754.
[http://dx.doi.org/10.1016/j.ccr.2011.10.030] [PMID: 22172720]
[34]
Sferrazza, G.; Corti, M.; Brusotti, G.; Pierimarchi, P.; Temporini, C.; Serafino, A.; Calleri, E. Nature-derived compounds modulating Wnt/β-catenin pathway: A preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm. Sin. B, 2020, 10(10), 1814-1834.
[http://dx.doi.org/10.1016/j.apsb.2019.12.019] [PMID: 33163337]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy