Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

Docosahexaenoic Acid Ester of Phloridzin Reduces Inflammation and Insulin Resistance via AMPK

Author(s): Jingqing Chen, Zhenlong Wu, Jin Wang, Xuemeng Si, Rui Zhang, Tianqi Sun, Qiaoyan Dong, Wenqing Wu* and Yefeng Qiu*

Volume 28, Issue 22, 2022

Published on: 30 June, 2022

Page: [1854 - 1862] Pages: 9

DOI: 10.2174/1381612828666220518102440

Price: $65

Abstract

Background: Docosahexaenoic acid-acylated phloridzin (PZ-DHA), a novel polyphenol fatty acid ester derivative, is synthesized through an acylation reaction of phloridzin (PZ) and docosahexaenoic acid (DHA). PZ-DHA is more stable than DHA and exhibits higher cellular uptake and bioavailability than PZ.

Objective: The study aims to investigate the effects of PZ-DHA on insulin resistance in the skeletal muscle and the related mechanisms; we used palmitic acid (PA)-treated C2C12 myotubes as an insulin resistance model.

Results: We found that PZ-DHA increased the activity of AMP-activated protein kinase (AMPK) and improved glucose uptake and mitochondrial function in an AMPK-dependent manner in untreated C2C12 myotubes. PZ-DHA treatment of the myotubes reversed PA-induced insulin resistance; this was indicated by increases in glucose uptake and the expression of membrane glucose transporter 4 (Glut4) and phosphorylated Akt. Moreover, PZ-DHA treatment reversed PA-induced inflammation and oxidative stress. These effects of PZ-DHA were mediated by AMPK. Furthermore, the increase in AMPK activity, improvement in insulin resistance, and decrease in inflammatory and oxidative responses after PZ-DHA treatment diminished upon co-treatment with a liver kinase B1 (LKB1) inhibitor, suggesting that PZ-DHA improved AMPK activity by regulating its upstream kinase, LKB1.

Conclusion: The effects of PZ-DHA on insulin resistance in C2C12 myotubes may be mediated by the LKB1- AMPK signaling pathway. Hence, PZ-DHA is a promising therapeutic agent for insulin resistance in type 2 diabetes.

Keywords: Docosahexaenoic acid, glucose uptake, insulin resistance, myotubes, phloridzin, AMP-activated protein kinase.

« Previous
[1]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7 ] [PMID: 32015507]
[2]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5 ] [PMID: 31986264]
[3]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 580(7803)E7
[http://dx.doi.org/10.1038/s41586-020-2202-3 ] [PMID: 32296181]
[4]
Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China - key questions for impact assessment. N Engl J Med 2020; 382(8): 692-4.
[http://dx.doi.org/10.1056/NEJMp2000929 ] [PMID: 31978293]
[5]
Tabari P, Amini M, Moghadami M, Moosavi M. International public health responses to COVID-19 outbreak: A rapid review. Iran J Med Sci 2020; 45(3): 157-69.
[PMID: 32546882]
[6]
Organization WH. WHO coronavirus (COVID-19) dashboard. Available from 2021.
[7]
Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020; 18(1): 179.
[http://dx.doi.org/10.1186/s12967-020-02344-6 ] [PMID: 32321524]
[8]
Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021; 19(3): 141-54.
[http://dx.doi.org/10.1038/s41579-020-00459-7 ] [PMID: 33024307]
[9]
Naqvi AAT, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10)165878
[http://dx.doi.org/10.1016/j.bbadis.2020.165878 ] [PMID: 32544429]
[10]
Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902 ] [PMID: 31987001]
[11]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[PMID: 25720466] [http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[12]
Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19: 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6]
[13]
Louten J. Virus replication. Essen Hum Virol 2016; 2016: 49-70.
[14]
Tsang HF, Chan LWC, Cho WCS, et al. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev Anti Infect Ther 2021; 19(7): 877-88.
[http://dx.doi.org/10.1080/14787210.2021.1863146 ] [PMID: 33306423]
[15]
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 324(8): 782-93.
[http://dx.doi.org/10.1001/jama.2020.12839 ] [PMID: 32648899]
[16]
Kumar M, Al Khodor S. Pathophysiology and treatment strategies for COVID-19. J Transl Med 2020; 18(1): 353.
[http://dx.doi.org/10.1186/s12967-020-02520-8 ] [PMID: 32933536]
[17]
Gandhi RT, Lynch JB, Del Rio C. Mild or moderate COVID-19. N Engl J Med 2020; 383(18): 1757-66.
[http://dx.doi.org/10.1056/NEJMcp2009249 ] [PMID: 32329974]
[18]
Berlin DA, Gulick RM, Martinez FJ. Severe COVID-19. N Engl J Med 2020; 383(25): 2451-60.
[http://dx.doi.org/10.1056/NEJMcp2009575 ] [PMID: 32412710]
[19]
Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther 2021; 6(1): 255.
[http://dx.doi.org/10.1038/s41392-021-00679-0 ] [PMID: 34234112]
[20]
Fathi N, Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int 2020; 44(9): 1792-7.
[http://dx.doi.org/10.1002/cbin.11403 ] [PMID: 32458561]
[21]
Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct Target Ther 2020; 5(1): 33.
[http://dx.doi.org/10.1038/s41392-020-0148-4 ] [PMID: 32296069]
[22]
Agbuduwe C, Basu S. Haematological manifestations of COVID-19: From cytopenia to coagulopathy. Eur J Haematol 2020; 105(5): 540-6.
[http://dx.doi.org/10.1111/ejh.13491 ] [PMID: 32663356]
[23]
Zhao Q, Meng M, Kumar R, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis 2020; 96: 131-5.
[http://dx.doi.org/10.1016/j.ijid.2020.04.086 ] [PMID: 32376308]
[24]
Al-Saadi EAKD, Abdulnabi MA. Hematological changes associated with COVID-19 infection. J Clin Lab Anal 2022; 36(1)e24064
[http://dx.doi.org/10.1002/jcla.24064 ] [PMID: 34783405]
[25]
Zheng H, Li H, Guo L, et al. Virulence and pathogenesis of SARS-CoV-2 infection in rhesus macaques: A nonhuman primate model of COVID-19 progression. PLoS Pathog 2020; 16(11)e1008949
[http://dx.doi.org/10.1371/journal.ppat.1008949 ] [PMID: 33180882]
[26]
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020; 39(7): 2085-94.
[http://dx.doi.org/10.1007/s10067-020-05190-5 ] [PMID: 32474885]
[27]
Tahir N, Zahra F. 2021.
[28]
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78(9): 4095-124.
[http://dx.doi.org/10.1007/s00018-021-03768-z ] [PMID: 33544156]
[29]
Petri B, Sanz MJ. Neutrophil chemotaxis. Cell Tissue Res 2018; 371(3): 425-36.
[http://dx.doi.org/10.1007/s00441-017-2776-8 ] [PMID: 29350282]
[30]
Sollberger G, Tilley DO, Zychlinsky A. Neutrophil extracellular traps: The biology of chromatin externalization. Dev Cell 2018; 44(5): 542-53.
[http://dx.doi.org/10.1016/j.devcel.2018.01.019 ] [PMID: 29533770]
[31]
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18(2): 134-47.
[http://dx.doi.org/10.1038/nri.2017.105 ] [PMID: 28990587]
[32]
Tomar B, Anders HJ, Desai J, Mulay SR. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells 2020; 9(6): 9.
[http://dx.doi.org/10.3390/cells9061383 ] [PMID: 32498376]
[33]
Wang J, Li Q, Yin Y, et al. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front Immunol 2020; 11: 2063.
[http://dx.doi.org/10.3389/fimmu.2020.02063 ] [PMID: 33013872]
[34]
Narasaraju T, Tang BM, Herrmann M, Muller S, Chow VTK, Radic M. Neutrophilia and NETopathy as key pathologic drivers of progressive lung impairment in patients with COVID-19. Front Pharmacol 2020; 11: 870.
[http://dx.doi.org/10.3389/fphar.2020.00870 ] [PMID: 32581816]
[35]
Janiuk K, Jabłońska E, Garley M. Significance of NETs formation in COVID-19. Cells 2021; 10(1): 10.
[http://dx.doi.org/10.3390/cells10010151 ] [PMID: 33466589]
[36]
Ulrich H, Pillat MM, Tárnok A. Dengue fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A perspective. Cytometry A 2020; 97(7): 662-7.
[http://dx.doi.org/10.1002/cyto.a.24047 ] [PMID: 32506725]
[37]
Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci 2020; 257118102
[http://dx.doi.org/10.1016/j.lfs.2020.118102 ] [PMID: 32687918]
[38]
Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol 2018; 9: 2061.
[http://dx.doi.org/10.3389/fimmu.2018.02061 ] [PMID: 30254639]
[39]
McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15(2): 87-103.
[http://dx.doi.org/10.1038/nri3787 ] [PMID: 25614319]
[40]
Jensen S, Thomsen AR. Sensing of RNA viruses: A review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 2012; 86(6): 2900-10.
[http://dx.doi.org/10.1128/JVI.05738-11 ] [PMID: 22258243]
[41]
Choi MJ, Yang JW, Lee S, et al. Suicide associated with COVID-19 infection: An immunological point of view. Eur Rev Med Pharmacol Sci 2021; 25(20): 6397-407.
[PMID: 34730221]
[42]
Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM consortium position paper. Front Immunol 2020; 11: 1648.
[http://dx.doi.org/10.3389/fimmu.2020.01648 ] [PMID: 32754159]
[43]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446 ] [PMID: 32612617]
[44]
Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol 2021; 93(1): 250-6.
[http://dx.doi.org/10.1002/jmv.26232 ] [PMID: 32592501]
[45]
Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics 2021; 11(1): 316-29.
[http://dx.doi.org/10.7150/thno.49713 ] [PMID: 33391477]
[46]
Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev 2020; 53: 66-70.
[PMID: 32418715] [http://dx.doi.org/10.1016/j.cytogfr.2020.05.002]
[47]
Meng QF, Tian R, Long H, et al. Capturing cytokines with advanced materials: A potential strategy to tackle COVID-19 cytokine storm. Adv Mater 2021; 33(20)e2100012
[http://dx.doi.org/10.1002/adma.202100012 ] [PMID: 33837596]
[48]
Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The immune response and immunopathology of COVID-19. Front Immunol 2020; 11: 2037.
[http://dx.doi.org/10.3389/fimmu.2020.02037 ] [PMID: 32983152]
[49]
Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev 2020; 19(5)102523
[PMID: 32205186] [http://dx.doi.org/10.1016/j.autrev.2020.102523]
[50]
Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol 2020; 11: 1518.
[http://dx.doi.org/10.3389/fimmu.2020.01518 ] [PMID: 32655582]
[51]
Vecchié A, Bonaventura A, Toldo S, Dagna L, Dinarello CA, Abbate A. IL-18 and infections: Is there a role for targeted therapies? J Cell Physiol 2021; 236(3): 1638-57.
[http://dx.doi.org/10.1002/jcp.30008 ] [PMID: 32794180]
[52]
Sun X, Wang T, Cai D, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev 2020; 53: 38-42.
[http://dx.doi.org/10.1016/j.cytogfr.2020.04.002 ] [PMID: 32360420]
[53]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003 ] [PMID: 32446778]
[54]
Damoiseaux J. The IL-2 - IL-2 receptor pathway in health and disease: The role of the soluble IL-2 receptor. Clin Immunol 2020; 218108515
[http://dx.doi.org/10.1016/j.clim.2020.108515 ] [PMID: 32619646]
[55]
Barata JT, Durum SK, Seddon B. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20(12): 1584-93.
[http://dx.doi.org/10.1038/s41590-019-0479-x ] [PMID: 31745336]
[56]
Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med 2020; 383(23): 2255-73.
[http://dx.doi.org/10.1056/NEJMra2026131 ] [PMID: 33264547]
[57]
Li H, Rostami A. IL-9: Basic biology, signaling pathways in CD4+ T cells and implications for autoimmunity. J Neuroimmune Pharmacol 2010; 5(2): 198-209.
[http://dx.doi.org/10.1007/s11481-009-9186-y ] [PMID: 20020328]
[58]
Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol 2019; 11(2): 11.
[http://dx.doi.org/10.1101/cshperspect.a028548 ] [PMID: 29038121]
[59]
González-García S, García-Peydró M, Alcain J, Toribio ML. Notch1 and IL-7 receptor signalling in early T-cell development and leukaemia. Curr Top Microbiol Immunol 2012; 360: 47-73.
[http://dx.doi.org/10.1007/82_2012_231 ] [PMID: 22695916]
[60]
Qian Y, Kang Z, Liu C, Li X. IL-17 signaling in host defense and inflammatory diseases. Cell Mol Immunol 2010; 7(5): 328-33.
[http://dx.doi.org/10.1038/cmi.2010.27 ] [PMID: 20514051]
[61]
Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009; 27: 519-50.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612 ] [PMID: 19302047]
[62]
Larsen KM, Minaya MK, Vaish V, Peña MMO. The role of IL-33/ST2 pathway in tumorigenesis. Int J Mol Sci 2018; 19(9): 19.
[http://dx.doi.org/10.3390/ijms19092676 ] [PMID: 30205617]
[63]
Dutta J, Fan Y, Gupta N, Fan G, Gélinas C. Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 2006; 25(51): 6800-16.
[http://dx.doi.org/10.1038/sj.onc.1209938 ] [PMID: 17072329]
[64]
Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules 2020; 10(3): 10.
[http://dx.doi.org/10.3390/biom10030487 ] [PMID: 32210029]
[65]
Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019; 50(4): 924-40.
[http://dx.doi.org/10.1016/j.immuni.2019.03.024 ] [PMID: 30995507]
[66]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001 ] [PMID: 32513566]
[67]
Pum A, Ennemoser M, Adage T, Kungl AJ. Cytokines and chemokines in SARS-CoV-2 infections-therapeutic strategies targeting cytokine storm. Biomolecules 2021; 11(1): 11.
[http://dx.doi.org/10.3390/biom11010091 ] [PMID: 33445810]
[68]
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620-9.
[http://dx.doi.org/10.1172/JCI137244 ] [PMID: 32217835]
[69]
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46(5): 846-8.
[http://dx.doi.org/10.1007/s00134-020-05991-x ] [PMID: 32125452]
[70]
Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol 2020; 92(7): 791-6.
[http://dx.doi.org/10.1002/jmv.25770 ] [PMID: 32181911]
[71]
Chen L, Liu HG, Liu W, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43(0)E005
[PMID: 32026671]
[72]
McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 2020; 19(6)102537
[http://dx.doi.org/10.1016/j.autrev.2020.102537 ] [PMID: 32251717]
[73]
Liu M, Guo S, Hibbert JM, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 2011; 22(3): 121-30.
[http://dx.doi.org/10.1016/j.cytogfr.2011.06.001 ] [PMID: 21802343]
[74]
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res 2009; 29(6): 313-26.
[http://dx.doi.org/10.1089/jir.2008.0027 ] [PMID: 19441883]
[75]
Lentzsch S, Gries M, Janz M, Bargou R, Dörken B, Mapara MY. Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 2003; 101(9): 3568-73.
[http://dx.doi.org/10.1182/blood-2002-08-2383 ] [PMID: 12506012]
[76]
Wu Y, Yoder A. Chemokine coreceptor signaling in HIV-1 infection and pathogenesis. PLoS Pathog 2009; 5(12)e1000520
[http://dx.doi.org/10.1371/journal.ppat.1000520 ] [PMID: 20041213]
[77]
Campbell LM, Maxwell PJ, Waugh DJ. Rationale and means to target pro-inflammatory interleukin-8 (CXCL8) signaling in cancer. Pharmaceuticals (Basel) 2013; 6(8): 929-59.
[http://dx.doi.org/10.3390/ph6080929 ] [PMID: 24276377]
[78]
Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5(1): 181.
[http://dx.doi.org/10.1038/s41392-020-00222-7 ] [PMID: 32879300]
[79]
Sampson M, Zhu QS, Corey SJ. Src kinases in G-CSF receptor signaling. Front Biosci 2007; 12: 1463-74.
[http://dx.doi.org/10.2741/2160 ] [PMID: 17127394]
[80]
Hercus TR, Broughton SE, Ekert PG, et al. The GM-CSF receptor family: Mechanism of activation and implications for disease. Growth Factors 2012; 30(2): 63-75.
[http://dx.doi.org/10.3109/08977194.2011.649919 ] [PMID: 22257375]
[81]
Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med 2018; 62: 75-88.
[http://dx.doi.org/10.1016/j.mam.2017.11.007 ] [PMID: 29137923]
[82]
Nilsson M, Heymach JV. Vascular endothelial growth factor (VEGF) pathway. J Thorac Oncol 2006; 1(8): 768-70.
[http://dx.doi.org/10.1097/01243894-200610000-00003 ] [PMID: 17409958]
[83]
Hojyo S, Uchida M, Tanaka K, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen 2020; 40: 37.
[http://dx.doi.org/10.1186/s41232-020-00146-3 ] [PMID: 33014208]
[84]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6(10)a016295
[http://dx.doi.org/10.1101/cshperspect.a016295 ] [PMID: 25190079]
[85]
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80(6): 607-13.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037 ] [PMID: 32283152]
[86]
Al-Samkari H, Berliner N. Hemophagocytic lymphohistiocytosis. Annu Rev Pathol 2018; 13: 27-49.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043625 ] [PMID: 28934563]
[87]
Meftahi GH, Jangravi Z, Sahraei H, Bahari Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of “inflame-aging”. Inflamm Res 2020; 69(9): 825-39.
[http://dx.doi.org/10.1007/s00011-020-01372-8 ] [PMID: 32529477]
[88]
Kempuraj D, Selvakumar GP, Ahmed ME, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist 2020; 26(5-6): 402-14.
[http://dx.doi.org/10.1177/1073858420941476 ] [PMID: 32684080]
[89]
Bohn MK, Hall A, Sepiashvili L, Jung B, Steele S, Adeli K. Pathophysiology of COVID-19: Mechanisms underlying disease severity and progression. Physiology (Bethesda) 2020; 35(5): 288-301.
[http://dx.doi.org/10.1152/physiol.00019.2020 ] [PMID: 32783610]
[90]
Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, et al. COVID-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev Med Virol 2021; 31(3)e2176
[http://dx.doi.org/10.1002/rmv.2176 ] [PMID: 33022818]
[91]
Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med 2020; 58(7): 1021-8.
[http://dx.doi.org/10.1515/cclm-2020-0369 ] [PMID: 32286245]
[92]
Horowitz JE, Kosmicki JA, Damask A, et al. Genome-wide analysis in 756,646 individuals provides first genetic evidence that ACE2 expression influences COVID-19 risk and yields genetic risk scores predictive of severe disease. medRxiv 2021.2020.12.14.20248176
[93]
Karahalil BEA. The impact of ACE2 gene polymorphism in the development of COVID-19 disease. Gazi Med J 2020; pp. 518-22.
[94]
Shikov AE, Barbitoff YA, Glotov AS, et al. Analysis of the spectrum of ACE2 variation suggests a possible influence of rare and common variants on susceptibility to COVID-19 and severity of outcome. Front Genet 2020; 11551220
[http://dx.doi.org/10.3389/fgene.2020.551220 ] [PMID: 33133145]
[95]
Wooster L, Nicholson CJ, Sigurslid HH, Cardenas CLL, Malhotra R. Polymorphisms in the ACE2 locus associate with severity of COVID-19 infection. medRxiv 2020.
[96]
Bakhshandeh B, Sorboni SG, Javanmard AR, et al. Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infect Genet Evol 2021; 90104773
[PMID: 33607284] [http://dx.doi.org/10.1016/j.meegid.2021.104773]
[97]
Curtis D. Variants in ACE2 and TMPRSS2 genes are not major determinants of COVID-19 severity in UK biobank subjects. Hum Hered 2020; 85(2): 66-8.
[http://dx.doi.org/10.1159/000515200 ] [PMID: 33752217]
[98]
Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med 2020; 18(1): 216.
[http://dx.doi.org/10.1186/s12916-020-01673-z ] [PMID: 32664879]
[99]
Andolfo I, Russo R, Lasorsa VA, et al. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression ] and susceptibility to severe COVID-19. iScience 2021; 24(4)102322
[http://dx.doi.org/10.1016/j.isci.2021.102322 ] [PMID: 33748697]
[100]
Kim YC, Jeong BH. Strong correlation between the case fatality rate of COVID-19 and the rs6598045 Single Nucleotide Polymorphism (SNP) of the interferon-induced transmembrane protein 3 (IFITM3) gene at the population-level. Genes (Basel) 2020; 12(1): 12.
[http://dx.doi.org/10.3390/genes12010042 ] [PMID: 33396837]
[101]
Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY) 2020; 12(11): 10087-98.
[http://dx.doi.org/10.18632/aging.103415 ] [PMID: 32501810]
[102]
Carter-Timofte ME, Jørgensen SE, Freytag MR, et al. Deciphering the role of host genetics in susceptibility to severe COVID-19. Front Immunol 2020; 11: 1606.
[http://dx.doi.org/10.3389/fimmu.2020.01606 ] [PMID: 32695122]
[103]
Tudorache IF, Trusca VG, Gafencu AV, Apolipoprotein E, Apolipoprotein E. A multifunctional protein with implications in various pathologies as a result of its structural features. Comput Struct Biotechnol J 2017; 15: 359-65.
[http://dx.doi.org/10.1016/j.csbj.2017.05.003 ] [PMID: 28660014]
[104]
Mahley RW, Weisgraber KH, Huang Y, Apolipoprotein E. Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 2009; 50(Suppl.): S183-8.
[http://dx.doi.org/10.1194/jlr.R800069-JLR200 ] [PMID: 19106071]
[105]
Kuo CL, Pilling LC, Atkins JL, et al. APOE e4 genotype predicts severe COVID-19 in the UK biobank community cohort. J Gerontol A Biol Sci Med Sci 2020; 75(11): 2231-2.
[http://dx.doi.org/10.1093/gerona/glaa131 ] [PMID: 32451547]
[106]
Kuo CL, Pilling LC, Atkins JL, et al. ApoE e4e4 genotype and mortality with COVID-19 in UK biobank. J Gerontol A Biol Sci Med Sci 2020; 75(9): 1801-3.
[http://dx.doi.org/10.1093/gerona/glaa169 ] [PMID: 32623451]
[107]
Wang F, Huang S, Gao R, et al. Initial whole genome sequencing and analysis of the host genetic contribution to covid-19 severity and susceptibility. medRxiv 2020.2020.06.09.20126607
[http://dx.doi.org/10.1101/2020.06.09.20126607]
[108]
Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide association study of severe COVID-19 with respiratory failure. N Engl J Med 2020; 383(16): 1522-34.
[http://dx.doi.org/10.1056/NEJMoa2020283 ] [PMID: 32558485]
[109]
Roberts GHL, Park DS, Coignet MV, et al. AncestryDNA COVID-19 host genetic study identifies three novel loci. medRxiv 2020.2020.10.06.20205864
[http://dx.doi.org/10.1101/2020.10.06.20205864]
[110]
Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in COVID-19. Nature 2021; 591(7848): 92-8.
[http://dx.doi.org/10.1038/s41586-020-03065-y ] [PMID: 33307546]
[111]
Shelton JF, Shastri AJ, Ye C, et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat Genet 2021; 53(6): 801-8.
[http://dx.doi.org/10.1038/s41588-021-00854-7 ] [PMID: 33888907]
[112]
Velavan TP, Pallerla SR, Rüter J, et al. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine 2021; 72103629
[http://dx.doi.org/10.1016/j.ebiom.2021.103629 ] [PMID: 34655949]
[113]
van Moorsel CHM, van der Vis JJ, Benschop C, Ruven HJT, Quanjel M, Grutters JC. The MUC5B promotor polymorphism associates with severe COVID-19. medRxiv 2020.2020.05.12.20099333
[114]
Mapping the human genetic architecture of COVID-19. Nature 2021; 600(7889): 472-7.
[http://dx.doi.org/10.1038/s41586-021-03767-x ] [PMID: 34237774]
[115]
Zhao JYY, Huang H, Li D, et al. Relationship between the ABO blood group and the COVID-19 susceptibility. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.11.20031096]
[116]
Pojero F, Candore G, Caruso C, et al. The role of immunogenetics in COVID-19. Int J Mol Sci 2021; 22(5): 22.
[http://dx.doi.org/10.3390/ijms22052636 ] [PMID: 33807915]
[117]
Fricke-Galindo I, Falfán-Valencia R. Genetics insight for COVID-19 susceptibility and severity: A review. Front Immunol 2021; 12622176
[http://dx.doi.org/10.3389/fimmu.2021.622176 ] [PMID: 33868239]
[118]
Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther 2021; 6(1): 344.
[http://dx.doi.org/10.1038/s41392-021-00736-8 ] [PMID: 34545062]
[119]
Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370(6515): 370.
[http://dx.doi.org/10.1126/science.abd4570 ] [PMID: 32972995]
[120]
van der Made CI, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA 2020; 324(7): 663-73.
[http://dx.doi.org/10.1001/jama.2020.13719 ] [PMID: 32706371]
[121]
Benetti E, Giliberti A, Emiliozzi A, et al. Clinical and molecular characterization of COVID-19 hospitalized patients. PLoS One 2020; 15(11)e0242534
[http://dx.doi.org/10.1371/journal.pone.0242534 ] [PMID: 33206719]
[122]
Saleh A, Sultan A, Elashry MA, et al. Association of TNF-α G-308 a promoter polymorphism with the course and outcome of COVID-19 patients. Immunol Invest 2020; •••: 1-12.
[http://dx.doi.org/10.1080/08820139.2020.1851709 ] [PMID: 33228423]
[123]
Patel JA, Nair S, Revai K, et al. Association of proinflammatory cytokine gene polymorphisms with susceptibility to otitis media. Pediatrics 2006; 118(6): 2273-9.
[http://dx.doi.org/10.1542/peds.2006-0764 ] [PMID: 17142509]
[124]
Revai K, Patel JA, Grady JJ, Nair S, Matalon R, Chonmaitree T. Association between cytokine gene polymorphisms and risk for upper respiratory tract infection and acute otitis media. Clin Infect Dis 2009; 49(2): 257-61.
[http://dx.doi.org/10.1086/599833 ] [PMID: 19522649]
[125]
Gómez J, Albaiceta GM, Cuesta-Llavona E, et al. The interferon-induced transmembrane protein 3 gene (IFITM3) rs12252 C variant is associated with COVID-19. Cytokine 2021; 137155354
[http://dx.doi.org/10.1016/j.cyto.2020.155354 ] [PMID: 33113474]
[126]
Zhang Y, Qin L, Zhao Y, et al. Interferon-induced transmembrane protein 3 genetic variant rs12252-C associated with disease severity in coronavirus disease 2019. J Infect Dis 2020; 222(1): 34-7.
[http://dx.doi.org/10.1093/infdis/jiaa224 ] [PMID: 32348495]
[127]
Taabazuing CY, Griswold AR, Bachovchin DA. The NLRP1 and CARD8 inflammasomes. Immunol Rev 2020; 297(1): 13-25.
[http://dx.doi.org/10.1111/imr.12884 ] [PMID: 32558991]
[128]
Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 2020; 587(7835): 610-2.
[http://dx.doi.org/10.1038/s41586-020-2818-3 ] [PMID: 32998156]
[129]
Klaassen K, Stankovic B, Zukic B, et al. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection. Infect Genet Evol 2020; 84104498
[http://dx.doi.org/10.1016/j.meegid.2020.104498 ] [PMID: 32771700]
[130]
Maes M, Tedesco WLD Junior, Lozovoy MAB, et al. In COVID-19, NLRP3 inflammasome genetic variants are associated with critical disease and these effects are partly mediated by the sickness symptom complex: A nomothetic network approach. Mol Psychiatry 2022; 12: 1-11.
[http://dx.doi.org/10.1038/s41380-021-01431-4 ] [PMID: 35022530]
[131]
Enokida M, Simão A, Danelli T, et al. Protective effects of IL18-105G>A and IL18-137C>G genetic variants on severity of COVID-19. Immuno Viral Infections 2021.
[132]
Wein AN, McMaster SR, Takamura S, et al. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J Exp Med 2019; 216(12): 2748-62.
[http://dx.doi.org/10.1084/jem.20181308 ] [PMID: 31558615]
[133]
Li S, Wang Y, Zhang Y, et al. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. Development 2012; 139(14): 2500-9.
[http://dx.doi.org/10.1242/dev.079699 ] [PMID: 22675208]
[134]
Li S, Morley M, Lu M, et al. Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development. Dev Biol 2016; 416(2): 338-46.
[http://dx.doi.org/10.1016/j.ydbio.2016.06.020 ] [PMID: 27341756]
[135]
Yamaguchi T, Dijkstra JM. Major Histocompatibility Complex (MHC) genes and disease resistance in fish. Cells 2019; 8(4): 8.
[http://dx.doi.org/10.3390/cells8040378 ] [PMID: 31027287]
[136]
Rael VE, Barton GM. Toll-like receptors form different complexes with UNC93B1. Nat Struct Mol Biol 2021; 28(2): 121-3.
[http://dx.doi.org/10.1038/s41594-021-00559-9 ] [PMID: 33531682]
[137]
Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opin Ther Targets 2020; 24(11): 1065-78.
[http://dx.doi.org/10.1080/14728222.2020.1826929 ] [PMID: 32962465]
[138]
Walter MR. The role of structure in the biology of interferon signaling. Front Immunol 2020; 11606489
[http://dx.doi.org/10.3389/fimmu.2020.606489 ] [PMID: 33281831]
[139]
Ning S, Pagano JS, Barber GN. IRF7: Activation, regulation, modification and function. Genes Immun 2011; 12(6): 399-414.
[http://dx.doi.org/10.1038/gene.2011.21 ] [PMID: 21490621]
[140]
Patel RC, Sen GC. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J 1998; 17(15): 4379-90.
[http://dx.doi.org/10.1093/emboj/17.15.4379 ] [PMID: 9687506]
[141]
Meng Y, Wang L, Chen D, et al. LAPTM4B: An oncogene in various solid tumors and its functions. Oncogene 2016; 35(50): 6359-65.
[http://dx.doi.org/10.1038/onc.2016.189 ] [PMID: 27212036]
[142]
Yánez DC, Ross S, Crompton T. The IFITM protein family in adaptive immunity. Immunology 2020; 159(4): 365-72.
[http://dx.doi.org/10.1111/imm.13163 ] [PMID: 31792954]
[143]
Musumeci G, Castrogiovanni P, Barbagallo I, et al. Expression of the OAS gene family is highly modulated in subjects affected by Juvenile dermatomyositis, resembling an immune response to a dsRNA virus infection. Int J Mol Sci 2018; 19(9): 19.
[http://dx.doi.org/10.3390/ijms19092786 ] [PMID: 30227596]
[144]
Lowe M. The physiological functions of the golgin vesicle tethering proteins. Front Cell Dev Biol 2019; 7: 94.
[http://dx.doi.org/10.3389/fcell.2019.00094 ] [PMID: 31316978]
[145]
Ferrarini MG, Lal A, Rebollo R, et al. Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis. Commun Biol 2021; 4(1): 590.
[http://dx.doi.org/10.1038/s42003-021-02095-0 ] [PMID: 34002013]
[146]
Williams FMK, Freidin MB, Mangino M, et al. Self-reported symptoms of COVID-19, including symptoms most predictive of SARS-CoV-2 infection, are heritable. Twin Res Hum Genet 2020; 23(6): 316-21.
[http://dx.doi.org/10.1017/thg.2020.85 ] [PMID: 33558003]
[147]
Wu M, Zhang Y, Grosser M, et al. Profiling COVID-19 genetic research: A data-driven study utilizing intelligent bibliometrics. Front Res Metr Anal 2021; 6683212
[http://dx.doi.org/10.3389/frma.2021.683212 ] [PMID: 34109284]
[148]
Maes M, Berk M, Goehler L, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 2012; 10: 66.
[http://dx.doi.org/10.1186/1741-7015-10-66 ] [PMID: 22747645]
[149]
Morris G, Anderson G, Galecki P, Berk M, Maes M. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior. BMC Med 2013; 11: 64.
[http://dx.doi.org/10.1186/1741-7015-11-64 ] [PMID: 23497361]
[150]
Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov 2021; 7(1): 43.
[http://dx.doi.org/10.1038/s41420-021-00428-w ] [PMID: 33649297]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy