Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Forging Ahead the Repositioning of Multitargeted Drug Ivermectin

Author(s): Srividya Atmakuri, Shweta Nene, Dharmendra Khatri, Shashi Bala Singh, V.R. Sinha and Saurabh Srivastava*

Volume 20, Issue 8, 2023

Published on: 01 August, 2022

Page: [1049 - 1066] Pages: 18

DOI: 10.2174/1567201819666220516163242

Price: $65

Abstract

With the advent of ivermectin, tremendous improvement in public health has been observed, especially in the treatment of onchocerciasis and lymphatic filariasis that created chaos mostly in rural, sub-Saharan Africa and Latin American countries. The discovery of ivermectin became a boon to millions of people that had suffered in the pandemic and still holds its pharmacological potential. Ivermectin continued to surprise scientists because of its notable role in the treatment of various other tropical diseases (Chagas, leishmaniasis, worm infections, etc.) and is viewed as the safest drug with the least toxic effects. The current review highlights its role in unexplored avenues towards forging ahead of the repositioning of this multitargeted drug in cancer, viral (the evaluation of the efficacy of ivermectin against SARS-Cov-2 is under investigation) and bacterial infection and malaria. This article also provides a glimpse of regulatory considerations of drug repurposing and current formulation strategies. Due to its broad-spectrum activity, multitargeted nature and promising efforts are put towards the repurposing of this drug throughout the field of medicine. This single drug originated from a microbe, changed the face of global health by proving its unmatched success and progressive efforts continue in maintaining its bequestnin the management of global health by decreasing the burden of various diseases worldwide.

Keywords: Ivermectin, tropical diseases, multitargeted nature, drug repurposing, global health, SARS-CoV-2

Graphical Abstract

[1]
Workman, P. How much gets there and what does it do?: The need for better pharmacokinetic and pharmacodynamic endpoints in contemporary drug discovery and development. Curr. Pharm. Des., 2003, 9(11), 891-902.
[http://dx.doi.org/10.2174/1381612033455279] [PMID: 12678873]
[2]
Õmura, S.; Crump, A. The life and times of ivermectin - a success story. Nat. Rev. Microbiol., 2004, 2(12), 984-989.
[http://dx.doi.org/10.1038/nrmicro1048] [PMID: 15550944]
[3]
Burg, R.W.; Miller, B.M.; Baker, E.E.; Birnbaum, J.; Currie, S.A.; Hartman, R.; Kong, Y-L.; Monaghan, R.L.; Olson, G.; Putter, I.; Tunac, J.B.; Wallick, H.; Stapley, E.O.; Oiwa, R.; Omura, S. Avermectins, new family of potent anthelmintic agents: Producing organism and fermentation. Antimicrob. Agents Chemother., 1979, 15(3), 361-367.
[http://dx.doi.org/10.1128/AAC.15.3.361] [PMID: 464561]
[4]
Omura, S. Ivermectin: 25 years and still going strong. Int. J. Antimicrob. Agents, 2008, 31(2), 91-98.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.08.023] [PMID: 18037274]
[5]
Crump, A.; Ōmura, S. Ivermectin, ‘wonder drug’ from Japan: The human use perspective. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2011, 87(2), 13-28.
[http://dx.doi.org/10.2183/pjab.87.13] [PMID: 21321478]
[6]
Sainas, S.; Dosio, F.; Boschi, D.; Lolli, M.L. Targeting human onchocerciasis: Recent advances beyond ivermectin. Annu. Rep. Med. Chem., 2018, 51, 1-38.
[7]
Amazigo, U. The African programme for onchocerciasis control (APOC). Ann. Trop. Med. Parasitol., 2008, 102(1), 19-22.
[8]
Tekle, A.H.; Elhassan, E.; Isiyaku, S.; Amazigo, U.V.; Bush, S.; Noma, M.; Cousens, S.; Abiose, A.; Remme, J.H. Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: First evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control. Parasit. Vectors, 2012, 5(1), 28.
[http://dx.doi.org/10.1186/1756-3305-5-28] [PMID: 22313631]
[9]
Repetto, S.A.; Ruybal, P.; Batalla, E.; López, C.; Fridman, V.; Sierra, M.; Radisic, M.; Bravo, P.M.; Risso, M.G.; González Cappa, S.M.; Alba, S.C.D. Strongyloidiasis outside endemic areas: Long-term parasitological and clinical follow-up after ivermectin treatment. Clin. Infect. Dis., 2018, 66(10), 1558-1565.
[http://dx.doi.org/10.1093/cid/cix1069] [PMID: 29360939]
[10]
Belizario, V.Y.; Amarillo, M.E.; de Leon, W.U.; de los Reyes, A.E.; Bugayong, M.G.; Macatangay, B.J. A comparison of the efficacy of single doses of albendazole, ivermectin, and diethylcarbamazine alone or in combinations against Ascaris and Trichuris spp. Bull. World Health Organ., 2003, 81(1), 35-42.
[PMID: 12640474]
[11]
Coscione, S.; Esau, T.; Kekeubata, E.; Diau, J.; Asugeni, R.; MacLaren, D.; Steer, A.C.; Kositz, C.; Marks, M. Impact of ivermectin administered for scabies treatment on the prevalence of head lice in Atoifi, Solomon Islands. PLoS Negl. Trop. Dis., 2018, 12(9), , e0006825..
[http://dx.doi.org/10.1371/journal.pntd.0006825] [PMID: 30252856]
[12]
Laing, R.; Gillan, V.; Devaney, E. Ivermectin - Old drug, new tricks? Trends Parasitol., 2017, 33(6), 463-472.
[http://dx.doi.org/10.1016/j.pt.2017.02.004] [PMID: 28285851]
[13]
Usha, V.; Gopalakrishnan Nair, T.V. A comparative study of oral ivermectin and topical permethrin cream in the treatment of scabies. J. Am. Acad. Dermatol., 2000, 42(2 Pt 1), 236-240.
[http://dx.doi.org/10.1016/S0190-9622(00)90131-2] [PMID: 10642678]
[14]
Kitzman, D.; Wei, S-Y.; Fleckenstein, L. Liquid chromatographic assay of ivermectin in human plasma for application to clinical pharmacokinetic studies. J. Pharm. Biomed. Anal., 2006, 40(4), 1013-1020.
[http://dx.doi.org/10.1016/j.jpba.2005.08.026] [PMID: 16242280]
[15]
Fink, D.W.; Porras, A.G. Pharmacokinetics of ivermectin in animals and humans. Campbell W.C.Ivermectin and Abamectin; Springer: New York, NY, 1989, pp. 113-130.
[16]
González Canga, A.; Sahagún Prieto, A.M.; Diez Liébana, M.J.; Fernández Martínez, N.; Sierra Vega, M.; García Vieitez, J.J. The pharmacokinetics and interactions of ivermectin in humans-a mini-review. AAPS J., 2008, 10(1), 42-46.
[http://dx.doi.org/10.1208/s12248-007-9000-9] [PMID: 18446504]
[17]
Chaccour, C.; Hammann, F.; Rabinovich, N.R. Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar. J., 2017, 16(1), 161.
[http://dx.doi.org/10.1186/s12936-017-1801-4] [PMID: 28434401]
[18]
Lespine, A.; Ménez, C.; Bourguinat, C.; Prichard, R.K. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance. Int. J. Parasitol. Drugs Drug Resist., 2011, 2, 58-75.
[http://dx.doi.org/10.1016/j.ijpddr.2011.10.001] [PMID: 24533264]
[19]
Cynthia, A. Lasseter, safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol., 2002, 42, 1122-1133.
[20]
Kircik, L.H.; Del Rosso, J.Q.; Layton, A.M.; Schauber, J. Over 25 years of clinical experience with ivermectin: An overview of safety for an increasing number of indications. J. Drugs Dermatol., 2016, 15(3), 325-332.
[PMID: 26954318]
[21]
Goa, K.L.; McTavish, D.; Clissold, S.P. Ivermectin. A review of its antifilarial activity, pharmacokinetic properties and clinical efficacy in onchocerciasis. Drugs, 1991, 42(4), 640-658.
[http://dx.doi.org/10.2165/00003495-199142040-00007] [PMID: 1723366]
[22]
Fox, L.M. Ivermectin: Uses and impact 20 years on. Curr. Opin. Infect. Dis., 2006, 19(6), 588-593.
[http://dx.doi.org/10.1097/QCO.0b013e328010774c] [PMID: 17075336]
[23]
Rothova, A.; van der Lelij, A.; Stilma, J.S.; Wilson, W.R.; Barbe, R.F. Side-effects of ivermectin in treatment of onchocerciasis. Lancet, 1989, 1(8652), 1439-1441.
[http://dx.doi.org/10.1016/S0140-6736(89)90136-0] [PMID: 2567440]
[24]
Baudou, E.; Lespine, A.; Durrieu, G.; André, F.; Gandia, P.; Durand, C.; Cunat, S. Serious ivermectin toxicity and human ABCB1 non-sense mutations. N. Engl. J. Med., 2020, 383(8), 787-789.
[http://dx.doi.org/10.1056/NEJMc1917344] [PMID: 32813957]
[25]
Benet, L.Z.; Cummins, C.L.; Wu, C.Y. Unmasking the dynamic interplay between efflux transporters and metabolic enzymes. Int. J. Pharm., 2004, 277(1-2), 3-9.
[http://dx.doi.org/10.1016/j.ijpharm.2002.12.002] [PMID: 15158963]
[26]
Eberhard, M. Progress toward elimination of onchocerciasis in the Americas — 1993–2012., 2013, 405-408.
[27]
World Health Organization Onchocerciasis. Available from:. https://www.who.int/news-room/fact-sheets/detail/onchocerciasis
[28]
Murdoch, M.E.; Asuzu, M.C.; Hagan, M.; Makunde, W.H.; Ngoumou, P.; Ogbuagu, K.F.; Okello, D.; Ozoh, G.; Remme, J. Onchocerciasis: The clinical and epidemiological burden of skin disease in Africa. Ann. Trop. Med. Parasitol., 2002, 96(3), 283-296.
[http://dx.doi.org/10.1179/000349802125000826] [PMID: 12061975]
[29]
Winthrop, K.L.; Furtado, J.M.; Silva, J.C.; Resnikoff, S.; Lansingh, V.C. River blindness: An old disease on the brink of elimination and control. J. Glob. Infect. Dis., 2011, 3(2), 151-155.
[http://dx.doi.org/10.4103/0974-777X.81692] [PMID: 21731302]
[30]
Gonser, L.; Gonser, C.; Schaller, M. Pathogenesis, clinical picture, and current therapy of rosacea. Der Hautarzt. Zeitschrift fur Dermatologie, Venerologie, und Verwandte Gebiete, 2016, 67(1), 69-82.
[31]
Mackenzie, C.D.; Geary, T.G.; Gerlach, J.A. Possible pathogenic pathways in the adverse clinical events seen following ivermectin administration to onchocerciasis patients. Filaria J., 2003, 2(1)(Suppl. 1), S5.
[http://dx.doi.org/10.1186/1475-2883-2-S1-S5] [PMID: 14975062]
[32]
Ndeffo-Mbah, M.L.; Galvani, A.P. Global elimination of lymphatic filariasis. Lancet Infect. Dis., 2017, 17(4), 358-359.
[http://dx.doi.org/10.1016/S1473-3099(16)30544-8] [PMID: 28012944]
[33]
Ejere, H.O.; Schwartz, E.; Wormald, R.; Evans, J.R. Ivermectin for onchocercal eye disease (river blindness). Cochrane Database Syst. Rev., 2012, 2012(8), , CD002219..
[34]
Thomsen, E.K.; Sanuku, N.; Baea, M.; Satofan, S.; Maki, E.; Lombore, B.; Schmidt, M.S.; Siba, P.M.; Weil, G.J.; Kazura, J.W.; Flecken-stein, L.L.; King, C.L. Efficacy, safety, and pharmacokinetics of coadministered diethylcarbamazine, albendazole, and ivermectin for treatment of bancroftian filariasis. Clin. Infect. Dis., 2016, 62(3), 334-341.
[http://dx.doi.org/10.1093/cid/civ882] [PMID: 26486704]
[35]
Hoerauf, A.; Satoguina, J.; Saeftel, M.; Specht, S. Immunomodulation by filarial nematodes. Parasite Immunol., 2005, 27(10-11), 417-429.
[http://dx.doi.org/10.1111/j.1365-3024.2005.00792.x] [PMID: 16179035]
[36]
Babu, S.; Kumaraswami, V.; Nutman, T.B. Alternatively activated and immunoregulatory monocytes in human filarial infections. J. Infect. Dis., 2009, 199(12), 1827-1837.
[http://dx.doi.org/10.1086/599090] [PMID: 19456233]
[37]
Mahalingashetti, P.B.; Subramanian, R.A.; Jayker, S.S.; Vijay, A. Lymphatic filariasis: A view at pathological diversity. Trop. Parasitol., 2014, 4(2), 128-132.
[http://dx.doi.org/10.4103/2229-5070.138544] [PMID: 25250237]
[38]
Debrah, A.Y.; Mand, S.; Marfo-Debrekyei, Y.; Batsa, L.; Pfarr, K.; Lawson, B.; Taylor, M.; Adjei, O.; Hoerauf, A. Reduction in levels of plasma vascular endothelial growth factor-A and improvement in hydrocele patients by targeting endosymbiotic Wolbachia sp. in Wuchereria bancrofti with doxycycline. Am. J. Trop. Med. Hyg., 2009, 80(6), 956-963.
[http://dx.doi.org/10.4269/ajtmh.2009.80.956] [PMID: 19478258]
[39]
Taylor, M.J.; Bandi, C.; Hoerauf, A. Wolbachia bacterial endosymbionts of filarial nematodes. Adv. Parasitol., 2005, 60, 245-284.
[http://dx.doi.org/10.1016/S0065-308X(05)60004-8] [PMID: 16230105]
[40]
Hooper, P.; Bradley, M.; Biswas, G.; Ottesen, E. The global programme to eliminate lymphatic filariasis: Health impact during its first 8 years (2000–2007). Ann. Trop. Med. Parasitol., 2009, 103(1), 17-21.
[41]
Wolstenholme, A.J.; Rogers, A.T. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology, 2005, 131(S1)(Suppl.), S85-S95.
[http://dx.doi.org/10.1017/S0031182005008218] [PMID: 16569295]
[42]
Taylor, M.J.; Hoerauf, A.; Bockarie, M. Lymphatic filariasis and onchocerciasis. Lancet, 2010, 376(9747), 1175-1185.
[http://dx.doi.org/10.1016/S0140-6736(10)60586-7] [PMID: 20739055]
[43]
Awadzi, K.; Edwards, G.; Duke, B.O.; Opoku, N.O.; Attah, S.K.; Addy, E.T.; Ardrey, A.E.; Quartey, B.T. The co-administration of ivermectin and albendazole- safety, pharmacokinetics and efficacy against Onchocerca volvulus. Ann. Trop. Med. Parasitol., 2003, 97(2), 165-178.
[http://dx.doi.org/10.1179/000349803235001697] [PMID: 12803872]
[44]
Van den Bossche, P.; de La Rocque, S.; Hendrickx, G.; Bouyer, J. A changing environment and the epidemiology of tsetse-transmitted livestock trypanosomiasis. Trends Parasitol., 2010, 26(5), 236-243.
[http://dx.doi.org/10.1016/j.pt.2010.02.010] [PMID: 20304707]
[45]
Morrison, L.J. Parasite-driven pathogenesis in Trypanosoma brucei infections. Parasite Immunol., 2011, 33(8), 448-455.
[http://dx.doi.org/10.1111/j.1365-3024.2011.01286.x] [PMID: 21366624]
[46]
Simarro, P.P.; Jannin, J.; Cattand, P. Eliminating human African trypanosomiasis: Where do we stand and what comes next? PLoS Med., 2008, 5(2), , e55..
[http://dx.doi.org/10.1371/journal.pmed.0050055] [PMID: 18303943]
[47]
Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159.
[http://dx.doi.org/10.1016/S0140-6736(09)60829-1] [PMID: 19833383]
[48]
Kennedy, P.G. Human African trypanosomiasis of the CNS: Current issues and challenges. J. Clin. Invest., 2004, 113(4), 496-504.
[http://dx.doi.org/10.1172/JCI200421052] [PMID: 14966556]
[49]
Pépin, J.; Milord, F.; Khonde, A.N.; Niyonsenga, T.; Loko, L.; Mpia, B.; De Wals, P. Risk factors for encephalopathy and mortality during melarsoprol treatment of Trypanosoma brucei gambiense sleeping sickness. Trans. R. Soc. Trop. Med. Hyg., 1995, 89(1), 92-97.
[http://dx.doi.org/10.1016/0035-9203(95)90673-8] [PMID: 7747321]
[50]
Northover, A.S.; Godfrey, S.S.; Keatley, S.; Lymbery, A.J.; Wayne, A.F.; Cooper, C.; Pallant, L.; Morris, K.; Thompson, R.C.A. Increased Trypanosoma spp. richness and prevalence of haemoparasite co-infection following translocation. Parasit. Vectors, 2019, 12(1), 126.
[http://dx.doi.org/10.1186/s13071-019-3370-6] [PMID: 30898141]
[51]
Udensi, U.K.; Fagbenro-Beyioku, A.F. Effect of ivermectin on Trypanosoma brucei brucei in experimentally infected mice. J. Vector Borne Dis., 2012, 49(3), 143-150.
[PMID: 23135008]
[52]
Dias, J.C.P.; Schofield, C.J.; Machado, E.M.; Fernandes, A.J. Ticks, ivermectin, and experimental Chagas disease. Mem. Inst. Oswaldo Cruz, 2005, 100(8), 829-832.
[http://dx.doi.org/10.1590/S0074-02762005000800002] [PMID: 16444412]
[53]
Alves, E.B.; Figueiredo, F.B.; Rocha, M.F.; Castro, M.C.; Werneck, G.L. Effectiveness of insecticide-impregnated collars for the control of canine visceral leishmaniasis. Prev. Vet. Med., 2020, 182, , 105104..
[http://dx.doi.org/10.1016/j.prevetmed.2020.105104] [PMID: 32759025]
[54]
Desjeux, P. Leishmaniasis: Current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27(5), 305-318.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[55]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19(1), 111-126.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006] [PMID: 16418526]
[56]
Wetzel, D.M.; Rhodes, E.L.; Li, S.; McMahon-Pratt, D.; Koleske, A.J. The Src kinases Hck, Fgr and Lyn activate Arg to facilitate IgG-mediated phagocytosis and Leishmania infection. J. Cell Sci., 2016, 129(16), 3130-3143.
[http://dx.doi.org/10.1242/jcs.185595] [PMID: 27358479]
[57]
Vera-Izaguirre, D.S.; Vega-Memije, E.; Quintanilla-Cedillo, M.R.; Arenas, R. Leishmaniasis. A review. Dermatología Cosmética, Médica Y Quirúrgica, 2006, 4(4), 252-260.
[58]
Miranda, O.; González, I. Leishmaniasis cutánea. Presentación de casos. Rev. Cuba. Med. Mil., 2007, 36(4), 51-54.
[59]
Reis, T.A.R.; Oliveira-da-Silva, J.A.; Tavares, G.S.V.; Mendonça, D.V.C.; Freitas, C.S.; Costa, R.R.; Lage, D.P.; Martins, V.T.; Machado, A.S.; Ramos, F.F.; Silva, A.M.; Ludolf, F.; Antinarelli, L.M.R.; Brito, R.C.F.; Chávez-Fumagalli, M.A.; Humbert, M.V.; Roatt, B.M.; Coim-bra, E.S.; Coelho, E.A.F. Ivermectin presents effective and selective antileishmanial activity in vitro and in vivo against Leishmania infantum and is therapeutic against visceral leishmaniasis. Exp. Parasitol., 2021, 221, 108059.
[http://dx.doi.org/10.1016/j.exppara.2020.108059] [PMID: 33338468]
[60]
Romero, A.I.; Cid, A.G.; Minetti, N.E.; Briones Nieva, C.A.; García Bustos, M.F.; Gonzo, E.E.; Villegas, M.; M Bermúdez, J. Sustained-release hydrogels of ivermectin as alternative systems to improve the treatment of cutaneous leishmaniasis. Ther. Deliv., 2020, 11(12), 779-790.
[http://dx.doi.org/10.4155/tde-2020-0090] [PMID: 33198601]
[61]
Hanafi, H.A.; Szumlas, D.E.; Fryauff, D.J.; El-Hossary, S.S.; Singer, G.A.; Osman, S.G.; Watany, N.; Furman, B.D.; Hoel, D.F. Effects of ivermectin on blood-feeding Phlebotomus papatasi, and the promastigote stage of Leishmania major. Vector Borne Zoonotic Dis., 2011, 11(1), 43-52.
[http://dx.doi.org/10.1089/vbz.2009.0030] [PMID: 20518644]
[62]
Rasheid, K.A.; Morsy, T.A. Efficacy of ivermectin on the infectivity of Leishmania major promastigotes. J. Egypt. Soc. Parasitol., 1998, 28(1), 207-212.
[PMID: 9617057]
[63]
Mascari, T.M.; Clark, J.; Gordon, S.; Mitchell, M.A.; Rowton, E.D.; Stout, R.; Foil, L.D. Oral treatment of rodents with insecticides for control of sand flies (Diptera: Psychodidae) and the Fluorescent Tracer Technique (FTT) as a tool to evaluate potential sand fly control methods. J. Vector Ecol., 2011, 36(Suppl. 1), S132-S137.
[http://dx.doi.org/10.1111/j.1948-7134.2011.00122.x] [PMID: 21366765]
[64]
Gomez, S.A.; Picado, A. Systemic insecticides used in dogs: Potential candidates for phlebotomine vector control? Trop. Med. Int. Health, 2017, 22(6), 755-764.
[http://dx.doi.org/10.1111/tmi.12870] [PMID: 28326655]
[65]
Matha, V.; Weiser, J. Molluscicidal effect of ivermectin on Biomphalaria glabrata. J. Invertebr. Pathol., 1988, 52(2), 354-355.
[http://dx.doi.org/10.1016/0022-2011(88)90146-2] [PMID: 3183416]
[66]
Taman, A.; Ribeiro, P. Characterization of a truncated metabotropic glutamate receptor in a primitive metazoan, the parasitic flatworm Schistosoma mansoni. PLoS One, 2011, 6(11), , e27119..
[http://dx.doi.org/10.1371/journal.pone.0027119] [PMID: 22069494]
[67]
Fallon, P.G.; Doenhoff, M.J. Drug-resistant schistosomiasis: Resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg., 1994, 51(1), 83-88.
[http://dx.doi.org/10.4269/ajtmh.1994.51.83] [PMID: 8059919]
[68]
Sanchez, M.C.; Cupit, P.M.; Bu, L.; Cunningham, C. Transcriptomic analysis of reduced sensitivity to praziquantel in Schistosoma mansoni. Mol. Biochem. Parasitol., 2019, 228, 6-15.
[http://dx.doi.org/10.1016/j.molbiopara.2018.12.005] [PMID: 30658180]
[69]
Xu, X.; Wang, C.; Zhang, S.; Huang, Y.; Pan, T.; Wang, B.; Pan, B. Acaricidal efficacy of orally administered macrocyclic lactones against poultry red mites (Dermanyssus gallinae) on chicks and their impacts on mite reproduction and blood-meal digestion. Parasit. Vectors, 2019, 12(1), 345.
[http://dx.doi.org/10.1186/s13071-019-3599-0] [PMID: 31300011]
[70]
Sheele, J.M.; Anderson, J.F.; Tran, T.D.; Teng, Y.A.; Byers, P.A.; Ravi, B.S.; Sonenshine, D.E. Ivermectin causes Cimex lectularius (bed-bug) morbidity and mortality. J. Emerg. Med., 2013, 45(3), 433-440.
[http://dx.doi.org/10.1016/j.jemermed.2013.05.014] [PMID: 23871326]
[71]
Shinohara, E.H.; Martini, M.Z.; de Oliveira Neto, H.G.; Takahashi, A. Oral myiasis treated with ivermectin: Case report. Braz. Dent. J., 2004, 15(1), 79-81.
[http://dx.doi.org/10.1590/S0103-64402004000100015] [PMID: 15322651]
[72]
Chandler, D.J.; Fuller, L.C. A review of scabies: An infestation more than skin deep. Dermatology, 2019, 235(2), 79-90.
[http://dx.doi.org/10.1159/000495290] [PMID: 30544123]
[73]
Richards, R.N. Scabies: Diagnostic and therapeutic update. J. Cutan. Med. Surg., 2021, 25(1), 95-101.
[http://dx.doi.org/10.1177/1203475420960446] [PMID: 32998532]
[74]
Palaniappan, V.; Gopinath, H.; Kaliaperumal, K. Crusted scabies. Am. J. Trop. Med. Hyg., 2021, 104(3), 787-788.
[http://dx.doi.org/10.4269/ajtmh.20-1334] [PMID: 33657012]
[75]
Wang, M.K.; Chin-Yee, B.; Lo, C.K.L.; Lee, S.; El-Helou, P.; Alowami, S.; Gangji, A.; Ribic, C. Crusted scabies in a renal transplant recipient treated with daily ivermectin: A case report and literature review. Transpl. Infect. Dis., 2019, 21(3), , e13077..
[http://dx.doi.org/10.1111/tid.13077] [PMID: 30873722]
[76]
Bouchaud, O.; Houzé, S.; Schiemann, R.; Durand, R.; Ralaimazava, P.; Ruggeri, C.; Coulaud, J-P. Cutaneous larva migrans in travelers: A prospective study, with assessment of therapy with ivermectin. Clin. Infect. Dis., 2000, 31(2), 493-498.
[http://dx.doi.org/10.1086/313942] [PMID: 10987711]
[77]
Brenner, M.A.; Patel, M.B. Cutaneous larva migrans: The creeping eruption. Cutis, 2003, 72(2), 111-115.
[PMID: 12953933]
[78]
Caumes, E. Treatment of cutaneous larva migrans. Clin. Infect. Dis., 2000, 30(5), 811-814.
[http://dx.doi.org/10.1086/313787] [PMID: 10816151]
[79]
Veraldi, S.; Çuka, E.; Vaira, F. Cutaneous larva migrans. In: Abramovits, W.; Graham, G.; Har-Shai, Y.; Strumia, R.; Eds. Dermatological Cryosurgery and Cryotherapy; Springer: London, 2016, pp. 475-477.
[http://dx.doi.org/10.1007/978-1-4471-6765-5_87]
[80]
Rodriguez-Morales, A.J.; González-Leal, N.; Montes-Montoya, M.C.; Fernández-Espíndola, L.; Bonilla-Aldana, D.K.; Azeñas-Burgoa, J.M.; de Medina, J.C.D.; Rotela-Fisch, V.; Bermudez-Calderon, M.; Arteaga-Livias, K.; Larsen, F.D.; Suárez, J.A. Cutaneous larva migrans. Curr. Trop. Med. Rep., 2021, 8(3), 190-203.
[http://dx.doi.org/10.1007/s40475-021-00239-0]
[81]
Magri, F.; Chello, C.; Pranteda, G.; Pranteda, G. Complete resolution of cutaneous larva migrans with topical ivermectin: A case report. Dermatol. Ther., 2019, 32(3), , e12845..
[http://dx.doi.org/10.1111/dth.12845] [PMID: 30693620]
[82]
Kang, W.; Tong, J.H.; Chan, A.W.; Lee, T-L.; Lung, R.W.; Leung, P.P.; So, K.K.; Wu, K.; Fan, D.; Yu, J.; Sung, J.J.; To, K.F. Yes-associated protein 1 exhibits oncogenic property in gastric cancer and its nuclear accumulation associates with poor prognosis. Clin. Cancer Res., 2011, 17(8), 2130-2139.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2467] [PMID: 21346147]
[83]
Sun, D.; Li, X.; He, Y.; Li, W.; Wang, Y.; Wang, H.; Jiang, S.; Xin, Y. YAP1 enhances cell proliferation, migration, and invasion of gastric cancer in vitro and in vivo. Oncotarget, 2016, 7(49), 81062-81076.
[http://dx.doi.org/10.18632/oncotarget.13188] [PMID: 27835600]
[84]
Nambara, S.; Masuda, T.; Nishio, M.; Kuramitsu, S.; Tobo, T.; Ogawa, Y.; Hu, Q.; Iguchi, T.; Kuroda, Y.; Ito, S.; Eguchi, H.; Sugimachi, K.; Saeki, H.; Oki, E.; Maehara, Y.; Suzuki, A.; Mimori, K. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget, 2017, 8(64), 107666-107677.
[http://dx.doi.org/10.18632/oncotarget.22587] [PMID: 29296196]
[85]
Hashimoto, H.; Sudo, T.; Maruta, H.; Nishimura, R. The direct PAK1 inhibitor, TAT-PAK18, blocks preferentially the growth of human ovarian cancer cell lines in which PAK1 is abnormally activated by autophosphorylation at Thr 423. Drug Discov. Ther., 2010, 4(1), 1-4.
[PMID: 22491145]
[86]
Feng, X.; Zhang, H.; Meng, L.; Song, H.; Zhou, Q.; Qu, C.; Zhao, P.; Li, Q.; Zou, C.; Liu, X.; Zhang, Z. Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy, 2021, 17(3), 723-742.
[http://dx.doi.org/10.1080/15548627.2020.1731266] [PMID: 32186433]
[87]
Wang, K.; Gao, W.; Dou, Q.; Chen, H.; Li, Q.; Nice, E.C.; Huang, C. Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer. Autophagy, 2016, 12(12), 2498-2499.
[http://dx.doi.org/10.1080/15548627.2016.1231494] [PMID: 27657889]
[88]
Boice, A.; Bouchier-Hayes, L. Targeting apoptotic caspases in cancer. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(6), , 118688..
[http://dx.doi.org/10.1016/j.bbamcr.2020.118688] [PMID: 32087180]
[89]
Zhang, Y.; Luo, M.; Xu, W.; Yang, M.; Wang, B.; Gao, J.; Li, Y.; Tao, L. Avermectin confers its cytotoxic effects by inducing DNA damage and mitochondria-associated apoptosis. J. Agric. Food Chem., 2016, 64(36), 6895-6902.
[http://dx.doi.org/10.1021/acs.jafc.6b02812] [PMID: 27551889]
[90]
Pellegatti, P.; Raffaghello, L.; Bianchi, G.; Piccardi, F.; Pistoia, V.; Di Virgilio, F. Increased level of extracellular ATP at tumor sites: In vivo imaging with plasma membrane luciferase. PLoS One, 2008, 3(7), , e2599..
[http://dx.doi.org/10.1371/journal.pone.0002599] [PMID: 18612415]
[91]
Draganov, D.; Gopalakrishna-Pillai, S.; Chen, Y-R.; Zuckerman, N.; Moeller, S.; Wang, C.; Ann, D.; Lee, P.P. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci. Rep., 2015, 5(1), 16222.
[http://dx.doi.org/10.1038/srep16222] [PMID: 26552848]
[92]
Dou, Q.; Chen, H-N.; Wang, K.; Yuan, K.; Lei, Y.; Li, K.; Lan, J.; Chen, Y.; Huang, Z.; Xie, N.; Zhang, L.; Xiang, R.; Nice, E.C.; Wei, Y.; Huang, C. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res., 2016, 76(15), 4457-4469.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2887] [PMID: 27302166]
[93]
Anastas, J.N.; Moon, R.T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer, 2013, 13(1), 11-26.
[http://dx.doi.org/10.1038/nrc3419] [PMID: 23258168]
[94]
Melotti, A.; Mas, C.; Kuciak, M.; Lorente-Trigos, A.; Borges, I.; Ruiz i Altaba, A. The river blindness drug ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol. Med., 2014, 6(10), 1263-1278.
[http://dx.doi.org/10.15252/emmm.201404084] [PMID: 25143352]
[95]
Yin, J.; Park, G.; Lee, J.E.; Choi, E.Y.; Park, J.Y.; Kim, T-H.; Park, N.; Jin, X.; Jung, J-E.; Shin, D.; Hong, J.H.; Kim, H.; Yoo, H.; Lee, S.H.; Kim, Y.J.; Park, J.B.; Kim, J.H. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain, 2015, 138(Pt 9), 2553-2570.
[http://dx.doi.org/10.1093/brain/awv167] [PMID: 26121981]
[96]
Liu, J.; Zhang, K.; Cheng, L.; Zhu, H.; Xu, T. Progress in understanding the molecular mechanisms underlying the antitumour effects of ivermectin. Drug Des. Devel. Ther., 2020, 14, 285-296.
[http://dx.doi.org/10.2147/DDDT.S237393] [PMID: 32021111]
[97]
Liu, Y.; Fang, S.; Sun, Q.; Liu, B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2016, 480(3), 415-421.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.064] [PMID: 27771251]
[98]
World Health Organization World malaria report. 2018. Available from: https://www.who.int/malaria/publications/world-malaria-report-2018/report/en/
[99]
Hay, S.I.; Guerra, C.A.; Tatem, A.J.; Noor, A.M.; Snow, R.W. The global distribution and population at risk of malaria: Past, present, and future. Lancet Infect. Dis., 2004, 4(6), 327-336.
[http://dx.doi.org/10.1016/S1473-3099(04)01043-6] [PMID: 15172341]
[100]
Choi, L.; Majambere, S.; Wilson, A.L. Larviciding to prevent malaria transmission. Cochrane Database Syst. Rev., 2019, 8(8), , CD012736..
[http://dx.doi.org/10.1002/14651858.CD012736.pub2]
[101]
de Souza, D.K.; Larbi, I.; Boakye, D.A.; Okebe, J. Ivermectin treatment in humans for reducing malaria transmission. Cochrane Database Syst. Rev., 2021, 6(6), , CD013117..
[http://dx.doi.org/10.1002/14651858.CD013117] [PMID: 34184757]
[102]
Meyers, J.I.; Gray, M.; Kuklinski, W.; Johnson, L.B.; Snow, C.D.; Black, W.C., IV; Partin, K.M.; Foy, B.D. Characterization of the target of ivermectin, the glutamate-gated chloride channel, from Anopheles gambiae. J. Exp. Biol., 2015, 218(Pt 10), 1478-1486.
[http://dx.doi.org/10.1242/jeb.118570] [PMID: 25994631]
[103]
Wolstenholme, A.J. Glutamate-gated chloride channels. J. Biol. Chem., 2012, 287(48), 40232-40238.
[http://dx.doi.org/10.1074/jbc.R112.406280] [PMID: 23038250]
[104]
Chaccour, C.; Rabinovich, N.R. Advancing the repurposing of ivermectin for malaria. Lancet, 2019, 393(10180), 1480-1481.
[http://dx.doi.org/10.1016/S0140-6736(18)32613-8] [PMID: 30878223]
[105]
Kobylinski, K.C.; Jittamala, P.; Hanboonkunupakarn, B.; Pukrittayakamee, S.; Pantuwatana, K.; Phasomkusolsil, S.; Davidson, S.A.; Winterberg, M.; Hoglund, R.M.; Mukaka, M.; van der Pluijm, R.W.; Dondorp, A.; Day, N.P.J.; White, N.J.; Tarning, J. Safety, pharmacokinetics, and mosquito-lethal effects of ivermectin in combination with dihydroartemisinin-piperaquine and primaquine in healthy adult Thai subjects. Clin. Pharmacol. Ther., 2020, 107(5), 1221-1230.
[http://dx.doi.org/10.1002/cpt.1716] [PMID: 31697848]
[106]
Alout, H.; Krajacich, B.J.; Meyers, J.I.; Grubaugh, N.D.; Brackney, D.E.; Kobylinski, K.C.; Diclaro, J.W., II; Bolay, F.K.; Fakoli, L.S.; Diabaté, A.; Dabiré, R.K.; Bougma, R.W.; Foy, B.D. Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments. Malar. J., 2014, 13(1), 417.
[http://dx.doi.org/10.1186/1475-2875-13-417] [PMID: 25363349]
[107]
Chaccour, C.J.; Rabinovich, N.R.; Slater, H.; Canavati, S.E.; Bousema, T.; Lacerda, M.; Ter Kuile, F.; Drakeley, C.; Bassat, Q.; Foy, B.D. Establishment of the ivermectin research for malaria elimination network: Updating the research agenda. Malar. J., 2015, 14, 243.
[108]
Derua, Y.A.; Kisinza, W.N.; Simonsen, P.E. Differential effect of human ivermectin treatment on blood feeding Anopheles gambiae and Culex quinquefasciatus. Parasit. Vectors, 2015, 8(1), 130.
[http://dx.doi.org/10.1186/s13071-015-0735-3] [PMID: 25885477]
[109]
Kobylinski, K.C.; Sylla, M.; Chapman, P.L.; Sarr, M.D.; Foy, B.D. Ivermectin mass drug administration to humans disrupts malaria parasite transmission in Senegalese villages. Am. J. Trop. Med. Hyg., 2011, 85(1), 3-5.
[http://dx.doi.org/10.4269/ajtmh.2011.11-0160] [PMID: 21734116]
[110]
Götz, V.; Magar, L.; Dornfeld, D.; Giese, S.; Pohlmann, A.; Höper, D.; Kong, B-W.; Jans, D.A.; Beer, M.; Haller, O. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci. Rep., 2016, 6(1), 1-15.
[PMID: 28442746]
[111]
Mastrangelo, E.; Pezzullo, M.; De Burghgraeve, T.; Kaptein, S.; Pastorino, B.; Dallmeier, K.; de Lamballerie, X.; Neyts, J.; Hanson, A.M.; Frick, D.N.; Bolognesi, M.; Milani, M. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug. J. Antimicrob. Chemother., 2012, 67(8), 1884-1894.
[http://dx.doi.org/10.1093/jac/dks147] [PMID: 22535622]
[112]
Ketkar, H.; Yang, L.; Wormser, G.P.; Wang, P. Lack of efficacy of ivermectin for prevention of a lethal Zika virus infection in a murine system. Diagn. Microbiol. Infect. Dis., 2019, 95(1), 38-40.
[http://dx.doi.org/10.1016/j.diagmicrobio.2019.03.012] [PMID: 31097261]
[113]
Lee, Y.J.; Lee, C. Ivermectin inhibits porcine reproductive and respiratory syndrome virus in cultured porcine alveolar macrophages. Arch. Virol., 2016, 161(2), 257-268.
[http://dx.doi.org/10.1007/s00705-015-2653-2] [PMID: 26518309]
[114]
Lundberg, L.; Pinkham, C.; Baer, A.; Amaya, M.; Narayanan, A.; Wagstaff, K.M.; Jans, D.A.; Kehn-Hall, K. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Res., 2013, 100(3), 662-672.
[http://dx.doi.org/10.1016/j.antiviral.2013.10.004] [PMID: 24161512]
[115]
Varghese, F.S.; Kaukinen, P.; Gläsker, S.; Bespalov, M.; Hanski, L.; Wennerberg, K.; Kümmerer, B.M.; Ahola, T. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses. Antiviral Res., 2016, 126, 117-124.
[http://dx.doi.org/10.1016/j.antiviral.2015.12.012] [PMID: 26752081]
[116]
Xu, T-L.; Han, Y.; Liu, W.; Pang, X-Y.; Zheng, B.; Zhang, Y.; Zhou, X-N. Antivirus effectiveness of ivermectin on dengue virus type 2 in Aedes albopictus. PLoS Negl. Trop. Dis., 2018, 12(11), , e0006934..
[http://dx.doi.org/10.1371/journal.pntd.0006934] [PMID: 30452439]
[117]
Ooi, E.E. Repurposing Ivermectin as an Anti-Dengue Drug; Oxford University Press: US, 2021.
[http://dx.doi.org/10.1093/cid/ciaa1341]
[118]
Wagstaff, K.M.; Sivakumaran, H.; Heaton, S.M.; Harrich, D.; Jans, D.A. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem. J., 2012, 443(3), 851-856.
[http://dx.doi.org/10.1042/BJ20120150] [PMID: 22417684]
[119]
Kosyna, F.K.; Nagel, M.; Kluxen, L.; Kraushaar, K.; Depping, R. The importin α/β-specific inhibitor ivermectin affects HIF-dependent hypoxia response pathways. Biol. Chem., 2015, 396(12), 1357-1367.
[http://dx.doi.org/10.1515/hsz-2015-0171] [PMID: 26351913]
[120]
Peña‐Silva, R.; Duffull, S.B.; Steer, A.C.; Jaramillo‐Rincon, S.X.; Gwee, A.; Zhu, X. Pharmacokinetic considerations on the repurposing of ivermectin for treatment of COVID‐19. Br. J. Clin. Pharmacol., 2021, 87(3), 1589-1590.
[PMID: 32779815]
[121]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, , 104787..
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[122]
Popp, M.; Stegemann, M.; Metzendorf, M-I.; Gould, S.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Ivermectin for preventing and treating COVID‐19. Cochrane Database Syst. Rev., 2021, 7(7), , CD015017..
[123]
U.S. Food and drug administration FDA Letter to Stakeholders: Do Not Use Ivermectin Intended for Animals as Treatment for COVID-19 in Humans. Available from: https://www.fda.gov/animal-veterinary/product-safety-information/fda-letter-stakeholders-do-not-use-ivermectin-intended-animals-treatment-covid-19-humans
[125]
World Health Organization Therapeutics and COVID-19: living guideline. Available from:, https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2021.3 (Accessed on: 10/10/2021).
[126]
National Institutes of Health COVID-19 Treatment Guidelines. Available from:, https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/ivermectin/ (Accessed on: 10/10/2021).
[127]
Lim, L.E.; Vilchèze, C.; Ng, C.; Jacobs, W.R., Jr; Ramón-García, S.; Thompson, C.J. Anthelmintic avermectins kill Mycobacterium tuberculosis, including multidrug-resistant clinical strains. Antimicrob. Agents Chemother., 2013, 57(2), 1040-1046.
[http://dx.doi.org/10.1128/AAC.01696-12] [PMID: 23165468]
[128]
Omansen, T.F.; Porter, J.L.; Johnson, P.D.; van der Werf, T.S.; Stienstra, Y.; Stinear, T.P. In-vitro activity of avermectins against Mycobacterium ulcerans. PLoS Negl. Trop. Dis., 2015, 9(3), , e0003549..
[http://dx.doi.org/10.1371/journal.pntd.0003549] [PMID: 25742173]
[129]
Muhammed Ameen, S.; Drancourt, M. Ivermectin lacks antituberculous activity. J. Antimicrob. Chemother., 2013, 68(8), 1936-1937.
[http://dx.doi.org/10.1093/jac/dkt089] [PMID: 23587653]
[130]
Bouchery, E.E.; Harwood, H.J.; Sacks, J.J.; Simon, C.J.; Brewer, R.D. Economic costs of excessive alcohol consumption in the U.S., 2006. Am. J. Prev. Med., 2011, 41(5), 516-524.
[http://dx.doi.org/10.1016/j.amepre.2011.06.045] [PMID: 22011424]
[132]
Johnson, B.A. Update on neuropharmacological treatments for alcoholism: Scientific basis and clinical findings. Biochem. Pharmacol., 2008, 75(1), 34-56.
[http://dx.doi.org/10.1016/j.bcp.2007.08.005] [PMID: 17880925]
[133]
Khakh, B.S.; North, R.A. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron, 2012, 76(1), 51-69.
[http://dx.doi.org/10.1016/j.neuron.2012.09.024] [PMID: 23040806]
[134]
Toulme, E.; Garcia, A.; Samways, D.; Egan, T.M.; Carson, M.J.; Khakh, B.S. P2X4 receptors in activated C8-B4 cells of cerebellar micro-glial origin. J. Gen. Physiol., 2010, 135(4), 333-353.
[http://dx.doi.org/10.1085/jgp.200910336] [PMID: 20231374]
[135]
Priel, A.; Silberberg, S.D. Mechanism of ivermectin facilitation of human P2X4 receptor channels. J. Gen. Physiol., 2004, 123(3), 281-293.
[http://dx.doi.org/10.1085/jgp.200308986] [PMID: 14769846]
[136]
Asatryan, L.; Popova, M.; Perkins, D.; Trudell, J.R.; Alkana, R.L.; Davies, D.L. Ivermectin antagonizes ethanol inhibition in purinergic P2X4 receptors. J. Pharmacol. Exp. Ther., 2010, 334(3), 720-728.
[http://dx.doi.org/10.1124/jpet.110.167908] [PMID: 20543096]
[137]
Wyatt, L.R.; Finn, D.A.; Khoja, S.; Yardley, M.M.; Asatryan, L.; Alkana, R.L.; Davies, D.L. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem. Res., 2014, 39(6), 1127-1139.
[http://dx.doi.org/10.1007/s11064-014-1271-9] [PMID: 24671605]
[138]
Yardley, M.M.; Neely, M.; Huynh, N.; Asatryan, L.; Louie, S.G.; Alkana, R.L.; Davies, D.L. Multiday administration of ivermectin is effective in reducing alcohol intake in mice at doses shown to be safe in humans. Neuroreport, 2014, 25(13), 1018-1023.
[http://dx.doi.org/10.1097/WNR.0000000000000211] [PMID: 25004078]
[139]
Khoja, S.; Huynh, N.; Warnecke, A.M.P.; Asatryan, L.; Jakowec, M.W.; Davies, D.L. Preclinical evaluation of avermectins as novel therapeutic agents for alcohol use disorders. Psychopharmacology (Berl.), 2018, 235(6), 1697-1709.
[http://dx.doi.org/10.1007/s00213-018-4869-9] [PMID: 29500584]
[140]
Silva, J.; Carry, E.; Xue, C.; Zhang, J.; Liang, J.; Roberge, J.Y.; Davies, D.L. A novel dual drug approach that combines ivermectin and dihydromyricetin (DHM) to reduce alcohol drinking and preference in mice. Molecules, 2021, 26(6), 1791.
[http://dx.doi.org/10.3390/molecules26061791] [PMID: 33810134]
[141]
Bala, R.; Pawar, P.; Khanna, S.; Arora, S. Orally dissolving strips: A new approach to oral drug delivery system. Int. J. Pharm. Investig., 2013, 3(2), 67-76.
[http://dx.doi.org/10.4103/2230-973X.114897] [PMID: 24015378]
[142]
Yardley, M.M.; Huynh, N.; Rodgers, K.E.; Alkana, R.L.; Davies, D.L. Oral delivery of ivermectin using a fast dissolving oral film: Implications for repurposing ivermectin as a pharmacotherapy for alcohol use disorder. Alcohol, 2015, 49(6), 553-559.
[http://dx.doi.org/10.1016/j.alcohol.2015.03.006] [PMID: 26095588]
[143]
DiNicolantonio, J.J.; Barroso, J.; McCarty, M. Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19. Open Heart, 2020, 7(2), , e001350..
[http://dx.doi.org/10.1136/openhrt-2020-001350] [PMID: 32895293]
[144]
Kaur, H.; Shekhar, N.; Sharma, S.; Sarma, P.; Prakash, A.; Medhi, B. Ivermectin as a potential drug for treatment of COVID-19: An in-sync review with clinical and computational attributes. Pharmacol. Rep., 2021, 73(3), 736-749.
[http://dx.doi.org/10.1007/s43440-020-00195-y] [PMID: 33389725]
[145]
Yan, S.; Ci, X.; Chen, N.; Chen, C.; Li, X.; Chu, X.; Li, J.; Deng, X. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm. Res., 2011, 60(6), 589-596.
[http://dx.doi.org/10.1007/s00011-011-0307-8] [PMID: 21279416]
[146]
Ashour, D.S. Ivermectin: From theory to clinical application. Int. J. Antimicrob. Agents, 2019, 54(2), 134-142.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.05.003] [PMID: 31071469]
[147]
Starkloff, W.J.; Bucalá, V.; Palma, S.D.; Gonzalez Vidal, N.L. Design and in vitro characterization of ivermectin nanocrystals liquid formulation based on a top-down approach. Pharm. Dev. Technol., 2017, 22(6), 809-817.
[http://dx.doi.org/10.1080/10837450.2016.1200078] [PMID: 27346432]
[148]
Pathak, K.; Raghuvanshi, S. Oral bioavailability: Issues and solutions via nanoformulations. Clin. Pharmacokinet., 2015, 54(4), 325-357.
[http://dx.doi.org/10.1007/s40262-015-0242-x] [PMID: 25666353]
[149]
Ali, M.; Afzal, M.; Verma, M.; Bhattacharya, S.M.; Ahmad, F.J.; Samim, M.; Abidin, M.Z.; Dinda, A.K. Therapeutic efficacy of poly (lactic-co-glycolic acid) nanoparticles encapsulated ivermectin (nano-ivermectin) against brugian filariasis in experimental rodent model. Parasitol. Res., 2014, 113(2), 681-691.
[http://dx.doi.org/10.1007/s00436-013-3696-5] [PMID: 24366812]
[150]
Croci, R.; Bottaro, E.; Chan, K.W.K.; Watanabe, S.; Pezzullo, M.; Mastrangelo, E.; Nastruzzi, C. Liposomal systems as nanocarriers for the antiviral agent ivermectin. Int. J. Biomater., 2016, 2016, , 8043983..
[http://dx.doi.org/10.1155/2016/8043983]
[151]
Ahmadpour, E.; Godrati-Azar, Z.; Spotin, A.; Norouzi, R.; Hamishehkar, H.; Nami, S.; Heydarian, P.; Rajabi, S.; Mohammadi, M.; Perez-Cordon, G. Nanostructured lipid carriers of ivermectin as a novel drug delivery system in hydatidosis. Parasit. Vectors, 2019, 12(1), 469.
[http://dx.doi.org/10.1186/s13071-019-3719-x] [PMID: 31601244]
[152]
Ullio-Gamboa, G.; Palma, S.; Benoit, J.P.; Allemandi, D.; Picollo, M.I.; Toloza, A.C. Ivermectin lipid-based nanocarriers as novel formulations against head lice. Parasitol. Res., 2017, 116(8), 2111-2117.
[http://dx.doi.org/10.1007/s00436-017-5510-2] [PMID: 28523490]
[153]
Deeks, E.D. Ivermectin: A review in rosacea. Am. J. Clin. Dermatol., 2015, 16(5), 447-452.
[http://dx.doi.org/10.1007/s40257-015-0150-8] [PMID: 26254001]
[154]
Das, S.; Lee, S.H.; Chia, V.D.; Chow, P.S.; Macbeath, C.; Liu, Y.; Shlieout, G. Development of microemulsion based topical ivermectin formulations: Pre-formulation and formulation studies. Colloids Surf. B Biointerfaces, 2020, 189, , 110823..
[http://dx.doi.org/10.1016/j.colsurfb.2020.110823] [PMID: 32036331]
[155]
Guo, D.; Dou, D.; Li, X.; Zhang, Q.; Bhutto, Z.A.; Wang, L. Ivermection-loaded solid lipid nanoparticles: Preparation, characterisation, stability and transdermal behaviour. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 255-262.
[http://dx.doi.org/10.1080/21691401.2017.1307207] [PMID: 28368657]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy