Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

The Anti-atherosclerotic Effects of Natural Polysaccharides: From Phenomena to the Main Mechanisms of Action

Author(s): Vasily P. Karagodin, Volha I. Summerhill*, Shaw-Fang Yet and Alexander N. Orekhov

Volume 28, Issue 22, 2022

Published on: 28 June, 2022

Page: [1823 - 1832] Pages: 10

DOI: 10.2174/1381612828666220518095025

Price: $65

Abstract

Polysaccharides (PSs) of plant origin have a variety of biological activities, including antiatherosclerotic, but their use in atherosclerosis therapy is hindered by insufficient knowledge based on the cellular and molecular mechanisms of action. In this review, the influence of several natural PSs on the function of macrophages, viral activity and macrophage cholesterol metabolism has been discussed, considering the tight interplay between these aspects in the pathogenesis of atherosclerosis. The anti-atherosclerotic activities of natural PSs related to other mechanisms have also been explored. Directions for further research of the antiatherosclerotic effects of natural PSs have been outlined, the most promising of which can be nutrigenomic studies.

Keywords: Natural polysaccharides, atherosclerosis, anti-atherosclerotic effects, viral infection, macrophage cholesterol metabolism, cholesterol reverse transport.

[1]
Hernáez Á, Soria-Florido MT, Schröder H, et al. Role of HDL function and LDL atherogenicity on cardiovascular risk: A comprehensive examination. PLoS One 2019; 14(6): e0218533.
[http://dx.doi.org/10.1371/journal.pone.0218533] [PMID: 31246976]
[2]
Sukhorukov VN, Karagodin VP, Orekhov AN. [Atherogenic modification of low-density lipoproteins]. Biomed Khim 2016; 62(4): 391-402.
[http://dx.doi.org/10.18097/PBMC20166204391] [PMID: 27562992]
[3]
Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Front Cardiovasc Med 2021; 8: 707529.
[http://dx.doi.org/10.3389/fcvm.2021.707529] [PMID: 34552965]
[4]
Blanco M, Nombela F, Castellanos M, et al. Statin treatment withdrawal in ischemic stroke: A controlled randomized study. Neurology 2007; 69(9): 904-10.
[http://dx.doi.org/10.1212/01.wnl.0000269789.09277.47] [PMID: 17724294]
[5]
Heeschen C, Hamm CW, Laufs U, Snapinn S, Böhm M, White HD. Platelet receptor inhibition in ischemic syndrome management (PRISM) investigators. Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation 2002; 105(12): 1446-52.
[http://dx.doi.org/10.1161/01.CIR.0000012530.68333.C8] [PMID: 11914253]
[6]
Karagodin VP, Sukhorukov VN, Orekhov AN, Yet SF, Sobenin IA. Atherosclerosis prevention: The role of special diets and functional food. Front Biosci (Elite Ed) 2020; 12(1): 95-101.
[http://dx.doi.org/10.2741/e859] [PMID: 31585871]
[7]
Silva AKA, Letourneur D, Chauvierre C. Polysaccharide nanosystems for future progress in cardiovascular pathologies. Theranostics 2014; 4(6): 579-91.
[http://dx.doi.org/10.7150/thno.7688] [PMID: 24723980]
[8]
Cui X, Wang S, Cao H, et al. A review: The bioactivities and pharmacological applications of polygonatum sibiricum polysaccharides. Molecules 2018; 23(5): 1170.
[http://dx.doi.org/10.3390/molecules23051170] [PMID: 29757991]
[9]
Patil NP, Le V, Sligar AD, et al. Algal polysaccharides as therapeutic agents for atherosclerosis. Front Cardiovasc Med 2018; 5: 153.
[http://dx.doi.org/10.3389/fcvm.2018.00153] [PMID: 30417001]
[10]
Sukhorukov VN, Khotina VA, Chegodaev YS, Ivanova E, Sobenin IA, Orekhov AN. Lipid metabolism in macrophages: Focus on atherosclerosis. Biomedicines 2020; 8(8): 262.
[http://dx.doi.org/10.3390/biomedicines8080262] [PMID: 32752275]
[11]
Bezsonov EE, Gratchev A, Orekhov AN. Macrophages in health and non-infectious disease. Biomedicines 2021; 9(5): 460.
[http://dx.doi.org/10.3390/biomedicines9050460] [PMID: 33922416]
[12]
Chowdhury AS, Tamanna S, Kar K. Role of macrophages in atherosclerosis. Asian J Med Biol Res 2020; 6(3): 366-74.
[http://dx.doi.org/10.3329/ajmbr.v6i3.49784]
[13]
Kirichenko TV, Myasoedova VA, Shimonova TE, et al. Atherosclerosis in subjects newly diagnosed with human immunodeficiency virus infection. Biosci Rep 2018; 38(4): BSR20180597.
[http://dx.doi.org/10.1042/BSR20180597] [PMID: 29961673]
[14]
Low H, Hoang A, Pushkarsky T, et al. HIV disease, metabolic dysfunction and atherosclerosis: A three year prospective study. PLoS One 2019; 14(4): e0215620.
[http://dx.doi.org/10.1371/journal.pone.0215620] [PMID: 30998801]
[15]
Streblow DN, Orloff SL, Nelson JA. Do pathogens accelerate atherosclerosis? J Nutr 2001; 131(10): 2798S-804S.
[http://dx.doi.org/10.1093/jn/131.10.2798S] [PMID: 11584110]
[16]
Shah PK. Link between infection and atherosclerosis: Who are the culprits: Viruses, bacteria, both, or neither? Circulation 2001; 103(1): 5-6.
[http://dx.doi.org/10.1161/01.CIR.103.1.5] [PMID: 11136675]
[17]
Seimon T, Tabas I. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 2009; 50(Suppl.): S382-7.
[http://dx.doi.org/10.1194/jlr.R800032-JLR200] [PMID: 18953058]
[18]
Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: Pathophysiology and transcriptome analysis. BioMed Res Int 2016; 2016: 9582430.
[http://dx.doi.org/10.1155/2016/9582430] [PMID: 27493969]
[19]
Zăhan M, Miclea I, Criste A, Miclea V. Experimental immunology<br>Modulation of murine macrophages phagocytic activity by polysaccharide extract from Chenopodium bonus-henricus. Cent Eur J Immunol 2013; 38(2): 183-9.
[http://dx.doi.org/10.5114/ceji.2013.35213]
[20]
Palma AS, Feizi T, Zhang Y, et al. Ligands for the β-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 2006; 281(9): 5771-9.
[http://dx.doi.org/10.1074/jbc.M511461200] [PMID: 16371356]
[21]
Brown GD, Herre J, Williams DL, Willment JA, Marshall ASJ, Gordon S. Dectin-1 mediates the biological effects of β-glucans. J Exp Med 2003; 197(9): 1119-24.
[http://dx.doi.org/10.1084/jem.20021890] [PMID: 12719478]
[22]
Herre J, Willment JA, Gordon S, Brown GD. The role of Dectin-1 in antifungal immunity. Crit Rev Immunol 2004; 24(3): 193-203.
[http://dx.doi.org/10.1615/CritRevImmunol.v24.i3.30] [PMID: 15482254]
[23]
Smith AJ, Graves B, Child R, et al. Immunoregulatory activity of the natural product laminarin varies widely as a result of its physical properties. J Immunol 2018; 200(2): 788-99.
[http://dx.doi.org/10.4049/jimmunol.1701258] [PMID: 29246954]
[24]
Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA, Vlodavsky I. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 1999; 83(3): 424-31.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19991029)83:3<424::AID-IJC20>3.0.CO;2-L] [PMID: 10495437]
[25]
Baker AB, Chatzizisis YS, Beigel R, et al. Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine. Atherosclerosis 2010; 213(2): 436-42.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.09.003] [PMID: 20950809]
[26]
Baker AB, Groothuis A, Jonas M, et al. Heparanase alters arterial structure, mechanics, and repair following endovascular stenting in mice. Circ Res 2009; 104(3): 380-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.180695] [PMID: 19096032]
[27]
Baker AB, Gibson WJ, Kolachalama VB, et al. Heparanase regulates thrombosis in vascular injury and stent-induced flow disturbance. J Am Coll Cardiol 2012; 59(17): 1551-60.
[http://dx.doi.org/10.1016/j.jacc.2011.11.057] [PMID: 22516446]
[28]
Ueno M, Cho K, Hirata N, et al. Macrophage-stimulating activities of newly isolated complex polysaccharides from Parachlorella kessleri strain KNK-A001. Int J Biol Macromol 2017; 104(Pt A): 400-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.014] [PMID: 28596008]
[29]
Chen X, Yu G, Fan S, et al. Sargassum fusiforme polysaccharide activates nuclear factor kappa-B (NF-κB) and induces cytokine production via Toll-like receptors. Carbohydr Polym 2014; 105: 113-20.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.056] [PMID: 24708959]
[30]
Liao W, Luo Z, Liu D, Ning Z, Yang J, Ren J. Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities. J Agric Food Chem 2015; 63(2): 535-44.
[http://dx.doi.org/10.1021/jf504677r] [PMID: 25525995]
[31]
Gordon S. Pattern recognition receptors: Doubling up for the innate immune response. Cell 2002; 111(7): 927-30.
[http://dx.doi.org/10.1016/S0092-8674(02)01201-1] [PMID: 12507420]
[32]
Hsu HY, Chiu SL, Wen MH, Chen KY, Hua KF. Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways. J Biol Chem 2001; 276(31): 28719-30.
[http://dx.doi.org/10.1074/jbc.M011117200] [PMID: 11390374]
[33]
Zhu XD, Zhuang Y, Ben JJ, et al. Caveolae-dependent endocytosis is required for class A macrophage scavenger receptor-mediated apoptosis in macrophages. J Biol Chem 2011; 286(10): 8231-9.
[http://dx.doi.org/10.1074/jbc.M110.145888] [PMID: 21205827]
[34]
Sumara G, Belwal M, Ricci R. “Jnking” atherosclerosis. Cell Mol Life Sci 2005; 62(21): 2487-94.
[http://dx.doi.org/10.1007/s00018-005-5253-6] [PMID: 16231089]
[35]
Reustle A, Torzewski M. Role of p38 MAPK in atherosclerosis and aortic valve sclerosis. Int J Mol Sci 2018; 19(12): 3761.
[http://dx.doi.org/10.3390/ijms19123761] [PMID: 30486366]
[36]
Kouakou K, Schepetkin IA, Yapi A, Kirpotina LN, Jutila MA, Quinn MT. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J Ethnopharmacol 2013; 146(1): 232-42.
[http://dx.doi.org/10.1016/j.jep.2012.12.037] [PMID: 23291534]
[37]
Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol 2019; 73(1): 22-7.
[http://dx.doi.org/10.1016/j.jjcc.2018.05.010] [PMID: 29907363]
[38]
Shin MS, Park SB, Shin KS. Molecular mechanisms of immunomodulatory activity by polysaccharide isolated from the peels of Citrus unshiu. Int J Biol Macromol 2018; 112: 576-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.006] [PMID: 29410270]
[39]
Jaja-Chimedza A, Graf BL, Simmler C, et al. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PLoS One 2017; 12(8): e0182658.
[http://dx.doi.org/10.1371/journal.pone.0182658] [PMID: 28792522]
[40]
Műzes G, Molnár B, Tulassay Z, Sipos F. Changes of the cytokine profile in inflammatory bowel diseases. World J Gastroenterol 2012; 18(41): 5848-61.
[http://dx.doi.org/10.3748/wjg.v18.i41.5848] [PMID: 23139600]
[41]
Deng C, Shang J, Fu H, Chen J, Liu H, Chen J. Mechanism of the immunostimulatory activity by a polysaccharide from Dictyophora indusiata. Int J Biol Macromol 2016; 91: 752-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.024] [PMID: 27293036]
[42]
Han MD, Lee E-S, Kim Y-K, et al. Production of nitric oxide in raw 264.7 macrophages treated with ganoderan, the ${\beta}-Glucan$ of ganoderma lucidum. Korean J Mycol 1998; 26: 246-55.
[43]
Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007; 15(6): 252-9.
[http://dx.doi.org/10.1007/s10787-007-0013-x] [PMID: 18236016]
[44]
Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32(9): 2045-51.
[http://dx.doi.org/10.1161/ATVBAHA.108.179705] [PMID: 22895665]
[45]
Verani A, Gras G, Pancino G. Macrophages and HIV-1: Dangerous liaisons. Mol Immunol 2005; 42(2): 195-212.
[http://dx.doi.org/10.1016/j.molimm.2004.06.020] [PMID: 15488608]
[46]
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol 2020; 20(6): 363-74.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[47]
Queiroz KCS, Medeiros VP, Queiroz LS, et al. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed Pharmacother 2008; 62(5): 303-7.
[http://dx.doi.org/10.1016/j.biopha.2008.03.006] [PMID: 18455359]
[48]
Hans N, Malik A, Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour Technol Rep 2021; 13: 100623.
[http://dx.doi.org/10.1016/j.biteb.2020.100623] [PMID: 33521606]
[49]
Reading PC, Miller JL, Anders EM. Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 2000; 74(11): 5190-7.
[http://dx.doi.org/10.1128/JVI.74.11.5190-5197.2000] [PMID: 10799594]
[50]
Crowe SM, Westhorpe CLV, Mukhamedova N, Jaworowski A, Sviridov D, Bukrinsky M. The macrophage: The intersection between HIV infection and atherosclerosis. J Leukoc Biol 2010; 87(4): 589-98.
[http://dx.doi.org/10.1189/jlb.0809580] [PMID: 19952353]
[51]
Rauff B, Malik A, Bhatti YA, et al. Association of viruses in the development of cardiovascular diseases. Curr Pharm Des 2021; 27(37): 3913-23.
[http://dx.doi.org/10.2174/1381612827666210426094502]
[52]
Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: Update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost 2011; 106(5): 858-67.
[PMID: 22012133]
[53]
Nakashima H, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N. Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from sea algae. Antimicrob Agents Chemother 1987; 31(10): 1524-8.
[http://dx.doi.org/10.1128/AAC.31.10.1524] [PMID: 2449120]
[54]
Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar Drugs 2012; 10(12): 2795-816.
[http://dx.doi.org/10.3390/md10122795] [PMID: 23235364]
[55]
Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K. Antiviral potential of algae polysaccharides isolated from marine sources: A review. BioMed Res Int 2015; 2015: 825203.
[http://dx.doi.org/10.1155/2015/825203] [PMID: 26484353]
[56]
Stovbun SV, Kalinina TS, Zlenko DV, et al. Antiviral potential of plant polysaccharide nanoparticles actuating non-specific immunity. Int J Biol Macromol 2021; 182: 743-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.135] [PMID: 33831450]
[57]
Dinesh S, Menon T, Hanna LE, Suresh V, Sathuvan M, Manikannan M. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii. Int J Biol Macromol 2016; 82: 83-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.078] [PMID: 26472515]
[58]
Yuguchi Y, Tran VTT, Bui LM, et al. Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis. Carbohydr Polym 2016; 147: 69-78.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.101] [PMID: 27178910]
[59]
Hayashi K, Lee JB, Nakano T, Hayashi T. Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect 2013; 15(4): 302-9.
[http://dx.doi.org/10.1016/j.micinf.2012.12.004] [PMID: 23376164]
[60]
Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol 2016; 16(3): 177-92.
[http://dx.doi.org/10.1038/nri.2016.4] [PMID: 26922909]
[61]
Calandra T, Roger T. Macrophage migration inhibitory factor: A regulator of innate immunity. Nat Rev Immunol 2003; 3(10): 791-800.
[http://dx.doi.org/10.1038/nri1200] [PMID: 14502271]
[62]
Sousa IP Jr, Carvalho CAM, Gomes AMO. Current understanding of the role of cholesterol in the life cycle of alphaviruses. Viruses 2020; 13(1): 35.
[http://dx.doi.org/10.3390/v13010035] [PMID: 33383613]
[63]
O’Neill LAJ. How low cholesterol is good for anti-viral immunity. Cell 2015; 163(7): 1572-4.
[http://dx.doi.org/10.1016/j.cell.2015.12.004] [PMID: 26687349]
[64]
Braga SS. Cyclodextrins: Emerging medicines of the new millennium. Biomolecules 2019; 9(12): 801.
[http://dx.doi.org/10.3390/biom9120801] [PMID: 31795222]
[65]
Ferreira IATM, Porterfield JZ, Gupta RK, Mlcochova P. Cell cycle regulation in macrophages and susceptibility to HIV-1. Viruses 2020; 12(8): E839.
[http://dx.doi.org/10.3390/v12080839] [PMID: 32751972]
[66]
Nguyen DH, Espinoza JC, Taub DD. Cellular cholesterol enrichment impairs T cell activation and chemotaxis. Mech Ageing Dev 2004; 125(9): 641-50.
[http://dx.doi.org/10.1016/j.mad.2004.08.002] [PMID: 15491683]
[67]
Mujawar Z, Rose H, Morrow MP, et al. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages. PLoS Biol 2006; 4(11): e365.
[http://dx.doi.org/10.1371/journal.pbio.0040365] [PMID: 17076584]
[68]
Adorni MP, Zimetti F, Billheimer JT, et al. The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 2007; 48(11): 2453-62.
[http://dx.doi.org/10.1194/jlr.M700274-JLR200] [PMID: 17761631]
[69]
Khotina VA, Sukhorukov VN, Kashirskikh DA, Sobenin LA, Orekhov AN. Cholesterol metabolism in macrophages. Complex Issues Cardiovasc Dis 2020; 9(2): 91-101.
[http://dx.doi.org/10.17802/2306-1278-2020-9-2-91-101]
[70]
Fielding PE, Russel JS, Spencer TA, Hakamata H, Nagao K, Fielding CJ. Sterol efflux to apolipoprotein A-I originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry 2002; 41(15): 4929-37.
[http://dx.doi.org/10.1021/bi012091y] [PMID: 11939788]
[71]
Michel V, Bakovic M. Lipid rafts in health and disease. Biol Cell 2007; 99(3): 129-40.
[http://dx.doi.org/10.1042/BC20060051] [PMID: 17064251]
[72]
Lusis AJ. Atherosclerosis. Nature 2000; 407(6801): 233-41.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[73]
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95(11): 1153-65.
[http://dx.doi.org/10.1007/s00109-017-1575-8] [PMID: 28785870]
[74]
Randolph GJ. Mechanisms that regulate macrophage burden in atherosclerosis. Circ Res 2014; 114(11): 1757-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.301174] [PMID: 24855200]
[75]
Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 2010; 30(2): 139-43.
[http://dx.doi.org/10.1161/ATVBAHA.108.179283] [PMID: 19797709]
[76]
Tall AR. ATVB In Focus. Arterioscler Thromb Vasc Biol 2003; 23(5): 710-1.
[http://dx.doi.org/10.1161/01.ATV.0000068683.51375.59] [PMID: 12740222]
[77]
Yin K, Liao DF, Tang CK. ATP-binding membrane cassette transporter A1 (ABCA1): A possible link between inflammation and reverse cholesterol transport. Mol Med 2010; 16(9-10): 438-49.
[http://dx.doi.org/10.2119/molmed.2010.00004] [PMID: 20485864]
[78]
Vedhachalam C, Duong PT, Nickel M, et al. Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles. J Biol Chem 2007; 282(34): 25123-30.
[http://dx.doi.org/10.1074/jbc.M704590200] [PMID: 17604270]
[79]
He C, Jiang H, Song W, et al. Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins. Proc Natl Acad Sci USA 2020; 117(19): 10476-83.
[http://dx.doi.org/10.1073/pnas.1922879117] [PMID: 32354992]
[80]
Zakiev ER, Nikiforov NG, Orekhov AN. Cell-based models for development of antiatherosclerotic therapies. BioMed Res Int 2017; 2017: 5198723.
[http://dx.doi.org/10.1155/2017/5198723] [PMID: 28286766]
[81]
Hu S, Wang J, Li F, et al. Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris. Int J Biol Macromol 2019; 131: 264-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.078] [PMID: 30876902]
[82]
Wang YF, Yang XF, Cheng B, et al. Protective effect of Astragalus polysaccharides on ATP binding cassette transporter A1 in THP-1 derived foam cells exposed to tumor necrosis factor-alpha. Phytother Res 2010; 24(3): 393-8.
[http://dx.doi.org/10.1002/ptr.2958] [PMID: 19653192]
[83]
Guo SD, Cui YJ, Wang RZ, Wang RY, Wu WX, Ma T. Separation, purification and primary reverse cholesterol transport study of Cordyceps militaris polysaccharide. Zhongguo Zhongyao Zazhi 2014; 39(17): 3316-20.
[84]
(a) Li XH, Li Y, Cheng ZY, Cai XG, Wang HM. The effects of phellinus linteus polysaccharide extracts on cholesterol efflux in oxi-dized low-density lipoprotein-loaded THP-1 macrophages. J Investig Med 2015; 63(5): 752-7.
[http://dx.doi.org/10.1097/JIM.0000000000000201] [PMID: 25989518] ; (b) Rosenson RS, Brewer HB, Davidson WS, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 2012; 125: 1905-919.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.066589.] [PMID: 22508840]
[85]
Zhu X, Li Q, Lu F, et al. Antiatherosclerotic potential of rhizoma polygonati polysaccharide in hyperlipidemia-induced atherosclerotic hamsters. Drug Res (Stuttg) 2015; 65(9): 479-83.
[PMID: 25207709]
[86]
The effect of polygonatic rhizome on hyperlipoidemia and antiatherosclerosis. Chinese J Arterial Lerosis 2005.
[87]
Yang X-J, Wu S, Huang L-X, Hu HQ, Zhang Y. Hypolipidemic activity and antiatherosclerotic effect of polysaccharide of polygonatum sibiricum in rabbit model and related cellular mechanisms. Evid Based Complement Alternat Med 2015; 2015: e391065.
[88]
Wu Q, Wang Q, Fu J, Ren R. Polysaccharides derived from natural sources regulate triglyceride and cholesterol metabolism: A review of the mechanisms. Food Funct 2019; 10(5): 2330-9.
[http://dx.doi.org/10.1039/C8FO02375A] [PMID: 31049523]
[89]
Yang Z, Yin J, Wang Y, et al. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice. Int J Biol Macromol 2019; 134: 759-69.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.070] [PMID: 31100394]
[90]
Nguyen SG, Kim J, Guevarra RB, et al. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet. Food Funct 2016; 7(10): 4193-201.
[http://dx.doi.org/10.1039/C6FO00929H] [PMID: 27713958]
[91]
Holdt SL, Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J Appl Phycol 2011; 23(3): 543-97.
[http://dx.doi.org/10.1007/s10811-010-9632-5]
[92]
Ngo DH, Wijesekara I, Vo TS, Van Ta Q, Kim SK. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Res Int 2011; 44(2): 523-9.
[http://dx.doi.org/10.1016/j.foodres.2010.12.030]
[93]
Badrinathan S, Shiju TM, Sharon Christa AS, Arya R, Pragasam V. Purification and structural characterization of sulfated polysaccharide from Sargassum myriocystum and its efficacy in scavenging free radicals. Indian J Pharm Sci 2012; 74(6): 549-55.
[http://dx.doi.org/10.4103/0250-474X.110600] [PMID: 23798781]
[94]
Förstermann U. Oxidative stress in vascular disease: Causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med 2008; 5(6): 338-49.
[http://dx.doi.org/10.1038/ncpcardio1211] [PMID: 18461048]
[95]
Ballinger SW, Patterson C, Yan CN, et al. Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res 2000; 86(9): 960-6.
[http://dx.doi.org/10.1161/01.RES.86.9.960] [PMID: 10807868]
[96]
Hu H, Lin Y, Xu X, Lin S, Chen X, Wang S. The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 2020; 114: 104412.
[http://dx.doi.org/10.1016/j.yexmp.2020.104412] [PMID: 32113905]
[97]
Docherty CK, Carswell A, Friel E, Mercer JR. Impaired mitochondrial respiration in human carotid plaque atherosclerosis: A potential role for Pink1 in vascular smooth muscle cell energetics. Atherosclerosis 2018; 268: 1-11.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.11.009] [PMID: 29156421]
[98]
Yu E, Calvert PA, Mercer JR, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation 2013; 128(7): 702-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002271] [PMID: 23841983]
[99]
Yuan C, Mei Z, Liu S, Yi L. PSK protects macrophages from lipoperoxide accumulation and foam cell formation caused by oxidatively modified low-density lipoprotein. Atherosclerosis 1996; 124(2): 171-81.
[http://dx.doi.org/10.1016/0021-9150(96)05835-2] [PMID: 8830930]
[100]
Dalby-Brown L, Barsett H, Landbo AKR, Meyer AS, Mølgaard P. Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J Agric Food Chem 2005; 53(24): 9413-23.
[http://dx.doi.org/10.1021/jf0502395] [PMID: 16302756]
[101]
Cao X, Zhang J, Geng D. Use of oral anticoagulant drugs is associated with carotid intraplaque hemorrhage in atherosclerosis patients: A meta-analysis. J Thromb Thrombolysis 2019; 48(1): 68-76.
[http://dx.doi.org/10.1007/s11239-019-01865-2] [PMID: 30997600]
[102]
Mourão PAS. Perspective on the use of sulfated polysaccharides from marine organisms as a source of new antithrombotic drugs. Mar Drugs 2015; 13(5): 2770-84.
[http://dx.doi.org/10.3390/md13052770] [PMID: 25955754]
[103]
Carvalhal F, Cristelo RR, Resende DISP, Pinto MMM, Sousa E, Correia-da-Silva M. Antithrombotics from the sea: Polysaccharides and beyond. Mar Drugs 2019; 17(3): 170.
[http://dx.doi.org/10.3390/md17030170] [PMID: 30884850]
[104]
Liu X, Du P, Liu X, et al. Anticoagulant properties of a green algal rhamnan-type sulfated polysaccharide and its low-molecular-weight fragments prepared by mild acid degradation. Mar Drugs 2018; 16(11): 445.
[http://dx.doi.org/10.3390/md16110445] [PMID: 30424528]
[105]
Vaughan DE. PAI-1 and atherothrombosis. J Thromb Haemost 2005; 3(8): 1879-83.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01420.x] [PMID: 16102055]
[106]
Tang L, Chen Y, Jiang Z, et al. Purification, partial characterization and bioactivity of sulfated polysaccharides from Grateloupia livida. Int J Biol Macromol 2017; 94(Pt A): 642-52.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.067] [PMID: 27773841]
[107]
Zhang G. The antithrombin action of stichopus japonicus acid mucopolysaccharide (Sjamp) is mediated by heparin cofactor II. Zhonghua Xue Ye Xue Za Zhi Zhonghua Xueyexue Zazhi 1997; 18(3): 126-9.
[108]
Yuan C, Wang Y, Wang W, Cui Q. CThe anticoagulation effects of glycosaminoglycan from mactra veneriformis. Adv J Food Sci Technol 2015; 8(12): 878-82.
[http://dx.doi.org/10.19026/ajfst.8.2723]
[109]
Jaberi N, Soleimani A, Pashirzad M, et al. Role of thrombin in the pathogenesis of atherosclerosis. J Cell Biochem 2019; 120(4): 4757-65.
[http://dx.doi.org/10.1002/jcb.27771] [PMID: 30269382]
[110]
Miao HQ, Ishai-Michaeli R, Peretz T, Vlodavsky I. Laminarin sulfate mimics the effects of heparin on smooth muscle cell proliferation and basic fibroblast growth factor-receptor binding and mitogenic activity. J Cell Physiol 1995; 164(3): 482-90.
[http://dx.doi.org/10.1002/jcp.1041640306] [PMID: 7650058]
[111]
Orekhov AN, Sukhorukov VN, Nikiforov NG, et al. Signaling pathways potentially responsible for foam cell formation: Cholesterol accumulation or inflammatory response-what is first? Int J Mol Sci 2020; 21(8): 2716.
[http://dx.doi.org/10.3390/ijms21082716] [PMID: 32295185]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy