Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

大肠癌细胞中ATP8B1基因表达的调节提示其作为肿瘤抑制因子的作用

卷 22, 期 7, 2022

发表于: 19 May, 2022

页: [577 - 590] 页: 14

弟呕挨: 10.2174/1568009622666220517092340

价格: $65

conference banner
摘要

目的: 本研究旨在了解肿瘤抑制基因在结直肠癌发生和发展中的作用。 背景: 散发性结直肠癌(CRC)通过不同的分子事件发展。18q染色体的缺失是腺瘤向癌进展过程中的一个显著事件。关于该事件的分子效应器的信息有限。早些时候,我们报道了ATP8B1是一种与大肠癌相关的新基因。ATP8B1属于P型ATP酶(P4 ATP酶)家族,其主要功能是促进磷脂的移位。 摘要: 在本研究中,我们试图将位于染色体18q上的ATP8B1基因作为肿瘤抑制基因。 方法:细胞培养、患者数据分析、稳定的ATP8B1过表达SW480细胞系的产生、病毒颗粒的制备、细胞转导、用CRISPR/Cas9产生稳定的ATP8B1敲除HT29细胞系、用shRNA产生稳定的ATP8B1基因敲除HT2 9细胞系、ATP8B1基因表达的定量、实时细胞增殖和迁移测定,细胞增殖测定、细胞迁移测定、蛋白质分离和western印迹、终点细胞活力测定、鞘磷脂摄取和流出、统计和计算分析。 结果: 我们研究了本地患者数据,并确认肿瘤样本中ATP8B1的表达降低。CRC细胞系通过降低和提高ATP8B1水平进行工程化,这为研究其在癌症进展中的作用提供了工具。CRISPR/Cas9或shRNA强制降低ATP8B1表达与CRC细胞系HT29的生长和增殖增加有关。相反,ATP8B1的过度表达导致SW480细胞系的生长和增生减少。我们生成了一个ATP8B1下游的基因网络。此外,我们提供了ATP8B1水平调节对该网络的预测效果以及对脂肪酸代谢相关基因的可能影响。 结论: 位于染色体18q上的肿瘤抑制基因(ATP8B1)可能参与大肠癌的进展。敲除该基因会导致细胞增殖率增加,细胞死亡减少,表明其作为肿瘤抑制因子的作用。增加该基因在结直肠癌细胞中的表达会减缓其生长并增加细胞死亡。这些证据表明ATP8B1作为肿瘤抑制基因的作用。

关键词: 结直肠癌,翻转酶,离子转运蛋白,肿瘤抑制基因,染色体18q,脂质转运

图形摘要

[1]
Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M.J. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 18.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[2]
Worthley, D.L.; Leggett, B.A. Colorectal cancer: molecular features and clinical opportunities. Clin. Biochem. Rev., 2010, 31(2), 31-38.
[PMID: 20498827]
[3]
Yatime, L.; Buch-Pedersen, M.J.; Musgaard, M.; Morth, J.P.; Lund Winther, A.M.; Pedersen, B.P.; Olesen, C.; Andersen, J.P.; Vilsen, B.; Schiøtt, B.; Palmgren, M.G.; Møller, J.V.; Nissen, P.; Fedosova, N. P-type ATPases as drug targets: tools for medicine and science. Biochim. Biophys. Acta, 2009, 1787(4), 207-220.
[http://dx.doi.org/10.1016/j.bbabio.2008.12.019] [PMID: 19388138]
[4]
Kampen, K.R. Membrane proteins: the key players of a cancer cell. J. Membr. Biol., 2011, 242(2), 69-74.
[http://dx.doi.org/10.1007/s00232-011-9381-7] [PMID: 21732009]
[5]
Madjd, Z.; Pinder, S.E.; Paish, C.; Ellis, I.O.; Carmichael, J.; Durrant, L.G. Loss of CD59 expression in breast tumours correlates with poor survival. J. Pathol., 2003, 200(5), 633-639.
[http://dx.doi.org/10.1002/path.1357] [PMID: 12898600]
[6]
Xu, C.; Jung, M.; Burkhardt, M.; Stephan, C.; Schnorr, D.; Loening, S.; Jung, K.; Dietel, M.; Kristiansen, G. Increased CD59 protein expression predicts a PSA relapse in patients after radical prostatectomy. Prostate, 2005, 62(3), 224-232.
[http://dx.doi.org/10.1002/pros.20134] [PMID: 15389793]
[7]
Fan, L.; Li, A.; Li, W.; Cai, P.; Yang, B.; Zhang, M.; Gu, Y.; Shu, Y.; Sun, Y.; Shen, Y.; Wu, X.; Hu, G.; Wu, X.; Xu, Q. Novel role of Sarco/endoplasmic reticulum calcium ATPase 2 in development of colorectal cancer and its regulation by F36, a curcumin analog. Biomed. Pharmacother., 2014, 68(8), 1141-1148.
[http://dx.doi.org/10.1016/j.biopha.2014.10.014] [PMID: 25458791]
[8]
Geyik, E.; Igci, Y.Z.; Pala, E.; Suner, A.; Borazan, E.; Bozgeyik, I.; Bayraktar, E.; Bayraktar, R.; Ergun, S.; Cakmak, E.A.; Gokalp, A.; Arslan, A. Investigation of the association between ATP2B4 and ATP5B genes with colorectal cancer. Gene, 2014, 540(2), 178-182.
[http://dx.doi.org/10.1016/j.gene.2014.02.050] [PMID: 24583174]
[9]
Gou, W.F.; Niu, Z.F.; Zhao, S.; Takano, Y.; Zheng, H.C. Aberrant SERCA3 expression during the colorectal adenoma-adenocarcinoma sequence. Oncol. Rep., 2014, 31(1), 232-240.
[http://dx.doi.org/10.3892/or.2013.2837] [PMID: 24213720]
[10]
Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol., 2004, 5(4), 282-295.
[http://dx.doi.org/10.1038/nrm1354] [PMID: 15071553]
[11]
Jasmine, F.; Rahaman, R.; Dodsworth, C.; Roy, S.; Paul, R.; Raza, M.; Paul-Brutus, R.; Kamal, M.; Ahsan, H.; Kibriya, M.G. A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: opportunities for future personalized treatment. PLoS One, 2012, 7(2), e31968.
[http://dx.doi.org/10.1371/journal.pone.0031968] [PMID: 22363777]
[12]
Miyoshi, N.; Ishii, H.; Mimori, K.; Tanaka, F.; Nagai, K.; Uemura, M.; Sekimoto, M.; Doki, Y.; Mori, M. ATP11A is a novel predictive marker for metachronous metastasis of colorectal cancer. Oncol. Rep., 2010, 23(2), 505-510.
[PMID: 20043114]
[13]
Davit-Spraul, A.; Fabre, M.; Branchereau, S.; Baussan, C.; Gonzales, E.; Stieger, B.; Bernard, O.; Jacquemin, E. ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology, 2010, 51(5), 1645-1655.
[http://dx.doi.org/10.1002/hep.23539] [PMID: 20232290]
[14]
Copeland, E.; Renault, N.; Renault, M.; Dyack, S.; Bulman, D.E.; Bedard, K.; Otley, A.; Magee, F.; Acott, P.; Greer, W.L. Novel splice-site mutation in ATP8B1 results in atypical progressive familial intrahepatic cholestasis type 1. J. Gastroenterol. Hepatol., 2013, 28(3), 560-564.
[http://dx.doi.org/10.1111/j.1440-1746.2012.07290.x] [PMID: 23033845]
[15]
van der Woerd, W.L.; van Haaften-Visser, D.Y.; van de Graaf, S.F.; Férec, C.; Masson, E.; Stapelbroek, J.M.; Bugert, P.; Witt, H.; Houwen, R.H. Mutational analysis of ATP8B1 in patients with chronic pancreatitis. PLoS One, 2013, 8(11), e80553.
[http://dx.doi.org/10.1371/journal.pone.0080553] [PMID: 24260417]
[16]
van der Woerd, W.L.; Mulder, J.; Pagani, F.; Beuers, U.; Houwen, R.H.; van de Graaf, S.F. Analysis of aberrant pre-messenger RNA splicing resulting from mutations in ATP8B1 and efficient in vitro rescue by adapted U1 small nuclear RNA. Hepatology, 2015, 61(4), 1382-1391.
[http://dx.doi.org/10.1002/hep.27620] [PMID: 25421123]
[17]
Cai, S.Y.; Gautam, S.; Nguyen, T.; Soroka, C.J.; Rahner, C.; Boyer, J.L. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology, 2009, 136(3), 1060-1069.
[http://dx.doi.org/10.1053/j.gastro.2008.10.025] [PMID: 19027009]
[18]
Deng, B.C.; Lv, S.; Cui, W.; Zhao, R.; Lu, X.; Wu, J.; Liu, P. Novel ATP8B1 mutation in an adult male with progressive familial intrahepatic cholestasis. World J. Gastroenterol., 2012, 18(44), 6504-6509.
[http://dx.doi.org/10.3748/wjg.v18.i44.6504] [PMID: 23197899]
[19]
Srivastava, A. Progressive familial intrahepatic cholestasis. J. Clin. Exp. Hepatol., 2014, 4(1), 25-36.
[http://dx.doi.org/10.1016/j.jceh.2013.10.005] [PMID: 25755532]
[20]
Mouradov, D.; Sloggett, C.; Jorissen, R.N.; Love, C.G.; Li, S.; Burgess, A.W.; Arango, D.; Strausberg, R.L.; Buchanan, D.; Wormald, S.; O’Connor, L.; Wilding, J.L.; Bicknell, D.; Tomlinson, I.P.; Bodmer, W.F.; Mariadason, J.M.; Sieber, O.M. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res., 2014, 74(12), 3238-3247.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0013] [PMID: 24755471]
[21]
Van Allen, E.M.; Wagle, N.; Sucker, A.; Treacy, D.J.; Johannessen, C.M.; Goetz, E.M.; Place, C.S.; Taylor-Weiner, A.; Whittaker, S.; Kryukov, G.V.; Hodis, E.; Rosenberg, M.; McKenna, A.; Cibulskis, K.; Farlow, D.; Zimmer, L.; Hillen, U.; Gutzmer, R.; Goldinger, S.M.; Ugurel, S.; Gogas, H.J.; Egberts, F.; Berking, C.; Trefzer, U.; Loquai, C.; Weide, B.; Hassel, J.C.; Gabriel, S.B.; Carter, S.L.; Getz, G.; Garraway, L.A.; Schadendorf, D. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov., 2014, 4(1), 94-109.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0617] [PMID: 24265153]
[22]
Murphy, S.J.; Hart, S.N.; Lima, J.F.; Kipp, B.R.; Klebig, M.; Winters, J.L.; Szabo, C.; Zhang, L.; Eckloff, B.W.; Petersen, G.M.; Scherer, S.E.; Gibbs, R.A.; McWilliams, R.R.; Vasmatzis, G.; Couch, F.J. Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor. Gastroenterology, 2013, 145(5), 1098-1109.e1.
[http://dx.doi.org/10.1053/j.gastro.2013.07.049] [PMID: 23912084]
[23]
Eldai, H.; Periyasamy, S.; Al Qarni, S.; Al Rodayyan, M.; Muhammed Mustafa, S.; Deeb, A.; Al Sheikh, E.; Afzal, M.; Johani, M.; Yousef, Z.; Aziz, M.A. Novel genes associated with colorectal cancer are revealed by high resolution cytogenetic analysis in a patient specific manner. PLoS One, 2013, 8(10), e76251.
[http://dx.doi.org/10.1371/journal.pone.0076251] [PMID: 24204606]
[24]
Aziz, M.A.; Periyasamy, S.; Al Yousef, Z.; AlAbdulkarim, I.; Al Otaibi, M.; Alfahed, A.; Alasiri, G. Integrated exon level expression analysis of driver genes explain their role in colorectal cancer. PLoS One, 2014, 9(10), e110134.
[http://dx.doi.org/10.1371/journal.pone.0110134] [PMID: 25335079]
[25]
Uhlén M. Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf , K.; Sjöstedt, E.; Asplund, A.; Olsson, I.; Edlund, K.; Lundberg, E.; Navani, S.; Al-Khalili Szigyarto, C.; Odeberg, J.; Djureinovic, D.; Takanen, J.O.; Hober, S.; Alm, T.; Edqvist, P-H.; Berling, H.; Tegel, H.; Johan, M.; Rockberg, J.; Nilsson, P.; Schwenk, J.M.; Hamsten, M.; von Feilitzen, K.; Forsberg, M.; Persson, L.; Johansson, F.; Zwahlen, M.; von Heijne, G.; Nielsen, J.; Pontén, F. Tissue-based map of the human proteome. Science, 2015, 347(6220), 1260419.
[http://dx.doi.org/10.1126/science.1260419] [PMID: 25613900]
[26]
Al Mahri, S.; Al Ghamdi, A.; Akiel, M.; Al Aujan, M.; Mohammad, S.; Aziz, M.A. Free fatty acids receptors 2 and 3 control cell proliferation by regulating cellular glucose uptake. World J. Gastrointest. Oncol., 2020, 12(5), 514-525.
[http://dx.doi.org/10.4251/wjgo.v12.i5.514] [PMID: 32461783]
[27]
Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Cuchel, M.; Tarugi, P.; Hegele, R.A.; Davidson, N.O.; Rader, D.J.; Klein, R.L.; Hussain, M.M. Microsomal triglyceride transfer protein transfers and determines plasma concentrations of ceramide and sphingomyelin but not glycosylceramide. J. Biol. Chem., 2015, 290(43), 25863-25875.
[http://dx.doi.org/10.1074/jbc.M115.659110] [PMID: 26350457]
[28]
Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 1959, 37(8), 911-917.
[http://dx.doi.org/10.1139/o59-099] [PMID: 13671378]
[29]
Roland, B.P.; Naito, T.; Best, J.T.; Arnaiz-Yépez, C.; Takatsu, H.; Yu, R.J.; Shin, H.W.; Graham, T.R. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs. J. Biol. Chem., 2019, 294(6), 1794-1806.
[http://dx.doi.org/10.1074/jbc.RA118.005876] [PMID: 30530492]
[30]
Jen, J.; Kim, H.; Piantadosi, S.; Liu, Z.F.; Levitt, R.C.; Sistonen, P.; Kinzler, K.W.; Vogelstein, B.; Hamilton, S.R. Allelic loss of chromosome 18q and prognosis in colorectal cancer. N. Engl. J. Med., 1994, 331(4), 213-221.
[http://dx.doi.org/10.1056/NEJM199407283310401] [PMID: 8015568]
[31]
Park, D.Y.; Sakamoto, H.; Kirley, S.D.; Ogino, S.; Kawasaki, T.; Kwon, E.; Mino-Kenudson, M.; Lauwers, G.Y.; Chung, D.C.; Rueda, B.R.; Zukerberg, L.R. The Cables gene on chromosome 18q is silenced by promoter hypermethylation and allelic loss in human colorectal cancer. Am. J. Pathol., 2007, 171(5), 1509-1519.
[http://dx.doi.org/10.2353/ajpath.2007.070331] [PMID: 17982127]
[32]
Deng, L.; Niu, G.M.; Ren, J.; Ke, C.W. Identification of ATP8B1 as a tumor suppressor gene for colorectal cancer and its involvement in phospholipid homeostasis. BioMed Res. Int., 2020, 2020, 2015648.
[http://dx.doi.org/10.1155/2020/2015648] [PMID: 33062669]
[33]
Sveen, A.; Bruun, J.; Eide, P.W.; Eilertsen, I.A.; Ramirez, L.; Murumägi, A.; Arjama, M.; Danielsen, S.A.; Kryeziu, K.; Elez, E.; Tabernero, J.; Guinney, J.; Palmer, H.G.; Nesbakken, A.; Kallioniemi, O.; Dienstmann, R.; Lothe, R.A. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin. Cancer Res., 2018, 24(4), 794-806.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1234] [PMID: 29242316]
[34]
Liu, Y.; Beyer, A.; Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell, 2016, 165(3), 535-550.
[http://dx.doi.org/10.1016/j.cell.2016.03.014] [PMID: 27104977]
[35]
Aziz, M.A.; Yousef, Z.; Saleh, A.M.; Mohammad, S.; Al Knawy, B. Towards personalized medicine of colorectal cancer. Crit. Rev. Oncol. Hematol., 2017, 118, 70-78.
[http://dx.doi.org/10.1016/j.critrevonc.2017.08.007] [PMID: 28917272]
[36]
Scott, P.; Anderson, K.; Singhania, M.; Cormier, R. Cystic fibrosis, CFTR, and colorectal cancer. Int. J. Mol. Sci., 2020, 21(8), 21.
[http://dx.doi.org/10.3390/ijms21082891] [PMID: 32326161]
[37]
Jia, P.; Zhao, Z. Characterization of tumor-suppressor gene inactivation events in 33 cancer types. Cell Rep., 2019, 26(2), 496-506.e3.
[http://dx.doi.org/10.1016/j.celrep.2018.12.066] [PMID: 30625331]
[38]
Boettcher, M.; McManus, M.T. Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Mol. Cell, 2015, 58(4), 575-585.
[http://dx.doi.org/10.1016/j.molcel.2015.04.028] [PMID: 26000843]
[39]
García-Barros, M.; Coant, N.; Truman, J.P.; Snider, A.J.; Hannun, Y.A. Sphingolipids in colon cancer. Biochim. Biophys. Acta, 2014, 1841(5), 773-782.
[http://dx.doi.org/10.1016/j.bbalip.2013.09.007] [PMID: 24060581]
[40]
Guenther, G.G.; Edinger, A.L. A new take on ceramide: starving cells by cutting off the nutrient supply. Cell Cycle, 2009, 8(8), 1122-1126.
[http://dx.doi.org/10.4161/cc.8.8.8161] [PMID: 19282666]
[41]
Nagahashi, M.; Tsuchida, J.; Moro, K.; Hasegawa, M.; Tatsuda, K.; Woelfel, I.A.; Takabe, K.; Wakai, T. High levels of sphingolipids in human breast cancer. J. Surg. Res., 2016, 204(2), 435-444.
[http://dx.doi.org/10.1016/j.jss.2016.05.022] [PMID: 27565080]
[42]
Nguyen, A.V.; Wu, Y.Y.; Lin, E.Y. STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer. World J. Gastroenterol., 2014, 20(30), 10279-10287.
[http://dx.doi.org/10.3748/wjg.v20.i30.10279] [PMID: 25132744]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy