Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Mini-Review Article

Dermatokinetics: Advances and Experimental Models, Focus on Skin Metabolism

Author(s): Paul Quantin, Mathilde Stricher, Sophie Catoire, Hervé Ficheux and Christophe Egles*

Volume 23, Issue 5, 2022

Published on: 21 June, 2022

Page: [340 - 354] Pages: 15

DOI: 10.2174/1389200223666220517114004

Price: $65

conference banner
Abstract

Numerous dermal contact products, such as drugs or cosmetics, are applied on the skin, the first protective barrier to their entrance into the organism. These products contain various xenobiotic molecules that can penetrate the viable epidermis. Many studies have shown that keratinocyte metabolism could affect their behavior by biotransformation. While aiming for detoxification, toxic metabolites can be produced. These metabolites may react with biological macromolecules often leading to sensitization reactions. After passing through the epidermis, xenobiotics can reach the vascularized dermis and therefore, be bioavailable and distributed into the entire organism. To highlight these mechanisms, dermatokinetics, based on the concept of pharmacokinetics, has been developed recently. It provides information on the action of xenobiotics that penetrate the organism through the dermal route. The purpose of this review is first to describe and synthesize the dermatokinetics mechanisms to consider when assessing the absorption of a xenobiotic through the skin. We focus on skin absorption and specifically on skin metabolism, the two main processes involved in dermatokinetics. In addition, experimental models and methods to assess dermatokinetics are described and discussed to select the most relevant method when evaluating, in a specific context, dermatokinetics parameters of a xenobiotic. We also discuss the limits of this approach as it is notably used for risk assessment in the industry where scenario studies generally focus only on one xenobiotic and do not consider interactions with the rest of the exposome. The hypothesis of adverse effects due to the combination of chemical substances in contact with individuals and not to a single molecule, is being increasingly studied and embraced in the scientific community.

Keywords: In vitro models, toxicity, metabolism, drugs, xenobiotics, dermatokinetics.

Graphical Abstract

[1]
Kwon, Y. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists; Springer: Amsterdam: Netherlands, 2001.
[2]
Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J.R. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm., 2017, 112, 234-248.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.034] [PMID: 27914234]
[3]
Toutain, P.L.; Bousquet-Mélou, A. Bioavailability and its assessment. J. Vet. Pharmacol. Ther., 2004, 27(6), 455-466.
[http://dx.doi.org/10.1111/j.1365-2885.2004.00604.x] [PMID: 15601440]
[4]
Damre, A.A.; Iyer, K.R. The significance and determination of plasma protein binding. In: Encyclopedia of Drug Metabolism and Interac-tions; Lyubimov, A.V., Ed.; American Cancer Society: Atlanta, Georgia, 2012, pp. 1-18.
[http://dx.doi.org/10.1002/9780470921920.edm032]
[5]
Anzenbacher, P.; Anzenbacherová, E. Drug-metabolizing enzymes–an overview. In:Metabolism of Drugs and Other Xenobiotics; Anzenbacher, P.; Zanger, U.M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA. , 2012, pp. 1-25.
[http://dx.doi.org/10.1002/9783527630905.ch1]
[6]
Krishna, D.R.; Klotz, U. Extrahepatic metabolism of drugs in humans. Clin. Pharmacokinet., 1994, 26(2), 144-160.
[http://dx.doi.org/10.2165/00003088-199426020-00007] [PMID: 8162658]
[7]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138, 103-141.
[8]
Zhang, D.; Luo, G.; Ding, X.; Lu, C. Preclinical experimental models of drug metabolism and disposition in drug discovery and develop-ment. Acta Pharm. Sin. B, 2012, 2(6), 549-561.
[http://dx.doi.org/10.1016/j.apsb.2012.10.004]
[9]
Iyanagi, T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: Implications for detoxification. Int. Rev. Cytol., 2007, 260, 35-112.
[http://dx.doi.org/10.1016/S0074-7696(06)60002-8] [PMID: 17482904]
[10]
Jancova, P.; Anzenbacher, P.; Anzenbacherova, E. Phase II Drug Metabolizing Enzymes. Biomed. Pap., 2010, 154, 103-116.
[11]
Calabrese, E.J. Principles of Animal Extrapolation; CRC Press: Boca Raton, FL, USA, 1991.
[12]
Björkman, S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: How accurate are available scaling methods? Clin. Pharmacokinet., 2006, 45(1), 1-11.
[http://dx.doi.org/10.2165/00003088-200645010-00001] [PMID: 16430308]
[13]
Renwick, A.G. Toxicokinetics in infants and children in relation to the ADI and TDI. Food Addit. Contam., 1998, 15(Suppl. 1), 17-35.
[http://dx.doi.org/10.1080/02652039809374612]
[14]
Kinirons, M.T.; O’Mahony, M.S. Drug metabolism and ageing. Br. J. Clin. Pharmacol., 2004, 57(5), 540-544.
[http://dx.doi.org/10.1111/j.1365-2125.2004.02096.x] [PMID: 15089805]
[15]
Morgan, E.T. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin. Pharmacol. Ther., 2009, 85(4), 434-438.
[http://dx.doi.org/10.1038/clpt.2008.302] [PMID: 19212314]
[16]
Rowland, M.; Tozer, T.N. Clinical Pharmacokinetics: Concepts and Applications; Lea & Febiger: Philadelphia, 1989.
[17]
Belle, D.J.; Singh, H. Genetic factors in drug metabolism. Am. Fam. Physician, 2008, 77(11), 1553-1560.
[PMID: 18581835]
[18]
Hurley, T.D.; Edenberg, H.J. Genes encoding enzymes involved in ethanol metabolism. Alcohol Res., 2012, 34(3), 339-344.
[PMID: 23134050]
[19]
Niedzwiecki, M.M.; Walker, D.I.; Vermeulen, R.; Chadeau-Hyam, M.; Jones, D.P.; Miller, G.W. The exposome: Molecules to populations. Annu. Rev. Pharmacol. Toxicol., 2019, 59(1), 107-127.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021315] [PMID: 30095351]
[20]
Honkakoski, P.; Negishi, M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem. J., 2000, 347(Pt 2), 321-337.
[http://dx.doi.org/10.1042/bj3470321] [PMID: 10749660]
[21]
Kawajiri, K.; Fujii-Kuriyama, Y. The aryl hydrocarbon receptor: A multifunctional chemical sensor for host defense and homeostatic maintenance. Exp. Anim., 2017, 66(2), 75-89.
[http://dx.doi.org/10.1538/expanim.16-0092] [PMID: 27980293]
[22]
Kliewer, S.A.; Goodwin, B.; Willson, T.M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr. Rev., 2002, 23(5), 687-702.
[http://dx.doi.org/10.1210/er.2001-0038] [PMID: 12372848]
[23]
Pavek, P.; Dvorak, Z. Xenobiotic-induced transcriptional regulation of xenobiotic metabolizing enzymes of the cytochrome P450 super-family in human extrahepatic tissues. Curr. Drug Metab., 2008, 9(2), 129-143.
[http://dx.doi.org/10.2174/138920008783571774] [PMID: 18288955]
[24]
Dumont, C.; Prieto, P.; Asturiol, D.; Worth, A. Review of the availability of in vitro and in silico methods for assessing dermal bioavailabil-ity. Appl. In Vitro Toxicol., 2015, 1(2), 147-164.
[http://dx.doi.org/10.1089/aivt.2015.0003]
[25]
Elias, P.M. The skin barrier as an innate immune element. Semin. Immunopathol., 2007, 29(1), 3-14.
[http://dx.doi.org/10.1007/s00281-007-0060-9] [PMID: 17621950]
[26]
Elias, P.M. Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol., 1983, 80(1), 44s-49s.
[http://dx.doi.org/10.1038/jid.1983.12]
[27]
Vickers, C.F. Existence of reservoir in the stratum corneum: Experimental proof. Arch. Dermatol., 1963, 88(1), 20-23.
[http://dx.doi.org/10.1001/archderm.1963.01590190026002] [PMID: 14042657]
[28]
Warner, R.R.; Stone, K.J.; Boissy, Y.L. Hydration disrupts human stratum corneum ultrastructure. J. Invest. Dermatol., 2003, 120(2), 275-284.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12046.x] [PMID: 12542533]
[29]
Roberts, M.S.; Walters, K.A. Dermal Absorption and Toxicity Assessment, 2nd Ed; CRC Press: Boca Raton, FL, USA, 2007.
[http://dx.doi.org/10.3109/9780849375927]
[30]
Bolzinger, M-A.; Briançon, S.; Pelletier, J.; Chevalier, Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci., 2012, 17(3), 156-165.
[http://dx.doi.org/10.1016/j.cocis.2012.02.001]
[31]
Smith, C.; Hotchkiss, S. Allergic Contact Dermatitis: Chemical and Metabolic Mechanisms; Taylor & Francis: Oxfordshire, 2001.
[32]
Roberts, D.W.; Mekenyan, O.G.; Dimitrov, S.D.; Dimitrova, G.D. What determines skin sensitization potency-myths, maybes and realities. Part 1. The 500 molecular weight cut-off. Contact Dermat., 2013, 68(1), 32-41.
[http://dx.doi.org/10.1111/j.1600-0536.2012.02160.x] [PMID: 22924443]
[33]
Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal drug delivery: Innovative pharmaceutical developments based on disrup-tion of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[34]
SCCS. SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 9th revision. 2015. Available from: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_190.pdf
[35]
Lane, M.E. Skin penetration enhancers. Int. J. Pharm., 2013, 447(1-2), 12-21.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.040] [PMID: 23462366]
[36]
Pannatier, A.; Jenner, P.; Testa, B.; Etter, J.C. The skin as a drug-metabolizing organ. Drug Metab. Rev., 1978, 8(2), 319-343.
[http://dx.doi.org/10.3109/03602537808993791] [PMID: 363387]
[37]
Baron, J.M.; Merk, H.F. Drug metabolism in the skin. Curr. Opin. Allergy Clin. Immunol., 2001, 1(4), 287-291.
[http://dx.doi.org/10.1097/01.all.0000011028.08297.b3] [PMID: 11964702]
[38]
Hewitt, N.J.; Edwards, R.J.; Fritsche, E.; Goebel, C.; Aeby, P.; Scheel, J.; Reisinger, K.; Ouédraogo, G.; Duche, D.; Eilstein, J.; Latil, A.; Kenny, J.; Moore, C.; Kuehnl, J.; Barroso, J.; Fautz, R.; Pfuhler, S. Use of human in vitro skin models for accurate and ethical risk assess-ment: Metabolic considerations. Toxicol. Sci., 2013, 133(2), 209-217.
[http://dx.doi.org/10.1093/toxsci/kft080] [PMID: 23539547]
[39]
Lepoittevin, P. La peau: Acteur majeur du métabolisme. Prog. En Derm.-Allergol. Lille, 2004, 10, 153.
[40]
Oesch, F.; Fabian, E.; Guth, K.; Landsiedel, R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch. Toxicol., 2014, 88(12), 2135-2190.
[http://dx.doi.org/10.1007/s00204-014-1382-8] [PMID: 25370008]
[41]
Pyo, S.M.; Maibach, H.I. Skin metabolism: Relevance of skin enzymes for rational drug design. Skin Pharmacol. Physiol., 2019, 32(5), 283-294.
[http://dx.doi.org/10.1159/000501732] [PMID: 31357203]
[42]
Oesch, F.; Fabian, E.; Landsiedel, R. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch. Toxicol., 2018, 92(8), 2411-2456.
[http://dx.doi.org/10.1007/s00204-018-2232-x] [PMID: 29916051]
[43]
Nebert, D.W.; Nelson, D.R.; Coon, M.J.; Estabrook, R.W.; Feyereisen, R.; Fujii-Kuriyama, Y.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F.; Loper, J.C.; Sato, R.; Waterman, M.R.; Waxman, D.J. The P450 superfamily: Update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol., 1991, 10(1), 1-14.
[http://dx.doi.org/10.1089/dna.1991.10.1] [PMID: 1991046]
[44]
Shimada, T.; Fujii-Kuriyama, Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci., 2004, 95(1), 1-6.
[http://dx.doi.org/10.1111/j.1349-7006.2004.tb03162.x] [PMID: 14720319]
[45]
Ortiz de Montellano, P.R. Cytochrome P450-activated prodrugs. Future Med. Chem., 2013, 5(2), 213-228.
[http://dx.doi.org/10.4155/fmc.12.197] [PMID: 23360144]
[46]
van Eijl, S.; Zhu, Z.; Cupitt, J.; Gierula, M.; Götz, C.; Fritsche, E.; Edwards, R.J. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling. PLoS One, 2012, 7(7), e41721.
[http://dx.doi.org/10.1371/journal.pone.0041721] [PMID: 22848577]
[47]
Ahmad, N.; Mukhtar, H. Cytochrome p450: A target for drug development for skin diseases. J. Invest. Dermatol., 2004, 123(3), 417-425.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23307.x] [PMID: 15304077]
[48]
Quantin, P.; Patatian, A.; Floreani, M.; Egles, C.; Benech, P.; Ficheux, H. Temporal transcriptomic analysis of human primary keratinocytes exposed to β-naphthoflavone highlights the protective efficacy of skin to environmental pollutants. Toxicol. In Vitro, 2020, 65, 104822.
[http://dx.doi.org/10.1016/j.tiv.2020.104822] [PMID: 32151702]
[49]
Neis, M.M.; Wendel, A.; Wiederholt, T.; Marquardt, Y.; Joussen, S.; Baron, J.M.; Merk, H.F. Expression and induction of cytochrome p450 isoenzymes in human skin equivalents. Skin Pharmacol. Physiol., 2010, 23(1), 29-39.
[http://dx.doi.org/10.1159/000257261] [PMID: 20090406]
[50]
Janmohamed, A.; Dolphin, C.T.; Phillips, I.R.; Shephard, E.A. Quantification and cellular localization of expression in human skin of genes encoding flavin-containing monooxygenases and cytochromes P450. Biochem. Pharmacol., 2001, 62(6), 777-786.
[http://dx.doi.org/10.1016/S0006-2952(01)00718-3] [PMID: 11551524]
[51]
Cheung, C.; Hotchkiss, S.A.M.; Pease, C.K.S. Cinnamic compound metabolism in human skin and the role metabolism may play in deter-mining relative sensitisation potency. J. Dermatol. Sci., 2003, 31(1), 9-19.
[http://dx.doi.org/10.1016/S0923-1811(02)00139-1] [PMID: 12615359]
[52]
Lockley, D.J.; Howes, D.; Williams, F.M. Cutaneous metabolism of glycol ethers. Arch. Toxicol., 2005, 79(3), 160-168.
[http://dx.doi.org/10.1007/s00204-004-0619-3] [PMID: 15551062]
[53]
Yasuda, K.; Montagna, W. Histology and cytochemistry of human skin. 20. The distribution of monoamine oxidase. J. Histochem. Cytochem., 1960, 8(5), 356-366.
[http://dx.doi.org/10.1177/8.5.356] [PMID: 13846477]
[54]
McCracken, N.W.; Blain, P.G.; Williams, F.M. Nature and role of xenobiotic metabolizing esterases in rat liver, lung, skin and blood. Biochem. Pharmacol., 1993, 45(1), 31-36.
[http://dx.doi.org/10.1016/0006-2952(93)90373-5] [PMID: 8424820]
[55]
Kazem, S.; Linssen, E.C.; Gibbs, S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: A short re-view. Drug Discov. Today, 2019, 24(9), 1899-1910.
[http://dx.doi.org/10.1016/j.drudis.2019.06.002] [PMID: 31176740]
[56]
Krien, P.M.; Kermici, M. Evidence for the existence of a self-regulated enzymatic process within the human stratum corneum -an unex-pected role for urocanic acid. J. Invest. Dermatol., 2000, 115(3), 414-420.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00083.x] [PMID: 10951277]
[57]
Moss, T.; Howes, D.; Williams, F.M. Percutaneous penetration and dermal metabolism of triclosan (2,4, 4′-trichloro-2′-hydroxydiphenyl ether). Food Chem. Toxicol., 2000, 38(4), 361-370.
[http://dx.doi.org/10.1016/S0278-6915(99)00164-7] [PMID: 10722890]
[58]
Buhl, A.E.; Waldon, D.J.; Baker, C.A.; Johnson, G.A. Minoxidil sulfate is the active metabolite that stimulates hair follicles. J. Invest. Dermatol., 1990, 95(5), 553-557.
[http://dx.doi.org/10.1111/1523-1747.ep12504905] [PMID: 2230218]
[59]
Goebel, C.; Hewitt, N.J.; Kunze, G.; Wenker, M.; Hein, D.W.; Beck, H.; Skare, J. Skin metabolism of aminophenols: Human keratinocytes as a suitable in vitro model to qualitatively predict the dermal transformation of 4-amino-2-hydroxytoluene in vivo. Toxicol. Appl. Pharmacol., 2009, 235(1), 114-123.
[http://dx.doi.org/10.1016/j.taap.2008.11.014] [PMID: 19100279]
[60]
Luu-The, V.; Duche, D.; Ferraris, C.; Meunier, J-R.; Leclaire, J.; Labrie, F. Expression profiles of phases 1 and 2 metabolizing enzymes in human skin and the reconstructed skin models Episkin and full thickness model from Episkin. J. Steroid Biochem. Mol. Biol., 2009, 116(3-5), 178-186.
[http://dx.doi.org/10.1016/j.jsbmb.2009.05.011] [PMID: 19482084]
[61]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249(22), 7130-7139.
[http://dx.doi.org/10.1016/S0021-9258(19)42083-8] [PMID: 4436300]
[62]
Smith Pease, C.K.; Basketter, D.A.; Patlewicz, G.Y. Contact allergy: The role of skin chemistry and metabolism. Clin. Exp. Dermatol., 2003, 28(2), 177-183.
[http://dx.doi.org/10.1046/j.1365-2230.2003.01239.x] [PMID: 12653709]
[63]
Brinkmann, J.; Stolpmann, K.; Trappe, S.; Otter, T.; Genkinger, D.; Bock, U.; Liebsch, M.; Henkler, F.; Hutzler, C.; Luch, A. Metabolically competent human skin models: Activation and genotoxicity of benzo[a]pyrene. Toxicol. Sci., 2013, 131(2), 351-359.
[http://dx.doi.org/10.1093/toxsci/kfs316] [PMID: 23148024]
[64]
Wiebel, F.J.; Gelboin, H.V. Cutaneous carcinogenesis: Metabolic interaction of chemical carcinogens with skin. In: Comprehensive Physiol-ogy; John Wiley & Sons, Inc., 2010.
[65]
Peiser, M.; Tralau, T.; Heidler, J.; Api, A.M.; Arts, J.H.E.; Basketter, D.A.; English, J.; Diepgen, T.L.; Fuhlbrigge, R.C.; Gaspari, A.A.; Jo-hansen, J.D.; Karlberg, A.T.; Kimber, I.; Lepoittevin, J.P.; Liebsch, M.; Maibach, H.I.; Martin, S.F.; Merk, H.F.; Platzek, T.; Rustemeyer, T.; Schnuch, A.; Vandebriel, R.J.; White, I.R.; Luch, A. Allergic contact dermatitis: Epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany. Cell. Mol. Life Sci., 2012, 69(5), 763-781.
[http://dx.doi.org/10.1007/s00018-011-0846-8] [PMID: 21997384]
[66]
Ahlfors, S.R.; Sterner, O.; Hansson, C. Reactivity of contact allergenic haptens to amino acid residues in a model carrier peptide, and char-acterization of formed peptide-hapten adducts. Skin Pharmacol. Appl. Skin Physiol., 2003, 16(1), 59-68.
[http://dx.doi.org/10.1159/000068288] [PMID: 12566830]
[67]
Barratt, M.D.; Basketter, D.A. Possible origin of the skin sensitization potential of isoeugenol and related compounds. (I). Preliminary studies of potential reaction mechanisms. Contact Dermat., 1992, 27, 98-104.
[68]
Karlberg, A-T.; Bergström, M.A.; Börje, A.; Luthman, K.; Nilsson, J.L.G. Allergic contact dermatitis--formation, structural requirements, and reactivity of skin sensitizers. Chem. Res. Toxicol., 2008, 21(1), 53-69.
[http://dx.doi.org/10.1021/tx7002239] [PMID: 18052130]
[69]
Natsch, A. The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers--functional relevance and a hypothesis on in-nate reactions to skin sensitizers. Toxicol. Sci., 2010, 113(2), 284-292.
[http://dx.doi.org/10.1093/toxsci/kfp228] [PMID: 19767620]
[70]
Urbisch, D.; Becker, M.; Honarvar, N.; Kolle, S.N.; Mehling, A.; Teubner, W.; Wareing, B.; Landsiedel, R. Assessment of pre- and pro-haptens using nonanimal test methods for skin sensitization. Chem. Res. Toxicol., 2016, 29(5), 901-913.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00055] [PMID: 27070937]
[71]
Thompson, D.; Constantin-Teodosiu, D.; Egestad, B.; Mickos, H.; Moldéus, P. Formation of glutathione conjugates during oxidation of eugenol by microsomal fractions of rat liver and lung. Biochem. Pharmacol., 1990, 39(10), 1587-1595.
[http://dx.doi.org/10.1016/0006-2952(90)90525-P] [PMID: 2337416]
[72]
Ewald, B.H.; Gregg, D.A. Animal research for animals. Ann. N. Y. Acad. Sci., 1983, 406, 48-58.
[http://dx.doi.org/10.1111/j.1749-6632.1983.tb53484.x] [PMID: 6349465]
[73]
Orfila, M-J-B. Treatise on Toxicology; Fortin; Masson: Paris, 1843.
[74]
Priestley, J.; Hey, W. Observations on different kinds of air. Philos. Trans. R. Soc., 1772, 62, 147-264.
[http://dx.doi.org/10.1098/rstl.1772.0021]
[75]
Allen, D.; Waters, M.D. Reducing, Refining and Replacing the Use of Animals in Toxicity Testing; Royal Society of Chemistry: London, 2013.
[http://dx.doi.org/10.1039/9781849737920]
[76]
OECD. Test No. 427: Skin Absorption: In vivo Method, Organisation for Economic Co-operation and Development: Paris. 2004. Available from: https://read.oecd-ilibrary.org/environment/test-no-427-skin-absorption-in-vivo-method_9789264071063-en#page1
[77]
FDA. Topical Dermatological Drug Product NDAs and ANDAs -In vivo Bioavailability, Bioequivalence, in vitro Release, and Associated Studies; Food and Drug Agency: Rockville, MD, 1998.
[78]
Rougier, A.; Lotte, C.; Maibach, H.I. In vivo percutaneous penetration of some organic compounds related to anatomic site in humans: Predictive assessment by the stripping method. J. Pharm. Sci., 1987, 76(6), 451-454.
[http://dx.doi.org/10.1002/jps.2600760608] [PMID: 3625489]
[79]
Abd, E.; Yousef, S.A.; Pastore, M.N.; Telaprolu, K.; Mohammed, Y.H.; Namjoshi, S.; Grice, J.E.; Roberts, M.S. Skin models for the testing of transdermal drugs. Clin. Pharmacol., 2016, 8, 163-176.
[http://dx.doi.org/10.2147/CPAA.S64788] [PMID: 27799831]
[80]
Quantin, P.; Ghazi, K.; Pereira, U.; Smith, A.; Degardin, L.; Vigneron, P.; Ficheux, H.; Garlick, J.; Rapetti, L.; Egles, C. Utilization of a mouse/human chimeric model for long term metabolic testing of human skin. J. Pharmacol. Toxicol. Methods, 2020, 102, 106663.
[http://dx.doi.org/10.1016/j.vascn.2019.106663] [PMID: 31837436]
[81]
Reifenrath, W.G.; Chellquist, E.M.; Shipwash, E.A.; Jederberg, W.W.; Krueger, G.G. Percutaneous penetration in the hairless dog, weanling pig and grafted athymic nude mouse: Evaluation of models for predicting skin penetration in man. Br. J. Dermatol., 1984, 111(s27)(Suppl. 27), 123-135.
[http://dx.doi.org/10.1111/j.1365-2133.1984.tb15590.x] [PMID: 6204672]
[82]
Jacques, C. Study of the diffusion and cutaneous metabolism of xenobiotics on preserved pig ear skin in comparison with the liver, Doctoral Thesis, Université de Toulouse, 2010.
[83]
Bronaugh, R.L.; Stewart, R.F.; Wester, R.C.; Bucks, D.; Mailbach, H.I.; Anderson, J. Comparison of percutaneous absorption of fragrances by humans and monkeys. Food Chem. Toxicol., 1985, 23(1), 111-114.
[http://dx.doi.org/10.1016/0278-6915(85)90228-5] [PMID: 4038674]
[84]
Wilkinson, G.R. Prediction of In vivo Parameters of Drug Metabolism and Distribution from In vitro Studies; National Academies Press: US, 1987.
[85]
Saraf, S.K.; Kumaraswamy, V. Basic research: Issues with animal experimentations. Indian J. Orthop., 2013, 47(1), 6-9.
[http://dx.doi.org/10.4103/0019-5413.106882] [PMID: 23532705]
[86]
Shanks, N.; Greek, R.; Greek, J. Are animal models predictive for humans? Philos. Ethics Humanit. Med., 2009, 4(1), 2.
[http://dx.doi.org/10.1186/1747-5341-4-2] [PMID: 19146696]
[87]
Götz, C.; Pfeiffer, R.; Tigges, J.; Blatz, V.; Jäckh, C.; Freytag, E-M.; Fabian, E.; Landsiedel, R.; Merk, H.F.; Krutmann, J.; Edwards, R.J.; Pease, C.; Goebel, C.; Hewitt, N.; Fritsche, E. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: Activating enzymes (Phase I). Exp. Dermatol., 2012, 21(5), 358-363.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01486.x] [PMID: 22509833]
[88]
Götz, C.; Pfeiffer, R.; Tigges, J.; Ruwiedel, K.; Hübenthal, U.; Merk, H.F.; Krutmann, J.; Edwards, R.J.; Abel, J.; Pease, C.; Goebel, C.; Hewitt, N.; Fritsche, E. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: Phase II enzymes. Exp. Dermatol., 2012, 21(5), 364-369.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01478.x] [PMID: 22509834]
[89]
MacNeil, S. Progress and opportunities for tissue-engineered skin. Nature, 2007, 445(7130), 874-880.
[http://dx.doi.org/10.1038/nature05664] [PMID: 17314974]
[90]
Ponec, M. Skin constructs for replacement of skin tissues for in vitro testing. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S19-S30.
[http://dx.doi.org/10.1016/S0169-409X(02)00112-6] [PMID: 12460713]
[91]
Poumay, Y.; Dupont, F.; Marcoux, S.; Leclercq-Smekens, M.; Hérin, M.; Coquette, A. A simple reconstructed human epidermis: Prepara-tion of the culture model and utilization in in vitro studies. Arch. Dermatol. Res., 2004, 296(5), 203-211.
[http://dx.doi.org/10.1007/s00403-004-0507-y] [PMID: 15349789]
[92]
Schäfer-Korting, M.; Mahmoud, A.; Lombardi Borgia, S.; Brüggener, B.; Kleuser, B.; Schreiber, S.; Mehnert, W. Reconstructed epidermis and full-thickness skin for absorption testing: Influence of the vehicles used on steroid permeation. Altern. Lab. Anim., 2008, 36(4), 441-452.
[http://dx.doi.org/10.1177/026119290803600405] [PMID: 18826333]
[93]
Régnier, M.; Patwardhan, A.; Scheynius, A.; Schmidt, R. Reconstructed human epidermis composed of keratinocytes, melanocytes and Langerhans cells. Med. Biol. Eng. Comput., 1998, 36(6), 821-824.
[http://dx.doi.org/10.1007/BF02518889] [PMID: 10367476]
[94]
Eilstein, J.; Léreaux, G.; Budimir, N.; Hussler, G.; Wilkinson, S.; Duché, D. Comparison of xenobiotic metabolizing enzyme activities in ex vivo human skin and reconstructed human skin models from SkinEthic. Arch. Toxicol., 2014, 88(9), 1681-1694.
[http://dx.doi.org/10.1007/s00204-014-1218-6] [PMID: 24658324]
[95]
Hu, T.; Bailey, R.E.; Morrall, S.W.; Aardema, M.J.; Stanley, L.A.; Skare, J.A. Dermal penetration and metabolism of p-aminophenol and p-phenylenediamine: Application of the EpiDerm human reconstructed epidermis model. Toxicol. Lett., 2009, 188(2), 119-129.
[http://dx.doi.org/10.1016/j.toxlet.2009.03.019] [PMID: 19446244]
[96]
Hu, T.; Khambatta, Z.S.; Hayden, P.J.; Bolmarcich, J.; Binder, R.L.; Robinson, M.K.; Carr, G.J.; Tiesman, J.P.; Jarrold, B.B.; Osborne, R.; Reichling, T.D.; Nemeth, S.T.; Aardema, M.J. Xenobiotic metabolism gene expression in the EpiDerm in vitro 3D human epidermis model compared to human skin. Toxicol. Vitro Int. J. Publ. Assoc. BIBRA, 2010, 24(5), 1450-1463.
[http://dx.doi.org/10.1016/j.tiv.2010.03.013] [PMID: 20350595]
[97]
Schreiber, S.; Mahmoud, A.; Vuia, A.; Rübbelke, M.K.; Schmidt, E.; Schaller, M.; Kandárová, H.; Haberland, A.; Schäfer, U.F.; Bock, U.; Korting, H.C.; Liebsch, M.; Schäfer-Korting, M. Reconstructed epidermis versus human and animal skin in skin absorption studies. Toxicol. In Vitro, 2005, 19(6), 813-822.
[http://dx.doi.org/10.1016/j.tiv.2005.04.004] [PMID: 15913948]
[98]
Lotte, C.; Patouillet, C.; Zanini, M.; Messager, A.; Roguet, R. Permeation and skin absorption: Reproducibility of various industrial recon-structed human skin models. Skin Pharmacol. Appl. Skin Physiol., 2002, 15(Suppl. 1), 18-30.
[http://dx.doi.org/10.1159/000066679] [PMID: 12476006]
[99]
Ponec, M.; Gibbs, S.; Pilgram, G.; Boelsma, E.; Koerten, H.; Bouwstra, J.; Mommaas, M. Barrier function in reconstructed epidermis and its resemblance to native human skin. Skin Pharmacol. Appl. Skin Physiol., 2001, 14(Suppl. 1), 63-71.
[http://dx.doi.org/10.1159/000056392] [PMID: 11509909]
[100]
Antille, C.; Tran, C.; Sorg, O.; Saurat, J-H. Penetration and metabolism of topical retinoids in ex vivo organ-cultured full-thickness human skin explants. Skin Pharmacol. Physiol., 2004, 17(3), 124-128.
[http://dx.doi.org/10.1159/000077238] [PMID: 15087591]
[101]
de Jager, M.; Groenink, W.; Bielsa i Guivernau, R.; Andersson, E.; Angelova, N.; Ponec, M.; Bouwstra, J. A novel in vitro percutaneous penetration model: Evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharm. Res., 2006, 23(5), 951-960.
[http://dx.doi.org/10.1007/s11095-006-9909-1] [PMID: 16715385]
[102]
Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci., 2015, 67, 113-118.
[http://dx.doi.org/10.1016/j.ejps.2014.11.002] [PMID: 25447745]
[103]
Sinkó, B.; Garrigues, T.M.; Balogh, G.T.; Nagy, Z.K.; Tsinman, O.; Avdeef, A.; Takács-Novák, K. Skin-PAMPA: A new method for fast prediction of skin penetration. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci., 2012, 45(5), 698-707.
[http://dx.doi.org/10.1016/j.ejps.2012.01.011] [PMID: 22326705]
[104]
Ng, S-F.; Rouse, J.; Sanderson, D.; Eccleston, G. A comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using franz diffusion cells. Pharmaceutics, 2010, 2(2), 209-223.
[http://dx.doi.org/10.3390/pharmaceutics2020209] [PMID: 27721352]
[105]
Herkenne, C.; Naik, A.; Kalia, Y.N.; Hadgraft, J.; Guy, R.H. Ibuprofen transport into and through skin from topical formulations: In vitro-in vivo comparison. J. Invest. Dermatol., 2007, 127(1), 135-142.
[http://dx.doi.org/10.1038/sj.jid.5700491] [PMID: 16858418]
[106]
Jia, L.; Liu, X. The conduct of drug metabolism studies considered good practice (II): In vitro experiments. Curr. Drug Metab., 2007, 8(8), 822-829.
[http://dx.doi.org/10.2174/138920007782798207] [PMID: 18220563]
[107]
Quantin, P.; Colaço, E.; El Kirat, K.; Egles, C.; Ficheux, H.; Landoulsi, J. Layer-by-layer assembly of nanosized membrane fractions for the assessment of cytochrome P450 xenobiotic metabolism. ACS Omega, 2018, 3(10), 12535-12544.
[http://dx.doi.org/10.1021/acsomega.8b01738] [PMID: 31457987]
[108]
Spriggs, S.; Cubberley, R.; Loadman, P.; Sheffield, D.; Wierzbicki, A. A study of inter-individual variability in the Phase II metabolism of xenobiotics in human skin. Toxicol. Lett., 2018, 292, 63-72.
[http://dx.doi.org/10.1016/j.toxlet.2018.04.011] [PMID: 29709425]
[109]
Natsch, A.; Haupt, T. Utility of rat liver S9 fractions to study skin-sensitizing prohaptens in a modified KeratinoSens assay. Toxicol. Sci., 2013, 135(2), 356-368.
[http://dx.doi.org/10.1093/toxsci/kft160] [PMID: 23872582]
[110]
Chun, H.S.; Kuzmicky, P.A.; Rucoba, L.; Kado, N.Y.; Rice, R.H. Cytotoxicity and keratinocyte microsome-mediated mutagenic activation of carcinogens in cultured epidermal cells. Toxicol. Lett., 2000, 115(2), 165-172.
[http://dx.doi.org/10.1016/S0378-4274(00)00190-9] [PMID: 10802392]
[111]
Reifenrath, W.G.; Hawkins, G.S.; Kurtz, M.S. Percutaneous penetration and skin retention of topically applied compounds: An in vitro-in vivo study. J. Pharm. Sci., 1991, 80(6), 526-532.
[http://dx.doi.org/10.1002/jps.2600800605] [PMID: 1941541]
[112]
Krone, V. Absorption: In vivo tests (radiolabeled). In: Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Vogel, H.G.; Maas, J.; Hock, F.J.; Mayer, D., Eds.; Springer: Berlin, Heidelberg, 2013, pp. 799-834.
[http://dx.doi.org/10.1007/978-3-642-25240-2_33]
[113]
Herkenne, C.; Alberti, I.; Naik, A.; Kalia, Y.N.; Mathy, F-X.; Préat, V.; Guy, R.H. In vivo methods for the assessment of topical drug bioa-vailability. Pharm. Res., 2008, 25(1), 87-103.
[http://dx.doi.org/10.1007/s11095-007-9429-7] [PMID: 17985216]
[114]
Bartosova, L.; Bajgar, J. Transdermal drug delivery in vitro using diffusion cells. Curr. Med. Chem., 2012, 19(27), 4671-4677.
[http://dx.doi.org/10.2174/092986712803306358] [PMID: 22934776]
[115]
Pineau, A.; Guillard, O.; Favreau, F.; Marrauld, A.; Fauconneau, B.; Gaudin, A.; Vincent, C.M.; Marrauld, A.; Marty, J-P. In vitro study of percutaneous absorption of aluminum from antiperspirants through human skin in the Franz™ diffusion cell. J. Inorg. Biochem., 2012, 110, 21-26.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.02.013] [PMID: 22459170]
[116]
Bodenlenz, M.; Tiffner, K.I.; Raml, R.; Augustin, T.; Dragatin, C.; Birngruber, T.; Schimek, D.; Schwagerle, G.; Pieber, T.R.; Raney, S.G.; Kanfer, I.; Sinner, F. Open flow microperfusion as a dermal pharmacokinetic approach to evaluate topical bioequivalence. Clin. Pharmacokinet., 2017, 56(1), 91-98.
[http://dx.doi.org/10.1007/s40262-016-0442-z] [PMID: 27539717]
[117]
Holmgaard, R.; Nielsen, J.B.; Benfeldt, E. Microdialysis sampling for investigations of bioavailability and bioequivalence of topically ad-ministered drugs: Current state and future perspectives. Skin Pharmacol. Physiol., 2010, 23(5), 225-243.
[http://dx.doi.org/10.1159/000314698] [PMID: 20484965]
[118]
McGinnity, D.F.; Griffin, S.J.; Moody, G.C.; Voice, M.; Hanlon, S.; Friedberg, T.; Riley, R.J. Rapid characterization of the major drug-metabolizing human hepatic cytochrome P-450 enzymes expressed in Escherichia coli. Drug Metab. Dispos., 1999, 27(9), 1017-1023.
[PMID: 10460801]
[119]
Dennis, K.K.; Auerbach, S.S.; Balshaw, D.M.; Cui, Y.; Fallin, M.D.; Smith, M.T.; Spira, A.; Sumner, S.; Miller, G.W. The importance of the biological impact of exposure to the concept of the exposome. Environ. Health Perspect., 2016, 124(10), 1504-1510.
[http://dx.doi.org/10.1289/EHP140] [PMID: 27258438]
[120]
Guerriaud, M. Droit pharmaceutique; Elsevier Masson, 2016.
[121]
Palleria, C.; Di Paolo, A.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Pharmacokinetic drug-drug interac-tion and their implication in clinical management. J. Res. Med. Sci., 2013, 18(7), 601-610.
[PMID: 24516494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy